蒙脱土/木材复合材料的构造与流变学特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探明蒙脱土(MMT)/木材复合材料(WMC)的构造以及WMC中木材与蒙脱土在分子水平上的相互作用,本研究利用不同方法对木材进行了预处理来改善木材的渗透性,进而以酚醛树脂中间介质制备了蒙脱土/木材复合材料(WMC)。使用X射线衍射仪(XRD)、应力松弛仪、阻抗分析仪、动态热机械分析仪(DMA)、热重-差热分析仪(TG-DTA)、差示分析仪(DSC)等分析手段,测定了WMC结晶区域的衍射谱、静态应力松弛谱、动态介电松弛谱、动态热机械松弛谱以及热稳定性。计算了WMC结晶区域的相关参数,WMC介电松弛的动力学和热力学参数、热机械松弛的表观活化能以及WMC形成和热分解的动力学参数等物理量,并依据这些物理量研究了木材-蒙脱土复合材料(WMC)的结晶构造,以及WMC中木材与蒙脱土在分子水平上的相互作用机理。
     通过上述研究得到以下主要结论:
     (1)木材经氢氧化钠(NaOH)、微波(MW)、氢氧化钠/微波(NaOH/MW)、氢氧化钠/超声波(NaOH/US)处理后,衍射峰强度下降,密度下降。超声波(US)处理后木材的衍射峰强度增大,结晶区域密度增大。
     (2)蒙脱土的有机化改性对蒙脱土纳米复合材料的制备有着重要影响。蒙脱土有机改性后,层间距显著扩大。有机分子链越长,层间距越大,同时带有支链的有机分子对蒙脱土的层间距也有较明显的影响。超声波分散对蒙脱土层间距的扩展更显著。从形成复合材料的相对结晶度与处理材比较来看,木材经超声波处理后与蒙脱土形成的复合材料中,蒙脱土以剥离型存在,其他处理形成的复合材料中主要以插层结构存在木材中。不同有机蒙脱土形成的复合材料,与木材相比结晶构造没有变化,但相对结晶度降低。
     (3)木材经超声波(US)、微波(MW)处理后相对应力松弛量减小,而经氢氧化钠(NaOH)、氢氧化钠/微波(NaOH/MW)、氢氧化钠/超声波(NaOH/US)处理后相对应力松弛量明显增大;木材-蒙脱土复合材料(WMC)的抗应力松弛性能明显增强,不同预处理试材形成的复合材料的应力松弛性能相近;WMC的应力松弛对温度非常敏感,随温度升高,松弛速率明显加快,但氢氧化钠/超声波(NaOH/US)处理试样形成的复合材料却在相对高温区域表现出较强的抗松弛能力。
     (4)蒙脱土/木材复合材料(WMC)的介电弛豫强度约为木材的2/3,酚醛树脂/木材复合材料(WPC)的介电弛豫强度约为木材一半;不同的固化工艺条件下形成复合材料的介电弛豫强度略有差异,常规固化、真空固化、微波固化形成复合材料的弛豫强度依次降低;蒙脱土含量不同,对复合材料的介电弛豫也有
In order to clarify structure of montmorillonite(MMT)/wood composite (WMC) and the interaction between wood and MMT at a molecular level, in this research, wood samples were firstly pretreated by different ways to increase penetrability, and afterwards WMC was compounded by medium of phenol formaldehyde resin (PF), then microstructure and some physical properties, such as crystallinity, stress relaxation, dielectric relaxation, viscoelastic properties, thermal stability and so on, were analyzed and some parameters, such as crystal parameters of WMC, thermodynamic quantities of static stress relaxation and thermodynamic relaxation processes, dielectric parameters of dielectric relaxation, were calculated. Using these parameters, the crystal structure and of composite was reasearched, and mechanism of bonding between wood and MMT at moluculer was developed.
     These main research results achieved are as follows,
     (1) The X-ray diffraction intensity of wood, which were treated respectively by sodium hydroxide(NaOH),microwave(MW), sodium hydroxide / microwave (NaOH /MW) and sodium hydroxide / ultrasonic (NaOH/US), decreased and some linkages were broke in crystal regions and the crystal density in wood crystal regions decreased accordingly. However, it was opposite for ultrasonic treated wood.
     (2) The organic modification of MMT had a great effect on the preparation of WMC. After organic modification, the interval between MMT layers expanded evidently, and the longer the length of organic compound molecular chains, the lager the interval of layers. At the same time, the organic compounds with side chains had also an evident effect on the expanding of interval. According to the analysis on the crystalinity of composite and control wood, it was concluded that MMT was divided in MMT/wood with US pretreatment composite, and MMT exist within the composite with other pretreatments in the form of insert. The crystal structures of all composites prepared by using different organic MMT hardly changed, but the relative crystallinities decreased.
     (3) Relative stress relaxation of wood which was treated by US and MW is smaller than that of
引文
1. 鲍甫成, 赵有科, 吕建雄. 杉木和马尾松木材渗透性与微细结构的关系研究 北京林业大学学报 2003,25(1):1-5.
    2. 陈光明, 李强, 漆宗能等. 聚合物/层状硅酸盐纳米复合材料研究进展. 高分子通报, 1999(4): 1-10.
    3. 陈文怡 , 官建 国 . 高分子 材料固 化 过 程 中 的 热分 析 研 究 进 展 . 武汉理 工大 学学报,2002,24(11):22-24.
    4. 高翔, 毛立新, 李宁. 纳米 TiO2 对 PET 结晶行为、流变和力学性能的影响. 中国塑料, 2003,17(6):36-42.
    5. 何江, 吴书泓. 木材的液化及其在高分子材料中的应用. 木材工业, 2002, 16(2): 9-11, 18
    6. 姜苏俊, 李光宪, 陆玉本. 聚合物基粘土纳米复合材料的流变行为研究. 高分子通报, 2002,(6):51-56.
    7. 蒋佳荔,吕建雄,赵广杰. 化学处理木材的动态粘弹性研究. 北京林业大学学报[J]. 2006,28(1):88-92.
    8. 焦宁宁,王建明. 聚合物纳米复合材料研究进展(Ⅰ ). 石化技术与应用, 2001,19(1):57-61
    9. 金钦汉. 微波化学. 科学出版社, 1999.
    10. 金日光,杨建. 高填充聚合物材料结构与性能的研究 Ⅱ. 热解动力学和动态粘弹性. 高分子材料科学与工程. 1990,1:61-65.
    11. 柯扬船, 皮特?斯壮. 聚合物-无机纳米复合材料. 化学工业出版社, 2003.
    12. 邝生鲁, 贡长生. 声化学及其应用. 化学通报, 1990(6):23-27
    13. 李春喜, 王子镐. 超声技术在纳米材料制备中的应用. 化学通报,2001,64(5):268.
    14. 李坚. 木材波谱学. 北京: 科学技术出版社, 2003.
    15. 李同年, 周持兴. 聚酰胺/粘土纳米复合材料. 功能高分子学报, 2000, 13(1): 112-118.
    16. 李贤军. 木材微波-真空干燥特性的研究. [学位论文].北京林业大学图书馆, 2005.
    17. 卢红斌, 杨玉良. 填充聚合物的熔体流变学. 高分子通报, 2001, (6):18-26.
    18. 吕建坤, 柯毓才, 漆宗能等. 环氧/粘土纳米复合材料的形成机理及性能. 高分子通报, 2000,(2):18-26.
    19. 吕文华, 赵广杰. 木材蒙脱土(MMT)纳米插层复合材料的制备构想. 林业科学, 2005, 41(1): 181-188.
    20. 吕文华. 木材/蒙脱土纳米插层复合材料的制备. [学位论文].北京林业大学图书馆,2004.
    21. 吕悦孝, 薛振华, 薛利忠. 微波改性木材的超微观察. 内蒙古林业科技, 2001,(4):31-33.
    22. 沈新元. 高分子材料加工原理. 中国纺织工业出版社, 2000.
    23. 唐晓淑. 热处理变形固定过程中杉木压缩木材的主成分变化及化学应力松弛. [学位论文].北京林业大学图书馆,2004.
    24. 王东坡,张家学,李石存. 天然非金属矿物在高分子复合材料中的利用价值和意义. 吉林建材, 2002(1): 19-22.
    25. 王洁瑛,赵广杰,杨琴玲等. 饱水和气干状态杉木的压缩成型及其永久固定.北京林业大学报,2000,22(1):72~75.
    26. 王洁瑛. 热处理及 γ 射线辐射杉木压缩木材的固定:[学位论文], 北京林业大学图书馆,2000.
    27. 王胜杰,李强,王新宇等. 聚苯乙烯/蒙脱土熔融插层复合的研究. 高分子学报, 1998, 2:129-133.
    28. 王喜明, 薛振华. 石丽慧等. 微波改性木材的初步研究. 木材工业 2002,16(6):16-19.
    29. 谢满华, 赵广杰. 化学处理过程中木材的分子构造变化与化学流变学特性. 林业科学, 2005,41(3):158-163.
    30. 徐卫兵, 鲍素萍, 沈时骏等. 酚醛树脂/蒙脱土纳米复合材料的制备及固化反应动力学研究. 高分子学报,2002,(4):457-461.
    31. 许临晓, 陶凤岗. 有机声化学反应. 有机化学, 1986(6):415-420.
    32. 薛凤莲. 杉木/钙基蒙脱土复合板材的制备工艺及性能检测:[学位论文], 北京林业大学图书馆,2005.
    33. 杨明山,Shukbai Irida,杨利庭等. 从动态粘弹性能来分析两种再生纤维素纤维的结构差异研究. 化学与粘结[J]. 2000,(1):1-4.
    34. 杨淑惠, 植物纤维化学. 中国轻工业出版社, 2001.
    35. 殷敬华, 莫志深. 现代高分子物理学. 科学出版社, 2001.
    36. 游长江,贾德民,章永化. 聚合物/层状硅酸盐插层纳米复合材料的研究. 广州化学, 2001, 26(1):42-47.
    37. 余权英, 蔡宏斌. 木材乙基化改性及其溶液化研究. 纤维素科学与技术, 1998, 6(1): 37-42.
    38. 余权英. 化学改性转化木材为热塑性和热固性材料. 化学进展, 1996, 8(4): 331-3390.
    39. 余权英. 木材热塑化. 广州化学, 1994, 2-3: 84-93.
    40. 泽边攻, 森和雄, 武内保. 木材细胞璧の微细空隙构造. 木材学会志(日),1973,19(2):55~62.
    41. 泽边攻. 木材の多孔微构造と材质.木材工业(日),1984,39(8):361~366.
    42. 张立德,牟季美. 纳米材料和纳米结构. 科学出版社,2001.
    43. 张求慧, 赵广杰, 陈金鹏 酸性催化剂对木材苯酚液化能力的影响. 北京林业大学学报, 2004, 26(5): 66-70.
    44. 张求慧, 赵广杰. 木材的苯酚及多羟基醇液化. 北京林业大学学报, 2003, 25(6): 71-76.
    45. 张求慧, 赵广杰. 木材液化技术研究现状及产业化发展. 木材工业, 2005, 19(3): 5-8.
    46. 赵广杰. 木材的化学流变学—基础构筑及研究现状. 北京林业大学学报, 2001,23(5):66-70.
    47. 赵广杰. 木材细胞壁中吸着水的介电弛豫. 中国林业出版社. 2002.
    48. 赵广杰. 木材中的纳米尺度、纳米木材及木材- 无机纳米复合材料. 北京林业大学学报, 2002, 245/6): 204-208.
    49. 周艳, 陈勇军等. 超声波技术改性膨润土及其应用. 橡胶工业,2002, 49(11):658-661.
    50. 朱建喜,何宏平.不同链长烷基季铵离子在蒙脱石层间域内排列方式的对比[J].矿物学报,2003,23(3):210-213.
    51. 朱屯, 王红明. 国外纳米材料技术进展与应用. 化学工业出版社, 2002.
    52. 朱兴松等.环氧树脂/蒙脱土纳米复合材料的介电性能研究 绝缘材料 2005(2):27-33.
    53. Alexandre M, Dubois P, Sun T et al. Polyethylene-layered silicate nanocomposite prepared by the polymerization-filling technique: synthesis and mechanical properties. Polymer, 2002, 43(11): 2123-2132.
    54. Alexandre M, Dubois P. Polymer-layered silicate nanocomposite: preparation, properties and uses of a mew class of materials. Materials Science and Engineering, 2000, 28: 1-63.
    55. Beake B D, Chen S, Hull J B, et al. Nano-indentation behavior of clay/poly(ethylene oxide) nano-composite[J]. Nanosience and nanotechnology, 2002,2(1):73-79.
    56. Bicerano J, Douglas J, Brune D A. Model for the viscosity of particle dispersions. Rev. Macromol.Chem. Phys. 1999, C39(4):561.
    57. Chen G M, Ma Y M, Qi Z N. Preparation and morphological study of an exfoliated polystyrene / montmorillonite nanocomposite. Scripta mater. 2001, 44(2): 125-128.
    58. Chen T. K., Tien Y. I., Wei K. H. Synthesis and characterization of novel segmented polyurethane/clay nanocomposite. Polymer, 2000 (41): 1345-1353.
    59. Chin I J, Thomas T A, Kim H C et al. On exfoliation of montmorillonite in epoxy. Polymer, 2001, 42(30): 5947-5952.
    60. Choi M H, Chung I J, Lee J D. Morphology and curing behaviors of phenolic resin-layered silicate nanocomposite prepared by melt intercalation. Chem Mater, 2000,12: 2977-2983.
    61. Cole, K. S., Cole, R. H. Dispersion and absorption in dielectrics. J Chem. Phys. 9, 1941: 341-151.
    62. Dwianto W, Morooka T, Norimoto M, et al. Stress relaxation of Sugi (Cryptomeria japonica Don)wood in radical coPMression under high tePMerature steam. Holzforschung, 1999,53:541-546.
    63. Dwianto W, Morooka T, Norimoto M. Method for measuring viscoelastic properties of wood under high tePMerature and high pressure steam conditions.JWood Sci., 1999,45:373-377.
    64. Fu X A, Qutubuddin S. Synthesis of polystyrene-clay nanocomposite. Materials Letters, 2002, 42: 12-15.
    65. Furuta Y., Norimoto M., Yano H. Thermal-softening properties of water-swollen wood. Mokuzai Gakkairhi, 1998, 44(2): 82-88.
    66. FURUTA Y., OBATA Y., KANAYAM K. Thermal-softening properties of water-swollen wood: The relaxation process due to water soluble polysaccharides [J]. Journal of Material Science, 2001,36:887-890.
    67. Hilliss W. E., Rozsa A. N. The softening tePMerature of wood. Holzforschung. 1978, 32: 68-73.
    68. Hiroyuki S, Ryosuke T, Misato N. Dielectric relaxation due to heterogeneous structure in moist wood. J Wood Sci., 2005, 51:549-553.
    69. Huang J C, Zhu Z K, Yin J et al. Poly(etherimide)/montmorillonite nanocomposite prepared by melt intercalation: morphology, solvent resistance properties and thermal properties. Polymer, 2001, 42(4): 873-877.
    70. Inoue M, Minato K, Norimoto M. Permanent fixation of coPMressive deformation of wood by cross linking. Mokuzai Gakkaishi, 1994,40(9):931-936.
    71. Ishida,Y. Dielectric studies on cellulose fibers. Jour. Appl. Poly. Sci. 1959,1(2):227~235 J. Forest Prod. Res. Soc., 1953,3:59-67.
    72. Kojima Y, Fufumor K, Usuki A, et al. Gas permeabilities in rubber-clay hybrid[J]. Mater. Sci. Lett.,1993, 12:889-890.
    73. Kornmann X, Lindberg H, Berglund L A. Synthesis of epoxy-clay nanocomposite: influence of the nature of the clay on structure. Polymer 2001a, 42(7): 1303-1310.
    74. Kornmann X, Lindberg H, Berglund L A. Synthesis of epoxy-clay nanocomposite. Influence of the nature of the curing agent on structure. Polymer 2001b, 42(22): 4493-4499.
    75. Lan T, Kaviratna P D, Pinnavaia T J. Mechanism of clay tactoid exfoliation in epoxy - clay nanocomposite[J]. Chem Mater, 1995, 7:2144 - 2150.
    76. Lan T, Pinnavaia T J. Clay-reinforced epoxy nanocomposite[J]. Chem Mater, 1994, 6:2216 - 2219.
    77. Larson R G. The Structure and Rheology of CoPMlex Fluid. New York: Oxford University Press,1999.
    78. Liu L M, Qi Z N, Zhu X G. Studies on nylon 6/clay nanocomposite by melt-intercalation process. J Appl Polym Sci, 1999, 71: 1133.
    79. Lv W. H., Zhao G. J. Design of wood/montmorillonite intercalation nanocomposite. Forestry Studies in China, 2004, 6(1): 54-62.
    80. Lv Wenhua, Zhao Guangjie. Design Wood Nanocomposite from Polymer Nanocomposite. China Forestry Science and Technology, 2004, 1(1):46-52.
    81. MANABE S., FUJIOKA R. Thermal molecular motion from 150 to 350K for regenerated cellulose solids [J]. Polym.J.,1996,28:860~866.
    82. Medellin-Rodriguez F J, Burger C, Hsiao B S, et al. Time resolved sheer behavior of end-tetheredNylon-6 clay nano-composite followed by nan-isothermal crystallization[J]. Polymer, 2001, 42: 9015-9023.
    83. Messersmith P B, Giannelis E P. Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nano-composite[J]. Polym. Sci. Part A: Polym. Chem., 1995, 33:1047-1057.
    84. Morita M, Yamawaki Y, Shigematsu M et al. Preparation and properties of a cyanoethylated wood latex. Mokuai Gakkaishi, 1990, 36(8): 659-664.
    85. Morooka T., Norimoto M., Yamada T. et al. Viscoelastic properties of (cellulose oligo-oxymethylene ether) acylates Ⅱ .1986, 72: 12-26.
    86. Morooka T., Norimoto M., Yamada T. et al. Viscoelastic properties of cellulose acylates. Wood research. 1983, 69: 61-70.
    87. Norimoto M. Dielectric properties of wood. Wood Research, 1976, No. 59/60: 106-152.
    88. Norimoto N, Yamada T. Dielectric behaviour of water adsorbed on MWL (in Japanese). Mokuzai Gakkaishi, 1977, 23: 99-106.
    89. OBATAYA E, YOKOYAMA M, NORIMOTO M. Mechanical and dielectric relaxations of wood in a low tePMerature range(I):Relaxations due to methyl groups and adsorbed water[J].Mokuzai Gakkaishi,1996,42(3):243-249.
    90. Okada A, Kawasumi M, Kurauchi T, et al. Nanolayer reinforcement in polymer - clay nanocomposite [J] .Polym. Prepr, 1987, 28:447-451.
    91. Seborg R M, Tarkow H, Stamm A J. Effect of heat upon the dimensional stabilization of wood.
    92. Shi Z. X., Yu D. S., Wang Y. Z. et al. Investigation of isothermal curing behaviour during the synthesis of polybenzoxazine-layered silicate nanocomposite via cyclic monomer. European Polymer Journal, 2002, 38: 727-733.
    93. Skaar C. Dielectric Properties of Wood at Several Radio Frequencies. Tech. Publ. N. Y . st. Coll. For. 1948. No.69.
    94. Stone J E, Scallan A M, Aberson G M A. A study of cellwall structure by nitrogen adsorption. Pulp and paper Magazine of Canada, 1965,66:407-414.
    95. SUGIYAMA M., OBATAYA E., NORIMOTO M. Viscoelatic properties of thematrix substance of chemically treated wood [J].Journal of Material Science, 1998,33:3505-3510.
    96. Sugiyama M., Obataya E., Normoto M. Viscoelastic properties of the matrix substance of chemically treated wood. Journal of materials science, 1998, (33), 3505-3510.
    97. Sugiyama M., Obataya E., Normoto M. Viscoelastic properties of the matrix substance of chemically treated wood. Journal of materials science, 1998, (33), 3505-3510.
    98. Sugiyama M., Obataya E., Normoto M. Viscoelastic relaxation of chemically treated wood. Wood research, 1995, 82, 31-33.
    99. Sugiyama M., Obataya E., Normoto M. Viscoelastic relaxation of chemically treated wood. Wood research, 1995, 82, 31-33.
    100. Suh D. J., Lim Y. T., Park O. O. The property and formation mechanism of unsaturated polyester-layered silicate nanocomposite depending on the fabrication methods. Polymer, 2000,
    41(43): 8557-8563.
    101. Takashi Taniguchi, Hiroshi Harada, Kanji Nakato.ヒノキ干燥材の空隙构造.木材学会志(Japanese),1979,25(8):528-534.
    102. Tien Y. I., Wei K. H. Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposite of different hard segment ratios. Polymer, 2001, 42(16): 3213-3221.
    103. Tsutsumi, J. and H.Watanbe. Studies on dielectric be-havior of wood. I. Effect of frequencies and tePMerature on dielectric constant and loss tangent. Jour. Japanese Wood Res. Soc. 1965.11(6):232-236.
    104. Usuki A., Kawasumi M., Kojima Y, et al. Swelling behavior of montmorillonite cation exchanged for ω–amino acids by ε–caprolactam. Mater Res, 1993, 8(5): 1174-1178.
    105. Usuki A., Koiwai A., Kojima Y et al. Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid. Appl Sci, 1995, 55: 119.
    106. Usuki A., Kojima Y., Kawasumi M., et al. Synthesis of nylon 6-clay hybrid. Master Res. 1993, 8(5): 1179-1182.
    107. Vaia R. A., Giannelis E. P. Polymer melt intercalation in organically-modified layered silicaters: model predictions and experiments. Macromolecules, 1997, 30(25): 8000.
    108. Vaia R. A., Ishii H., Giannelis E. P. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater, 1993(5): 1694-1696
    109. Vaia R. A., Jandt K. D., Kramer E. J. et al. Kinetics of polymer melt intercalation. Macromolecules, 1995, 30(28): 8080-8085.
    110. Wang J Y, Zhao G J. Gamma Irradiation of coPMressed wood of Chinese fir. Forest Studies in China, 2001,3(1):58-65.
    111. Wang Z, Pinnavaia T J. Hybrid organic-inorganic nano-composite[J]. Chem. Mater. 1998,10, 1820-1826.
    112. William. Dielectric properties of wood and hard board: Variation with tePMerature, frequency, moisture con-tentand grain orientation. USDA Forest Service Re-search Paper FPL 245, Forest Prod Lab., madison. Wis.1975.
    113. Wu Z G., Zhou C X, Cheng B J. Synthesis of novolac/montmorillonite nanocomposite by in situ suspension polymerization. China Synthetic Rubber Industry, 2001, 24(4): 233-238.
    114. Xie Manhua, Zhao Guangjie. Effects of periodic temperature changes on stress relaxation of chemically treated wood. Forestry Studies in China. 2004,6(4): 45-49.
    115. Yamashiki T., Matsui T., Kowsaka K., et al. New class of cellulose fiber spun from the novel solution of cellulose by wet spinning method [J].Appl. Polym. Sci.,1992;44:691-698.
    116. Yamata T, Ono H, Ohara S et al. Characterization of the products resulting from direct liquefaction of celluloseⅠ-Identification of intermediates and the relevant mechanism in direct phenol liquefaction of cellulose in the presence of water. Mokuai Gakkaishi, 1996, 42(11): 1098-1104
    117. Yamata T, Ono H. Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technology, 1999, 70: 61-67.
    118. Yang Y, Zhu Z K, Yin J, et al. Preparation and properties of hybrids of organo-soluble polyimide and montmorillonite with various chemical surface modifications methods[J]. Polymer, 1999, 40, 4407-4414.
    119. Yeh J M, Liou S J, Lin C Y, et al. Anticorrosively enhanced PMMA clay nanocomposite materials with quarter-nary alkylphos phonium salt as an intercalating agent[J]. Chemistry of materials, 2002, 14(1):154-161.
    120. Yokoyama M, Kanayama K, Furuta Y, et al. Mechanical and dielectric relaxations of wood in a low tePMerature range Ⅲ (in Japanese). Mokuzai Gakkaishi, 2000, 46: 173-180.
    121. Yokoyama M, Obataya E, Norimoto M. Mechanical and dielectric relaxations of wood in a low tePMerature range Ⅱ (in Japanese). Mokuzai Gakkaishi, 1999, 45: 95-102.
    122. Yokoyama M, Obataya E, Norimoto M. Mechanical and dielectric relaxations of wood in a low tePMerature range Ⅳ (in Japanese). Mokuzai Gakkaishi, 2000, 46: 523-530.
    123. Yukiko I. and Takato N. Adsorption Properties and Structural Features of Alkali. 2005.
    124. Zhao G, Nishino Y, Nakao T, et al. Dielectric relaxation of water adsorbed on acetylated wood. Mokuzai Gakkaishi,1994, 40(6):571-576.
    125. Zhao G, Norimoto M, Yamada T. et al. Dielectric relaxation of water adsorbed on wood (in Japanese). Mokuzai Gakkaishi, 1990, 36: 257-263.
    126. Zhao G. J., Lv W. H. Nanoscale in wood, nanowood and wood-inorganic nanocomposite. Forestry studies in China, 2003, 5(1): 44-48.
    127. Zhao G., Norimoto M., Tanaka F., et al. Structure and properties of acetylated wood Ⅰ. Changes in the degree of crystallinity and dielectric properties by acetylation. Mokuzai Gakkaishi, 1987, 33(2):136-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700