化学处理木材的应力松弛
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了在分子水平上弄清楚木材主成分之间的相互作用关系,以及获得不同塑化处理后,木材在应变条件下内部分子结合形式的变化信息,不仅能为木材的非晶化、化学改性、弯曲部件成型等奠定理论基础,还能为木材加工、综合利用等开辟新的途径和方法提供技术参数,同时还能丰富木材流变学理论。本研究首次应用化学动力学方法分析了脱木素和脱半纤维素木材的应力松弛,并验证了其有效性,使木材主成分之间的相互作用关系在分子水平上有了一个更好的理解;同时为了考察温度变化对木材主成分变形的影响,测定并分析了温度周期变化过程中未处理木材及处理木材的应力松弛特性。以DMSO膨胀处理及DEA-SO2-DMSO非晶化塑化处理为例,测定了两种处理木材在水浸渍过程中的X射线衍射及Tobolsky间歇应力松弛,分析了水对处理木材结晶度及内部凝聚力的影响;通过未处理和两种处理木材在不同温度水中的连续应力松弛测定,应用Eyring的绝对速度反应理论计算并获得了松弛过程中的各热力学量,分析了在水中松弛过程中不同阶段木材内部发生的化学反应;并首次采用SMCIR连续·不连续双曲线应力松弛法定量了轴向拉伸应力松弛过程中木材内部产生的架桥量,明确了交联反应的类型;为了了解干燥对处理木材塑性变形固定的影响,测定了未处理和两种处理绝干木材在温度下降过程和上升过程中的应力松弛,分析了温度变化对处理绝干木材应力松弛的影响;根据多个温度水平下的连续应力松弛测定曲线,计算松弛过程的热力学量,考察了绝干木材在松弛过程中内部发生的分子变化机理,同时也用间歇法定量了木材内部新形成的架桥量,并在此基础上构筑处理木材在松弛过程中内部分子构造的变化模型。本论文的主要结论归纳如下:
     (1)木材应力松弛的化学动力学分析表明,未处理木材的活化体积和活化自由能都随着含水率的增加而减少,脱木素处理和脱半纤维素处理木材却没有表现出这种变化规律,但处理木材的活化能总是比未处理木材的小。化学处理对木材的结构产生了不同程度的影响,使水分子对木材主成分的作用方式发生了变化。根据应力与时间的双对数关系得到的松弛速率分析,验证了化学动力学方法应用于描述化学处理木材应力松弛特性的有效性性。
     (2)通过木材在温度周期变化过程中的应力松弛研究,发现,未处理木材和化学处理木材在25℃松弛4小时后,应力几乎水平下来,升温后,应力立即急剧下降,温度下降时,应力又急剧回复。应力的急剧变化主要是在温度的变化过程中产生,当温度达到平衡态后应力的变化很小。温度变化对木材里的应力变化产生了很大影响,但是不管外界环境怎样无常变化,长期外力作用下的木材在相同的平衡温度及含水率条件下的形变随时间逐渐增大的变化规律没有变化。
To clarify the interaction between wood primary components based on a molecular level, and to obtain the change information of bonding form between molecules in different soften or decrystallized wood, can not only provide theoretical basis for decrystallization, chemical improvement of wood and wood bending, but also can offer technical parameters for new approach and ways of wood processing and integrated utilize, at the same time can also enrich the wood rheology theory. This research analyzed the stress relaxation of delignified wood and hemicellulose-removed wood based on the chemical dynamics theory, and verified its validity on stress relaxation, which made we have a more fundamental understanding of the interaction between wood components on a molecular level; In order to review the effect of temperature change on the deformation of wood molecules, determined and analyzed the relaxation behavior of untreated and chemically treated wood during periodical temperature changing. Take DMSO swollen treatment and DEA-SO2-DMSO decrystallization treatment for example, the X-ray diffraction and the Tobolsky’s intermittent stress relaxation of treated woods were determined during soaking in water, analyzed the effects of water on crystal degree and inter-cohesion of treated woods. According to these continuous relaxation curves measured in water with different temperatures, various thermodynamic quantities were obtained by using Eyring absolute rate theory, and reviewed the chemical reactions in wood which occur in different relaxation process. For the first time quantify these crosslinkings formed in the process of tensional relaxation by using the SMCIR intermittent stress relaxation way, and defined the cross-linking reaction types. In order to find out the contribute of drying to the fixation of deformation of chemically treated wood, stress relaxation of oven-dry untreated and treated wood was measured during the process of temperature elevation and descend, then analyzed the effect of temperature change on relaxation mechanism of treated oven-dry wood. According to continuous relaxation curves of oven-dry treated wood under various constant temperature, calculated the thermodynamics of relaxation process and discussed the mechanism of molecule change in wood, at the same time, also quantified these cross-linkings produced in wood by intermittent method and on the basis of which the model of molecular change during relaxation process of chemically treated was constructed. The research results obtained are as follows,
     (1)The chemical dynamics analysis on stress relaxation of wood indicated that, the active volume and active energy of untreated wood decrease with the increase of moisture content, and as it isn’t for delignified wood and hemicellulose-removed wood, but at random moisture content the active energy of treated wood is smaller than that of untreated.
引文
1 Dwianto W, 師岡淳郎, 則 元京.高温·高圧水蒸気での木材の粘弾性測定法.木材学会誌,1998a,44(2):77-81
    2 Dwianto W, 師岡淳郎,則元京.熱処理過程におけるアルビジア材の圧縮応力緩和.木材学会誌,1998b, 44(6):403-409
    3 何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,1988
    4 棚桥光彦.蒸汽処理による木質材料の変形固定機構.木材工業,1992a, 47(4): 250-254
    5 棚桥光彦.スチーム処理による木質材料の変形固定機構.木材工業,1992b,47(4):254-258
    6 青木務,山田正.木材の非晶化過程および非晶化材のクリープ.木材学会誌,1977a, 23(1):10-16
    7 青木務,山田正.木材のケモレオロジー(第1報).木材学会誌,1977b, 23(2):107-113
    8 青木務,山田正.木材のケモレオロジー(第 2 報).木材学会誌,1977c, 23(3):125-130
    9 青木務,山田正.木材のケモレオロジー(第 3 報).木材学会誌,1978a,24(6):380-384
    10 青木務,山田正.木材のケモレオロジー(第 4 報).木材学会誌,1978b, 24(11):784-789
    11 森泉 周,伏谷賢美,蕪木自輔. 木材の粘弾性と構造(第 3 報).木材学会誌,1973,
    19(3):109-115
    12 山田 正.木材の粘弾性変形と構造.木材学会誌,1971,17(2): 37-43
    13 杉山真樹,則元京.化学処理木材の動的粘弾性の温度依存性.木材学会誌,1996, 42(11): 1049-1056
    14 申宗圻. 木材学. 北京:中国林业出版社,1993
    15 唐晓淑. 热处理变形固定过程中杉木压缩木材的主成分变化及化学应力松弛. [学位论文].北京.北京林业大学图书馆,2004
    16 藤本英人.マレイン酸·グリセリン処理による木質材料の寸法安定化 [Ⅱ].木材工業,1993,48(2):55-60
    17 王洁英,赵广杰,杨琴铃等. 饱水和气干状态杉木的压缩成型及其永久固定.北京林业大学学报,2000,22(1):72-75
    18 王洁瑛,赵广杰. 空气介质中热处理压缩木材的蠕变. 北京林业大学学报, 2002, 24(2):52-58
    19 樱田一郎,坂口康义,田中洋子. 纤维素纤维水解机理的研究. 纤维志,1963,19:346-353
    20 則元京.木材の熱および水蒸気処理.木材工業,1994,49(12):588-592
    21 赵广杰.木材的化学流变学—基础构筑及研究现状.北京林业大学学报,2001,23(5):66-70
    22 中尾哲也,岡野健,浅野猪久夫.木材の損失正接におよぼす熱処理の影響.木材学会誌,1983, 29(10):657-662
    23 祖父江宽,村上谦吉,右田哲彦等.エチレン—プロピレン共重合体の化学レオロジ-.高分子化学,1964a, 21(234): 602-605
    24 祖父江宽,松崎启等,右田哲彦等.化学応力緩和における不连续緩和测定法の再讨论.高分子化学, 1964b, 21(234): 606-612
    25 佐藤秀次,白石信夫,佐道健.セルロ-スおよびリグニン溶剤を用いた木材のせット.材料,1975,24(264):885-889
    26 Alexander L E. X-ray diffraction methods in polymer science. New York: Wiley,1969, 137–197
    27 Andersson S, Serimaa R, Paakkari T et al. Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies).J Wood Sci., 2003,49:531–537
    28 Andrews R D, Tobolsky A V, Hanson E E. The theory of set at elevated temperatures in the natural and synthetic rubber vulcanizates. J.Appl.Phys. 1946, 17:352-361
    29 Arima T. Creep in process of temperature changes Ⅰ. Creep in process of constant, elevated and decreased temperature. Mokuzai Gakkaishi, 1972a, 18: 349–353
    30 Arima T. Creep in process of temperature changes Ⅱ. History effect on creep of wood in process of temperature changes. Mokuzai Gakkaishi, 1972b, 18: 377–380
    31 Arima T. Creep in process of temperature changes Ⅲ. Prediction of creep curves in process of elevated temperature. Mokuzai Gakkaishi, 1973, 19(2): 75–79
    32 Arima T. Studies on rheological behvior of wood under hot pressing Ⅱ. Effects of temperature and moisture contents on wood deformation under hot pressing. Mokuzai Gakkaishi, 1974, 20(8):355–361
    33 Armstrong L D, Christensen G N. Influence of moisture change on deformation of wood under stress. Nature, 1961,191(4791): 869–870
    34 Armstrong L D, Kingston R S T. Effect of moisture changes on creep in wood. Nature, 1960, 185(4716): 862-863
    35 Assaf A G,Haas R H,Purves C B. A study of the amorphous portion of dry, swollen cellulose by an improved thallous ethylate method. J Am Chem Soc,1944,66(1):59-65
    36 Baxter S, Vodden H A.Stress relaxation of Vulcanized Rubbers.Polymer, 1963, 4:145 -154
    37 Bhuiyan M T R,Hirai N.Study of crystalline behavior of heat-treated wood cellulose during treatments in water.J Wood Sci,2005,51(1):42-47
    38 Bonfield P W, Mundy J, Robson D J, Dinwoodie J M. The modeling of time-dependant deformation in wood using chemical kinetics. Wood Science and Technology, 1996,30(2):105-115
    39 Cao J Z, Xie M H and Zhao G J. Tensile stress relaxation of copper-ethanolamine (Cu-EA) treated wood. Wood Science and Technology. 2006, in press
    40 Caulfield D F. A chemical kinetics approach to duration of load problem in wood. Wood and Fiber Science, 1985, 17(4): 504-521
    41 Dai C. Viscoelasticity of wood composite mats during consolidation. Wood and Fiber Science, 2001, 33(3): 353-363
    42 Davidson R W. Temperature dependence on creep of wet Hinoki wood in bending. Forestry Products J, 1962, 12: 377-382
    43 Dwianto W, Morooka T, Norimoto M et al. Stress relaxation of Sugi (Cryptomeria japonica Don) wood in radial compression under high temperature steam. Holzforschung,1999a, 53:541-546
    44 Dwianto W, Morooka T, Norimoto M. Method for measuring viscoelastic properties of wood under high temperature and high pressure steam conditions. J Wood Sci, 1999b, 45:373-377
    45 Ernst L., Back, Lennart N.Salmen. Glass transition of wood components hold implications for molding and pulping process. Tappi, 1982, 65(7):107-110
    46 Eyring H, Halsey G. Mechanical properties of textiles Ⅲ. Textile Research J., 1946, 16:13-25
    47 Fujimoto H. Stability of maleic acid and glycerol mixture treated wooden material.[Ⅱ].Wood industry(Japan), 1993, 48(2): 55-60
    48 Fushitani M. Effect of delignifying treatment on static viscoelasticity of woodⅠ. stress relaxation. Mokuzai Gakkaishi, 1968a, 14(1): 11-17
    49 Fushitani M. Effect of delignifying treatment on static viscoelasticity of woodⅡ.Dependance of temperature on stress relaxation at water saturated state. Mokuzai Gakkaishi, 1968b, 14(1): 18-23
    50 Fushitani M. The stress relaxation of delignification treated wood. The 15th Conference on Japan Wood Science Research Institute. Japan, 1965, P.18
    51 Gibson E J. Creep of wood: role of water and effect of changing moisture content. Nature, 1965, 206: 213–215
    52 Glasstone S, Laidler K J, Eyring H. The theory of rate processes. New York: McGraw Hill, 1941
    53 Goring D A I. Thermal softening of lignin, hemicellulose and cellulose. Pulp Paper Mag Can, 1963, 64(12): 517–527
    54 Grossman P U A, Kingston R S T. Creep and stress relaxation of wood during bending. Australian Journal of Applied Science, 1954, 5(4):403-417
    55 Grossman P U A. Requirements for a model that exhibits mechano-sorptive behaviour. Wood Sci. Technol, 1976, 10(3): 163-168
    56 Henley TO D, Krausz A S. Thermally activated deformationⅠ. Method of Analysis. J App Phys,1974, 45:2013-2015
    57 Hlaing S. Torsional stress relaxation of Hinoki during removing lignin and hemicellulose. Master Dissertation. Agricultural College of Kyoto University, 1971
    58 Horii F,Hirai A,Kitamaru R.CP/MAS carbon-13 NMR study of spin relaxation phenomenta of cellulose containing crystalline and noncrystalline components. J Carbohydr Chem, 1984, 3: 641-662
    59 Hurai N, Mackawa T, Nishinura Y et al. The effect of temperature on the bending creep of wood. Mokuzai Gakkaishi, 1981, 27(9): 703-706
    60 Iida I, Kudo M, Onizuka J et al. Stress relaxation of wood during elevating and lowering processes of temperature and the set after relaxation Ⅱ. Consideration of the mechanism and simulation of stress relaxation behavior using a viscoelastic model. J Wood Sci, 2002b, 48(2): 119–125
    61 Iida I, Murase K, Ishimaru Y. Stress relaxation of wood in the elevating and lowering processes of temperature and the set after relaxation. J Wood Sci, 2002a, 48(1): 8–13
    62 Inoue M, Minato K, and Norimoto M. Permanent fixation of compressive deformation of wood by crosslinking. Mokuzai Gakkaishi, 1994, 40(9):931-936
    63 Inoue M, Norimoto M. Permanent fixation of compressive deformation in wood by heat treatment. Wood Research Material, 1991, 27: 31-40
    64 Ishimaru Y, Minase T. Mechanical properties of wood in various stages of swellingⅠ. Mechanical and swelling behavior of wood swollen in various organic liquids. Mokuzai Gakkaishi, 1992, 38(6): 550-555
    65 Ishimaru Y, Yamada Y and Iida I et al. Dynamic viscoelastic properties of wood in various stages of swelling. Mokuzai Gakkaishi, 1996, 42(3): 250-257
    66 Kata S M, Tobolsky A V. The relaxation of stress in wool fibers. J. Tex. Res., 1950a, 20:87-94
    67 Kata S M, Kubu E T. The chemical attack on polymeric materials as modified by diffusion. J. Tex. Res., 1950b, 20:754-759
    68 Kingston R S, Clarke L N. Some aspects of the rheological behaviour of wood Ⅱ.Analysis of creep data by reaction rate and thermodynamic methods. Australian Journal of Applied Science, 1961,12(2):227-240
    69 Kitahara K, Yukawa K. The influence of the change of temperature on creep in bending. Mokuzai Gakkaishi, 1964, 10(5): 169–175
    70 Krausz As, Eyring H. Deformation kinetics. New York: John Wiley and Sons, 1975
    71 Kubu E T. The stress relaxation of fibrous materials. J. Tex. Res., 1952a, 22:765-777
    72 Kubu E.T, Montgomery D J. Kinetics of the reduction of wool keratin by cysteine. J. Tex. Res.,1952b, 22:778-782
    73 Lee C L. Crystallinity of wood cellulose fibers studies by X-ray methods. For. Prod. J, 1961, 11: 108-112
    74 Lemiszka T., Whitwell J.C. Stress relaxation of fibers as a means of interpreting physical and chemical structure. J. Tex. Res., 1955, 25:947-955
    75 Lu W D. Technics of Wood Modification (in Chinese). Harbin: Northeast Forestry University Press, 1993
    76 Mooney M, Wolstenholme W E, Villars D S. Drift and Ralaxation of rubber. J Appl Phyd, 1944, 15:324~337
    77 Moore W J. Physical chemistry. London: Longman, 1972
    78 Mukudai J, Yata S. Modeling and simulation of viscoelastic behavior of wood under moisture content. Wood Sci Technol, 1986, 21(1): 49–63
    79 Mukudai J, Yata S. Verification of Mukudai’s mechano-sorptive model. Wood Sci Technol, 1988, 24(1): 43–58
    80 Murakami K, Ono K. Chemorheology of polymers. Elsevier Scientific Publishing Company, Amsterdam, Oxford: New York, 1979
    81 Nakano T, Sugiyama J, Norimoto M. Contractive force and transformation of microfibril with aqueous sodium hydroxide solution for wood. Holzforschung, 2000, 54(3): 315-320.
    82 Nakano T. A theoretical description of creep behavior during water desorption. Holzforschung, 1996a, 50(1):49-54
    83 Nakano T. Viscosity and entropy change in creep water desorption for wood. Wood Sci technol, 1996b,30(2):117-125
    84 Newman R H,Hemmingson J A. Determination of the degree of crystallinity of cellulose in wood by carbon-13 NMR spectroscopy. Holzforschung, 1990, 44: 351-355
    85 Norimoto M, Gril J, Minato K et al. Suppression of creep of wood under humidity change through chemical modification. Wood Industry, 1987, 42(11): 504–508
    86 Norimoto M, Gril J, Rowell R. Rheological properties of chemically modified wood: Relationship between dimensional and creep stability. Wood and Fiber Science, 1992, 24(1): 25–35
    87 Ore S. A modification of method of intermittent stress relaxation measurement on rubber vulcanization. J. Appl. Polymer sci. 1959, 2: 318~321
    88 Pierce C B, Dinwoodie J M. Creep in chipbord. Part 1: Fitting 3- and 4-element response curves to creep data. J. Materials Science, 1977, 12:1955-1960
    89 Pierce C B, Dinwoodie J M. Creep in chipbord. Part 5: An improved model for prediction of creepdeflection. Wood Sci. Technol, 1985, 19:83-91
    90 Rawat S P S, Breese M C, Khali D P. Chemical kinetics of stress relaxation of compressed wood blocks. Wood Science and Technology, 1998, 32(1): 95-99.
    91 Schniewind A P. On the influence of moisture content changes on the creep of beech wood perpendicular to the grain including the effects of temperature and temperature changes. Holz Rof Werkstoff, 1966, 24: 87–98
    92 Shiraishi N, Sato S, Yokota T. The interaction of wood with organic solvents. Ⅵ : the decrystallization of wood by the use of SO2-DEA-DMSO solution and the graft polymerization within cell wall of wood. Mokuzai Gakkaishi, 1975, 21(5): 297–304
    93 Shiraishi N, Yokota T. Thermoelasticization of chemically modified wood. Proc. XⅦ IUFRO World Congress.1981, Div.5:357-359
    94 Sugiyama M, Norimoto M. Temperature dependence of dynamic viscoelastics of chemically treated woods. Mokuzai Gakkaishi, 1996, 42(11):1049-1056
    95 Sumiya K, Nomura T, Yamada T. Creep and infrared spectra of chemically treated Hinoki wood. Material, 1967, 16(169): 830-833.
    96 Takemura T, Kanagawa Y and Nakato K. An application of the theory of relaxation during drying to wood plasticization. Mokuzai Gakkaishi, 1968,14(8): 395-400
    97 Tang Xiaoshu, Zhao Guangjie. The chemical stress relaxation of wood. Joural of Beijing forestry university, 2002, 24(1):92-96
    98 Teeaar R,Serimaa R,Paakkari T. Crystallinity of cellulose determined by CP/MAS NMR and XRD methods. Polym Bull, 1987, 17: 231-237
    99 Tobolsky A V and Eyring H. Mechanical properties of polymeric materials. J. Chem. Phys., 1943, 11:125-134
    100 Tobolsky A V and Murakami K. Existence of a Sharply Defined Maximum Relaxation Time for Monodisperse Polystyrene. J. Polymer Sci., 1959, 40:443-459
    101 Tobolsky A V, Prettyman I B, Dillon J H. Stress relaxation of natural and synthetic rubber stocks. J. Appl. Phys.,1944, 15: 380-395
    102 Urakami H, Fukuyama M. Stress relaxation of wood in bending and in torsion during adsorption of water vapor. Mokuzai Gakkaishi, 1969, 15(2): 71-75
    103 Urakami, H. and K. Nakato. The effect of temperature on torsional stress relaxation of wet Hinoki wood. Mokuzai Gakkaishi, 1966, 12(3), 118-123
    104 Van Der Put Tacm. Deformation and damage processes in wood. Holand: Delft University Press, 1989
    105 Van Der Weil A. Time dependent deformation of wood description of stress relaxation of wood in bending by the method of deformation kinetics [D]. Rapport 4-84-4. Onderzoek HA-17, Stevin-Laboratorium van de Afdeling der Civiele Technick der Technische Hogeschool, 1984
    106 Wall F T. Statistical thermodynamics of rubber. J. Chem. Phys., 1942,10:485-488
    107 Wang Jieying, Zhao Guangjie, Ikuho Iida. Effect of oxidation on heat fixation of compressed wood of China fir. Forestry Studies in China, 2000, 2(1):73-79
    108 Wolcott MP. Modelling viscoelastic cellular materials for the pressing of wood composites. Ph. D. dissertation, Department of Wood Sci. and Forest Products, Virginia Polytechnic Institute and State University, Blacksburg, VA., 1990
    109 Wu Q, Milota M R. Rheological behavior of Douglas-fir perpendicular to the grain at elevated temperature. Wood Fiber Science, 1995, 27(3): 285-295
    110 Xie M H, Zhao G J. Creep behavior of dematrixed Chinese fir (Cunninghamia lanceolata). International Conference of Symposiun on Utilization of Agricultural and Forestry Residues. Nanjing. 2001, p:159–165
    111 Xie M H, Zhao G J. Effects of periodic temperature changes on stress relaxation of chemically treated wood. Forestry Studies in China, 2004, 6(4): 45–49
    112 Xie M H, Zhao G J. Stress Relaxation of Chemically Treated Wood during the Processes of Temperature Elevation and Decline. Forestry Studies in China, 2005, 7(2):26-30
    113 Yano H, Yamada T, Minato K. Changes in acoustical properties of Sitka spruce due to reaction with formaldehyde. Mokuzai Gakkaishi, 1986, 32(12): 984–989
    114 Youngs RL. The perpendicular-to-grain mechanical properties of red oak as related to temperature, moisture content, and time. USDA Forest Prod. Lab. Report No. 2079, Madison, WI. 1957
    115 Zhou Y G, Fushitani M. Bending creep behavior of wood under cyclic moisture changes. J Wood Sci, 1998,45:113-119
    116 Zhou Y, Fushitani M, Kubo T. Effect of stress level on bending creep behavior of wood during cyclic moisture changes. Wood Fiber Science, 2000, 32(1): 20-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700