高强导电铜合金制备及其相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国防基础研究项目“军工电子用特种功能铜合金材料及其制备技术的基础研究”和国家自然科学基金项目“微量Ag、Zr、稀土等在高强导电铜合金中的存在形式和作用机制”,采用力学性能与电导率测试、金相、X-射线衍射和电子显微分析方法,首先研究了中强高导Cu-0.1Fe-0.03P铜合金薄带生产过程中的若干问题;然后对高强高导Cu-2.5Fe-0.03P合金在不同加工—热处理状态下组织性能演变规律及其时效析出特性进行了研究;在此基础上还研究了微量Ag、Cr和Zr及形变热处理对高强高导Cu-Ag-Cr和Cu-Ag-Zr合金组织性能的影响。主要结论如下:
     1.Cu-0.1Fe-0.03P合金熔炼过程中,P的脱氧作用增加了铜熔体的吸氢倾向。热轧条件下,富氢气孔在外应力作用下聚集长大,形成热轧板鼓泡缺陷,鼓泡周围组织疏松,氧化性气体容易渗透进入鼓泡内部形成岩盐状Cu_2O结晶体。在后续的多次冷轧和精轧过程中,岩盐状Cu_2O结晶体受到压力的作用发生破碎或小量变形并且越来越向表层移动。由于Cu_2O结晶体与铜基体之间的结合力很弱,冷轧过程中微裂纹就在结合面处产生。继续变形时,微裂纹不断扩展、鼓泡破裂,最后从铜基体上剥落下来,导致薄板表面出现起皮掉渣现象。
     2.Cu-0.1Fe-0.03P合金合宜的形变热处理工艺是热轧后在线固溶—95%冷轧变形—500℃/2h时效处理,在此条件下,合金的抗拉强度、屈服强度、延伸率和电导率分别为258 MPa、192 MPa、22.5%和86%IACS。Cu-0.1Fe-0.03P合金成品薄带的显微组织结构为固溶体基体和弥散分布的第二相颗粒,第二相颗粒分别为γ-Fe、Fe_3P和Fe_2P。亚结构强化和析出强化是Cu-0.1Fe-0.03P合金强化的主要原因。
     3.极图和取向分布函数(ODF)织构分析表明水平连铸卷坯—冷轧—退火新工艺制备的Cu-0.1Fe-0.03P合金薄带以{110}<112>黄铜织构为主,此外还有较弱的{110}<100>高斯织构、{123}<634>S织构以及{001}<100>立方织构,晶体学织构是薄带出现力学平面各向异性的主要原因。
     4.与传统工艺制备的薄带性能相比,水平连铸卷坯—冷轧—退火新工艺具有流程短、投资少、成本低、成品率高、建设周期短等显著优点,是一种很有前途的工艺,但是新工艺制备的合金薄带抗拉强度、电导率和软化温度稍低而延伸率稍高。此外,新工艺没有经过热轧,铸锭过程中的疏松缩孔没有焊合,冷轧后容易出现起皮现象,解决的办法是提高铸坯的质量,消除铸锭中的疏松和缩孔。
     5.热轧—在线固溶—冷轧—时效态Cu-2.5Fe-0.03P合金中的Fe和P以Fe_3P和Fe相形式存在,合金的高强度来源于形变热处理产生的亚结构强化及Fe_3P和Fe粒子的析出强化。
     6.Cu-2.5%Fe-0.03%P合金时效过程的相变动力学方程可以由导电率随时间的变化推导出来,导电率和时效过程中第二相析出的体积分数有很好的对应关系,550℃时效时的相变动力学方程为:f=1-exp(-0.14749t~(0.52564))。
     7.Cu-0.1Ag-0.5Cr合金带材合宜的形变热处理工艺为950℃/1h固溶—30%预冷变形—450℃/4h时效,在此条件下,合金的抗拉强度、屈服强度、延伸率和电导率分别为397MPa、335MPa、14.8%和77.5%IACS。微量Ag在时效态Cu-0.1Ag-0.5Cr合金中主要以固溶形式存在,微量Cr则主要以单质Cr粒子形式存在,Cu-0.1Ag-0.5Cr合金的强化机制是Ag的固溶强化、预冷变形引入的亚结构强化和Cr粒子的析出强化。
     8.Cu-0.1Ag-0.2Zr合金带材合宜的形变热处理工艺为950℃/1h固溶—30%预冷变形—450℃/4h时效,在此条件下,合金的抗拉强度、屈服强度、延伸率和电导率分别为373MPa、327MPa、10%和95.7%IACS。微量Zr在时效态Cu-0.1Ag-0.2Zr合金中主要以铜锆化合物粒子形式存在,它能显著提高合金的抗再结晶和抗高温软化的能力,Cu-0.1Ag-0.2Zr合金的强化机制是Ag的固溶强化、预冷变形引入的亚结构强化和铜锆化合物粒子的析出强化。
A series of high-performance copper alloys including Cu-2.5Fe-0.03P,Cu-0.1Fe-0.03P,Cu-Ag-Cr and Cu-Ag-Zr were investigated incorporating work supported by National Defense Basic Research Project entitled "Basic research of special copper alloy materials for E-military project and preparation technology" and National Natural Science Foundation Project called "Existing forms and mechanisms of trace Ag,Zr and rare earth in high-strength, high-conductivity Cu alloy".For Cu-0.1Fe-0.03P copper strips,we have studied their mechanical properties and electrical properties and their microstructures were examined by OM,X-ray diffraction and electronic microanalysis.For Cu-2.5Fe-0.03P alloys,we have studied their structure changes under different aging and heat treatment processes.Furthermore, the influence the addition of trace amount of Ag,Cr,Zr and thermo-mechanical treatment on strength and electrical conductivity of Cu-Ag-Cr and Cu-Ag-Zr alloys were conducted.The main results out of this work are summarized as the follows:
     1.The existence of phosphor promoted hydrogen absorption during melting of Cu-0.1Fe-0.03P alloys through deoxidization. Hydrogen-riched pores gathered and grew up under external stress during hot rolling to form bubbles leading to surface defects for oxidizing gas transport and penetration underneath and facilitate the formation of Cu_2O inside the alloy.The brittle Cu_2O was either broke up or underwent deformation under pressure and migrated to the surface during cold-rolling and final rolling processes.Since the bond between Cu_2O and copper matrix was relative weak,micro-cracks often occurred at their interfaces during cold rolling.The expansion of micro-cracks and the break up of bubbles with continuous deformation eventually resulted in surface peeling of Cu-0.1Fe-0.03P alloy.
     2.The optimal thermo-mechanical treatment condition for Cu-0.1Fe-0.03P alloy strips was found out to be such that in situ solution treatment before 95%cold rolling and followed by aging at 500℃for 2h. The corresponded tensile strength,yield strength,elongation and electrical conductivity are 258MPa,192MPa,22.5%and 86%IACS respectively.Their microstructure is consisted of solid solution matrix and dispersed secondary phase particles such asγ-Fe,Fe_3P and Fe_2P.The main strengthening effect came from substructure and precipitation strengthening.
     3.The results of pole figure and ODF analysis show that The major texture of Cu-0.1Fe-0.03P alloy product sheet is {110}<112>brass texture,the minor textures are {110}<100>gauss texture,{123}<634>S texture and {001}<100>cubic texture.The crystal texture should be responsible for in-plane mechanical anisotropy of the product sheet.
     4.Compared with traditional processing methods,the combination of horizontal continuous casting and cold rolling and annealing offers shorter process time,lesser investment,lower cost,higher yield,and faster construction etc..Alloy strips prepared by this method have lower tensile strength,lower electrical conductivity,lower softening temperatures and higher elongations.However,the strips made by this new method(without hot rolling as did in the traditional methods) showed larger shrinkage defects during solidification which led to ablation and scale peel of during cold rolling.
     5.Utilizing traditional processing(hot rolling before solution treatment prior to cold rolling and aging),iron and phosphor exist in the form of singly atomic Fe and Fe_3P compound.Besides Sub-structure strengthening came from the thermo-mechanical treatment,precipitation hardening of Fe_3P and the formation of Fe particles led to high strength
     6.Equation of kinetic of Phase-change/transition/transformation for aging process of Cu-2.5%Fe-0.03%P alloy can be deduced by the variation of conductivity as a function of time.For example, f=1-exp(-0.14749t~(0.52564)) at 550℃.
     7.The tensile strength,yield strength,elongation and electrical conductivity of Cu-0.1Ag-0.5Cr Strips treated at 950℃/1h and 30% pre-cooling deformation and 450℃/4h aging are 397MPa,335MPa, 14.8%and 77.5%IACS respectively.Addition of trace amount Ag exists mainly in solid solution while that of Cr as singly Cr particles.The main hardening mechanism is due to Ag solution,sub-structure strengthening and Cr particles precipitation.
     8.The optimal processing for Cu-0.1Ag-0.2Zr alloy is 950℃/1h solution and 30%pre-cooling deformation and 450℃/4h aging.The tensile strength,yield strength,elongation and electrical conductivity for the strip made this way are 373MPa、327MPa、10%and 95.7%IACS respectively.Addition of trace amount of Zr exists mainly as Cu-Zr compound particles.The appearance of these particles retards recovery and recrystallization significantly.The strengthening mechanism is solid solution strengthening of Ag,sub-structure strengthening produced by the pre-cooling deformation and precipitation strengthening of Cu-Zr particles
引文
[1]王祝堂,田荣璋.铜合余及其加工手册.长沙:中南大学出版社,2002.
    [2]曾汉民.高技术新材料要览。北京:中国科学技术出版社,1993.
    [3]T.Sakamoto.The Tendency Toward Higher Integration of I.C.and Problems for Copper Based LeadFrame Materials.功能材料.1993,24:100-105.
    [4]永野健.日本金属学会会报.1989,28:549-556。
    [5]常用电工材料编写组。常用电工材料.北京:机械工业出版社,1986.
    [6]赵冬梅,董企铭,刘平等.探索高强高导铜合金最佳成分的尝试.功能材料,2001,22(6):609-611.
    [7]赵冬梅,董企铭,刘平等.铜合金引线框架材料的发展.材料导报,2001,15(5):18-20.
    [8]曹育文,马莒生,唐祥云等。Cu-Ni-Si系引线框架用铜合金成分设计.中国有色金属学报,1999,9(4):723-727.
    [9]赵冬梅,董企铭,刘平等.高强高导铜合金合金化机理.中国有色金属学报,2001,S2(11):21-24.
    [10]阳大云,刘平.时效及形变对Cu-Ni-Si合金硬度和导电率的影响.洛阳工学院学报,2001,22(2):1-3。
    [11]黄崇棋.轮轨高速电气化铁路接触网用接触线的研究.中国铁道科学,2001,22(1):1-5.
    [12]刘宝锟.对我国高速电气化铁道采用接触线类型的一点看法.电气化铁道,1994,(1):14-16.
    [13]吴成三.铜镁合金的高强接触线.铁道工程学报,1996,52(4):99-103。
    [14]杨卫贤.银铜接触线的性能试验及比较.电线电缆,1999,(2):32-33。
    [15]王孟君,娄燕,张辉等.弥散强化铜电阻焊电极材料的研制.矿冶工程,2000,20(2):54-56.
    [16]武建军,雷廷权,张运等.弥散强化铜基复合材料制备工艺.粉末冶金技术,1999,17(3):195-200。
    [17]郑会,王锦夏,田卫平等。新型电阻焊电极材料-弥散强化铜.电焊机,1997,(4):38-41.
    [18]付会敏,赵文辉。高强高导Crzrcu合金结晶器的研制.铸造技术,2002,23(4):230.232.
    [19]Metals Handbook.Alloy Phase Diagrams.ASM Handbook,vol.3,10th,1990.
    [20]H.Femee,J.Naim,A.Atrens.Precipitation hardening of Cu-Fe-Cr alloys,Part Ⅱ,Journal of materials science,2001,36:2721-2741.
    [21]M Motohisa.Performance of KFC-SH and KLF194-SHT copper alloys in High-strength and high-conductivity for lead frame.Journal of the Japan Copper and Brass Research Association,1990,29:224-233.
    [22]Y Hiroshi.Cu-Fe-Ti-Mg alloy used in electronical material.Journal of the Japan Copper and Brass Research Association,1984,23:109-115.
    [23]F Rensei.Development of copper alloy for lead frame.Journal of the Japan Copper and Brass Research Association,1997,36:25-32.
    [24]M Motohisa.High-strength and high-conductivity alloy KLF201.Journal of the Japan Copper and Brass Research Association,1988,27:93-98.
    [25]Lei Lu,Yongfen Shen,Xianhus Chen,et al.Ultrahigh strength and high electrical conductivity in copper.Science,2004,304:422-426..
    [26]姜训勇,李忆莲,王章.高强度高导电铜合金.上海有色金属,1995,16(5):284-288。
    [27]P.W.Tallbenblet.Mater.Sci.Eng.,1986,82:863-866.
    [28]R.A.Brown.Interaction of conduction electrons with dislocations and grain broundaryies in metals.Can.J.Phys.,1982,60:766-778.
    [29]毛卫民,赵新兵.金属的再结晶与晶粒长大.北京:冶金工业出版社,1994.
    [30]冯端,王业宁,丘第荣.金属物理,北京:科学出版社,1964.
    [31]M.A.Morris and D.G.Morris.Microstructural refinement and associated strength of copper alloys obtained by mechanical alloying.Mater.Sci.Eng.,1989,Al11:115-127.
    [32]M.A.Morris and D.G.Morris.Microstructures and mechanical properties of rapidly solified Cu-Cr alloys.Acta Metall.,1987,35:2511-2522.
    [33]M.J.Tenwick and H.A.Davies.Enhanced strength in high conductivity copper alloy.Mater.Sci.Eng.,1988,A98:543-546.
    [34]L.Arnberg,U.Backmark,N.Backstrom,et al.New high strength,high conductivity Cu-0.5wt%Zr alloy produced by rapid solidification technology.Mater.Sci.Eng.,1986,83:115-121.
    [35]R.P.Singh,A.Lawley,S.Friedman et al.Microstructure and properties of spray cast Cu-Zr alloys.Mater.Sci.Eng.,1991,A145:243-255.
    [36]J.B.Correia,H.A.Davies and C.M.Sellars.Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys.Acta Metall.,1997,45:177-190.
    [37]J.Szablewski,R.Haimann.Influence of thermomechanical treatment on electrical properties of a Cu-Cr alloy.Mater.Sci.Techno.,1985,1:51053-1056.
    [38]张国定,赵昌正.金属基复合材料.上海:上海交通大学出版社,1996.
    [39]杨朝聪.高强高导电铜合金的研究及进展.云南冶金,2000,29(6):26-29.
    [40]P.K.Samal.18th Aunu Connectors Interconnections Symp Proc.,1985:123-130.
    [41]崛川园佐,长谷川博理,点焊接用电极材料,上海有色金属,1998,16:33-38.
    [42]J.L.Meijering.Internal Oxidation in Alloys.Adv.Mater.Res.,1971,5:81-83
    [43]J.S.Benjamin.Dispersion strengthened superalloys by mechanical alloying.Metall.Trans.,1970,1:2943-2949
    [44]J.T.Wood,J.D.Embury and M.F.Ashby.An approach to materials processing and selection for high field magnet design.Acta Mater.,1997,45:1099-1104.
    [45]W.Gr(u|¨)nberger,M.Heilmaier and L.Schultz.Development of high-strength and high-conductivity conductor materials for pulsed high-field magnets at Dresden.Physica B,2001,294-295:643-647
    [46]H.Jones,F.Herlach,J.A.Lee et al.Progress in high-Teld pulsed magnets and conductor development in Oxford.IEEE Trans.Magn.,1988,24:1055-1059.
    [47]F.Dupouy,S.Askenazy,J.P.Peyrade et al.Composite conductors for high plused magnetic fields.Physica,1995,B211:43-45.
    [48]M.V.Cleemput,H.Jones,M.V.Burgt et al.Copper-stainless steel conductor for high field pulsed magnets.Physica,1996,B216:226-229.
    [49]F.Lecouturiera,K.Spencerb,L.Thilly,et al.Perspectives for Cu-SS macrocomposite and Cu-X nanofilamentary conductors used in non-destructive high-field pulsed magnets under cryogenic conditions.Physica B,2004,346-347:582-588
    [50]A.Shikov,V.Pantsyrnyi,A.Vorobieva et al.High strength high conductivity Cu-Nb based conductors with nanoscaled microstructure.Physica,2001,C345:410-414.
    [51]L.Thilly,M.Veron,O.ludwig et al.Deformation mechanism in high strengthCu-Nb nanocomposites.Mater.Sci.Eng.,2001,A309-310:510-513.
    [52]K.Han,J.D.Embury,J.R.Sims et al.The fabrication,properties and microstructure of Cu-Ag and Cu-Nb composite conductors.Mater.Sci.Eng.,1999,A267:99-114.
    [53]J.H.Chung,J.S.Song,S.I.Hong.Bundling and drawing processing of Cu-Nb microcomposites with various Nb contents.J.Mater.Proc.Techno.,2001,113:604-609.
    [54]S.I.Hong,M.A.Hill.Mechanical and electrical properties of heavily drawn Cu-Nb microcomposites with various Nb contents. J.Mater.Sci., 2002, 37:1237-1245.
    [55] S.I.Hong, M.A.Hill.Microstructure and conductivity of Cu-Nb microcomposites fabricated by the bundling and drawing process Scripta Mater.,2001,44:2509-2515.
    [56] F.Heringhaus, D.Raabe.Recent advances in the manufacturing of copper-base composites. J.Mater.Proc.Techno., 1996, 59:367-372.
    [57] P.D.Funkenbusch, T.H.Courtney, D.G.Kubisch.Fabricability of and microstructural development in cold worked metal matrix composites.Scripta Metall., 1981,5:1099-1104.
    [58] J.Bevk, J.P.Harbison and J.D.Bell .Anomalous increase in strength of in situ formed Cu-Nb multifilamentary composites. J.Appl.Phys., 1978,49:6031-6038.
    [59] J.P.Harbison, J.Berk. Superconducting and mechanical properties of in situ formed multifilamentary Cu-Nb3Sn composites. J.Appl.Phys., 1977,48:5180-5189.
    [60] S.Foner,E.J.Mcniff Jr,B.B.Schwartz,et al.High-field critical current in in situ multifilamentary Cu-Sn-Nb alloys.Appl.Phys.Lett., 1977,31:853-862.
    [61] W.A.Spitzig.Strengthening in heavily deformation processed Cu-20%Nb. Acta Metall. Mater., 1991, 39:1085-1090.
    [62] C.L.Trybus and W.A.Spitzig.Characterization of the strength and microstructural evolution of a heavily cold rolled Cu-Nb composite.Acta Metall., 1989,37:1971-1981.
    [63] W.A.Spitzig, A.R.Pelron and F.C.Laabs.Characterization of the strength and microstructure of heavily cold worked Cu-Nb composites.Acta Metall., 1985,35:2427-2442.
    [64] W.A.Spitzig, C.L.Trybus and F.C.Laabs.Structurre properties of heavily cold-drawn niobium. Mater.Sci.Eng., 1991,A145:179-187.
    [65] W.A.Spitzig, P.D.Krotz.Comparison of the strength and microstructure of Cu-20%Ta and Cu-20%Nb in situ composites.Acta Metall., 1988, 36:1709-1715.
    [66] L.S.Chumbley, H.L.Downing, W.A.Spitzig et al.Electron Microscopy observation of an in situ Cu-Nb composite. Mater.Sci.Eng., 1989, A117:59-65.
    [67] Y.S.Go and W.A.Spitzig.Strengthening in deformation-processed Cu-20%Fe composites. J.Mater.Sci., 1991,26:163-171.
    [68] P.D.Funkenbusch and T.H.Courtney.Microstructural strengthening in cold worked in situ Cu-14.8Vol.%Fe composites.Scripta Metall.,1981, 15:1349-1354.
    [69] P.D.Funkenbusch and T.H.Courtney.On the role of interphase barrier and substructural strengthening in deformation processed composite materials. Scripta Metall., 1989, 23:1719-1724.
    [70] C.Bliselli and D.GMorris.Microstructure and strength of Cu-Fe in situ composites obtained from prealloyed Cu-Fe powders.Acta Metall.Mater.,1994,42:163-176.
    [71] C.Bliselli and D.GMorris.Microstructure and strength of Cu-Fe in situ composites after very high drawing strains.Acta Metall.Mater., 1996,44:493-504.
    [72] K.R.Karasek and J.Berk.High temperature strength of in situ formed Cu-Nb multifilamentary composites.Scripta Metall., 1979, 13:259-263.
    [73] K.R.Karasek and J.Berk.Normal-state resistivity of in situ formed ultrafine filamentary Cu-Nb composites. J.Appl.Phys., 1981,52:1370-1375.
    [74] F.Habbal and J.Berk.Interface flux pinning in in situ formed superconducting composites. J.Appl.Phys., 1983,54:6543-6550.
    [75] F.Heringhaus, D.Raabe and GGottstein.On the correlation of microstructure and electromagnetic properties of heavily cold worked Cu-20 wt%Nb wires. Acta Metall., 1995,43:1467-1476.
    [76] D.Raabe and U.Hangen.Correlation of microstructure and typeⅡ surperconductivity of a heavily cold rolled Cu-20 mass%Nb in situ composites.Acta Mater 1994; 46:953-961.
    [77] Y.Sakai, K.Inoue, H.Maeda et al.Development of high-strength, high-conductivity Cu-Ag alloys for high-field pulsed magnet use.Appl.Phys.Lett, 1991,59:2965-2973.
    [78] Y.Sakai, K.Inoue and H.Maeda.New high-strength, high-conductivity Cu-Ag alloy sheets.Acta Metall.Mater., 1995, 43:1517-1522.
    [79] Y.Sakai and H.J.S.Muntau.Ultra-high strength, high conductivity Cu-Ag alloy wires.Acta Mater., 1997,45:1017-1023.
    [80] A.Benghalem and D.GMorris, Microstructure and strength of wire drawn Cu-Ag filamentry composites.Acta Mater., 1997,45:397-406.
    [81] S.I.Hong, M.A.Hill, Y.Sakai et al..On the stability of cold drawn two phase wires.Acta Metall.Mater., 1995,43:3313-3323.
    [82] S.I.Hong and M.A.Hill.Microstructural stability and mechanical response of Cu-Ag microcomposite wires.Acta Metall.Mater.,1998,46:4111-4122.
    [83]S.I.Hong and M.A.Hill.Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites.Mater.Sci.Eng.,1999,A264:151-158.
    [84]H.J.Kwon,S.I.Hong.Superplastic Cu-Ag microcomposites.J.Alloys Compd.2001,327:161-166.
    [85]K.Han,A.A.Vasquez,Y.Xin and P.N.Kalu,Microstructure and tensile properties of nanostructured Cu-25%Ag.Acta Mater.,2003,51:767-780.
    [86]L.Zhang and L.Meng.Microstructure,mechanical properties and electrical conductivity of Cu- 12%Ag.Mater.Lett.,2004,58:3888-3892.
    [87]L.Zhang,L.Meng ang J.B.Liu.Effects of Cr addition on the microstructural,mechanical and electrical characteristics of Cu-6wt.%Ag microcompositeScripta Mater.,2005,52:587-592.
    [88]L.Zhang and L.Meng.Evolution of microstructure and electrical resistivity of Cu-12wt.%Ag filamentary microcomposite with drawing deformation.Scripta Mater.,2005,52:1187- 1191.
    [89]H.Yoshinaga,Phys.Stat.Sol.,1996,18:625-631.
    [90]张瑞丰,沈宁福,快速凝固高强高导铜合金的研究现状及展望,材料科学与工程,2000.12(4):141.
    [91]沈宁福 等,凝固理论进展与快速凝固,金属学报,1996.7:674.
    [92]李振宇 等,快速凝固铜合金的研究现状,粉末冶金技术,1998(16):59.
    [93]亢若谷,弥散强化铜合金的现状与发展,云南冶金,1995(5):1-5。
    [94]贾燕民,丁秉钧,制备弥散强化铜的新工艺,稀有金属材料与工程,2000.4(2):141.
    [95]孙世清 等,高强高导铜基复合材料,河北科技大学学报,2000.21(1):20。
    [96]葛继平,形变铜基原位复合材料的研究进展,功能材料,1999,30(2):129-130
    [97]W A Spitzig,et al,P D Krota.Comparision of the strengths and microstructure of Cu-20%Ta and Cu-20%Nb in situ composites,Acta Metall,1988,36(7):1709-1715
    [98]A dachik,Tsubokawas,T Takeuchi,et al,Plastic deformation of Cr phase in Cu-Cr compostion cold rolling,Jap Inset Met,1997.61(5):391-396.
    [99]曹育文 等,中国铜合金引线框架材料的现状与发展,《功能材料》增刊,1998.10:714-716.
    [100]刘平等,铜基集成电路引线框架材料的发展概况,材料开发与应用,1998.6 (3):714.
    [101]王碧文,大规模集成电路引线框架材料发展动向及对策,有色金属,1997.8(3):97.
    [102]崔曼,铜系合金引线框架材料的技术进步,第六届有色金属材料与工程、合金加工学术交流会,昆明,1997.
    [103]霍明远 等,稀土的理论与应用研究,北京,高等教育出版社,1992.9:63-70.
    [104]廖乐杰,何福忠,稀土在铜及铜合金中的作用及其应用效果,特种铸造及有色金属,1997(2):52-53.
    [105]谈荣生,孙连超,稀土在纯铜和铜合金中的应用与研究现状,中国稀土学报,1995.7(13):445-449.
    [106]方正春,耐热和导电铜合金发展现状,材料开发与应用,1997.8(4):30
    [107]陈兴张,我国铜加工材产品发展战略思考,世界有色金属,2000.3:20-22
    [108]金永武,铜及铜合金酸洗钝化新工艺的应用,汽车工艺材料,1998.6:17-18
    [109]王碧文,铜及铜合金研究方向的论述,铜加工,1996,3,P4
    [110]Noriyuki Nomoto,Tong Ching ping,Makoto Ohta,et al.A process for Manufacturing Cu2Fe Alloy C1942ESH with high Electrical Conductivity and Excellent Heat-Resistance[J].Hitachi Cable Review,1999,18:61-65.
    [111]张红钢.Cu-Fe-P合金高温热变形行为研究[D].长沙,材料科学与工程学院,2004:1.
    [112]赵海泉。引线框架材料CU-0.1FE-0.03P水平连铸工艺研究[D].北京,材料科学与工程学院2003:3。
    [113]陈存中主编。有色金属冶炼与铸锭[M].北京:冶金工业出版社,1987。
    [114]王笑天,金属材料学,北京:机械工业出版社,1987:267-274
    [115]肖纪美,合金相与相变,北京:冶金工业出版社,1987:250
    [116]宋学孟.金属物理性能[M].北京:机械工业出版社,1981,23-24.
    [117]戚正风.金属热处理原理[M].北京:机械工业出版社,1987,201-204.
    [118]石德珂.位错与材料强度[M].西安:西安交通大学出版社,1998:108-118
    [119]LingMu,Kang Wen。铁道车辆的高速化与新材料[J].Railroad Vehicle Abroad(国外铁道车辆),1994,(6):10.
    [120]尹志民,高培庆,汪明朴.高速列车异步扦引电动机用铜合金导条和护环[P]。中国发明专利,99101884.91,1999.
    [121]H SUZUKI,M KANNO,I KAWAKATSU.SOME PROPERTIES OF CU-CR-HF ALLOYS[J].J Jap Inst Metals,1969,33(2):174-8
    [122]H SUZUKI,M KANNO,I KAWAKATSU.STRENGTH OF CU-ZR-CR ALLOY RELATING TO THE AGED STRUCTURES[J].J Jap Inst Metals,1969,33(5):628-33
    [123]M.G.Hall,H.I.Aronson,K.R.Kinsma.Precipitation in a Cu-Cr alloy[J].Surf.Sci.,1972,(31):257-268
    [124]R.W.Knight,P.Wilkes.The microstructure and precipitation in a Cu-Cr alloy.Metal.Trans.A[J],1973,(4):2389 - 2398
    [125]C P Luo,V Dahmen,KH Westmacott.Morphology and crystallography of Cr precipitates in a Cu-0.33 wt%Cr alloy[J].Acta Metall Mater,1994(42):1923.
    [126]Shugu Jia,Maosheng Zheng,Ping Liu.Aging behavior of Cu-Ag-Cr-Ce alloy[J].Rare Earths[J],2005,23:423 -425
    [127]贾淑果,刘平,田保红等.微量稀土对Cu-Ag接触线性能的影响.功能材料,2004,445-448
    [128]陈树川,陈凌冰.材料物理性能[M].上海:上海交通大学出版社,1999,40-65
    [129]蒋呐,1420铝锂合余冷轧薄板的各向异性研究,合金与热处理,2003(5):8-11
    [130]李锡武,郑子樵,李海等,1420铝锂合金力学性能的各向异性,稀有金属,2004(2):151-155
    [131]刘平,曹兴国,康布熙,等.快速凝固Cu-Cr合金导电性分析[J].洛阳工学院学报,1998,19(4):1-5
    [132]I S Batra,G K Dey et al,Precipitation in a Cu-Cr-Zr alloy,Materials Science and Engineering A,2003,356(1-2):32-36
    [133]M A Morris,M Leboeuf,recrystallization mechanisms in a Cu-Cr-Zr alloy with a bimodal distribution of particles,Materials science and engineering A,1994,188:255-265
    [134]N.T.Tang et al,Precipitation and aging in high-conductivity Cu-Cr alloys with additions of zirconium and magnesium,Materials Science and Technology,1985,1:270-275
    [135]M Appello,P Penici,Solution heat treatment of a Cu-Cr-Zr alloy,Materials science and engineering A,1988,102:69-75
    [136]田荣璋。金属热处理。北京:冶金工业出版社,1985
    [137]赵祖德等.铜及铜合金材料手册。北京:科学出版社,1993
    [138][苏]诺维柯夫NN.余属热处理[M]。王子褚译.北京:机械工业出版社,1987.189-192,274-332.
    [139]方俊鑫,陈栋。 固体物理。北京:高等教育出版社,1981:156
    [140]冯端等.金属物理学(第3卷)金属力学性能.北京:科学出版社,1999
    [141]冯端等.金属物理学(第1卷)结构与缺陷.北京:科学出版社,1999
    [142]刘平,黄金亮等.快速凝固高强度高导电Cu-Cr合金的组织和性能.兵器材料科学与工程,1999.1:12-16
    [143]S.S.Gorelik,仝健民译,金属和合余的再结晶,北京:机械工业出版社,1985:369-390.
    [144]Cahn R W,雷廷权等译.金属与合金工艺,材料科学与技术丛书(第15卷).北京:科学出版社,1999.7:402
    [145]Morris M A,Leboeuf M,recrystallization mechanisms in a Cu-Cr-Zr alloy with a bimodal distribution of particles,Materials science and engineering A,1994(188):255-265
    [146]金属机械性能编写组。金属机械性能(修订本).北京:机械工业出版社,1982,84-104。
    [147]王仁东编著.断裂力学理论和应用,化学工业出版社,1980,1-137.
    [148]王玉峰等,稀土在导电铜材料中的应用研究,稀有金属,1988,(4):271
    [149]王绍雄,铜和铜合金在电子工业中的新趋向,铜加工,1992(3):6
    [150]E.ARPACI等,铜材-性能以及在电工电子学中的应用,西德Metall,1996(46)Nol:21
    [151]N.T.Tang etc.,Precipitation and aging in high-conductivity Cu-Cr alloys with additions of zirconium and magnesium,Materials Science and Technology,1985 No.1:270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700