喷射成形GH742y合金热变形行为及时效特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用喷射成形技术制备了GH742y高温合金沉积锭,并对其进行了热等静压(Hot Isostatic Pressed-HIP)致密化处理(以下简称喷射成形合金)。采用热压缩实验研究了喷射成形合金的变形能力和变形行为,建立了材料本构方程、激活能图及热加工图,确定了其最佳热加工参数范围,并对其进行了锻造加工。利用扫描电镜(SEM)和透射电镜(TEM)研究了喷射成形GH742y合金变形过程中组织演变特点,揭示了其变形特性机制;利用电阻率和正电子湮没技术研究了锻造后的喷射成形GH742y合金时效特性,建立了该状态下合金γ′相长大动力学方程,确定了其合理的热处理工艺;最后测试并分析了热处理后的喷射成形GH742y合金室温和高温力学性能。在研究过程中利用铸造+HIP GH742y合金(以下简称铸造合金)进行了某些对比研究。
     喷射成形和铸造合金的热变形实验结果表明,在实验条件内,两种状态合金的真应力-真应变曲线变化趋势基本相同,即随着温度降低或应变速率升高,峰值应力增加。在1050℃时,铸造合金应力上升到峰值后突然降低,应变速率越高此现象越明显。喷射成形合金的变形能力远远优于铸造合金的变形能力,在1140℃,1.0~10s-1条件下变形,喷射成形合金最大变形量可达80%,而铸造合金在1140℃,0.01s-1变形条件下的最大变形量仅为35%;实验还发现,喷射成形合金的变形能力随应变速率升高而增加,铸造合金的则与之相反。
     利用真应力-真应变曲线数据建立了喷射成形GH742y合金的本构方程。结果表明,形式为ln Z = 72+0.018σP的指数函数本构方程不适合描述合金的流变形为,而形式为sinh (0 .0031σp ) = exp(0 .23lnε& +25695T?18.34)的双曲正弦函数本构方程比较合适,经验算该方程与实验结果吻合较好。
     利用热变形实验数据建立了喷射成形合金变形激活能图和热加工图,该图为制订合理的热加工工艺提供了理论依据。在变形温度1110~1140℃,应变速率1.0~10s-1条件下,激活能图中存在一个小平台区;而此条件也是热加工图中的稳态变形区,且能量耗散率具有较大值,在该区域变形合金具有较好的变形能力,初步确定该变形条件为合金的热加工条件;变形温度1050~1108℃,应变速率0.01~0.1s-1的条件为热加工图中的流变失稳区,合金在此条件下变形试样开裂,应避免在此区域变形。
     对变形后的喷射成形GH742y合金微观组织观察表明,合金在变形过程中发生的动态再结晶(DRX)组织随变形温度、应变速率的升高以及压下量增加从部分再结晶逐步发展为完全再结晶。高应变速率下的变形温度升高、孪生变形、亚晶内部的位错运动以及空位浓度的增加,都促进再结晶程度的增加,从而喷射成形合金的变形能力随应变速率或变形温度的升高而增强。铸造合金的DRX组织则与之相反,随应变速率升高,DRX程度小且不均匀,合金变形能力变差。
     喷射成形GH742y合金的峰时效时间(8小时)比铸造合金的锋时效时间(12~16小时)明显缩短,而峰时效硬度值(514.33HV)则高于铸造合金的峰时效硬度值(508.61HV)。计算表明喷射成形合金固溶度(4.668%)比铸造合金固溶度(4.588%)高,而前者空位迁移能(0.165eV)却比后者(1.12eV)低;喷射成形合金的空位浓度、位错密度均比铸造合金的高。这些是喷射成形合金在时效过程中呈现时效加速特征,表现为锋时效时间缩短的主要原因。
     喷射成形高温合金短期时效过程γ′相长大规律很好地符合LSW熟化理论,即满足r 3∝t的关系。通过计算求得γ′相扩散激活能为133.9kJ/mol,从而得到γ′相长大动力学方程为:
     从固溶和时效的研究结果确定了两种热处理工艺,HT1:1140℃(6h)+850℃(6h)+空冷(AC),HT2:1140℃(6h)+850℃(6h)+780℃(8h)+AC。喷射成形合金经上述两种热处理后由于一次γ′相、二次和三次γ′相的配合,室温拉伸、高温拉伸及高温持久性能均优于传统铸锻GH742y合金经标准热处理后的性能,其中以HT2处理后的合金性能更好;拉伸断口分析表明断裂机制以韧窝聚集型断裂为主。
The billet of GH742y superalloy was prepared by the spray forming processing, and it was consolidated by hot isostatic pressing (HIP) (hereafter referred to spray formed alloy). The workability and deformation characteristics were investigated by means of isothermal hot compression testing. To optimize hot deformation processing variables, the constitutive equations and processing maps of the spray formed alloy were established on the basis of testing data and dynamic materials model. Subsequently, the spray formed billet was hot forged by means of above-mentioned processing parameters. The deformation mechanism and the ageing characteristic of the spray formed and forged alloy were by studied SEM, TEM, electrical resistivity and positron annihilation technology, and ageing kinetics and the optimum heat treatment procedure were determined. The mechanical properties of heat treated alloy were examined at room and high temperatures. By contrast with the spray formed alloy, the HIPed as-cast GH742y (hereafter referred to as-cast alloy) alloy was also investigated.
     The compression testing results show that the curve shapes of true stress-true strain of two alloys were similar. The peak stresses of two alloys decreased with the increase of temperature or the decrease of strain rate. It is found that the spray formed alloy exhibits an excellent hot-workability compared to the as-cast counterpart. The spray formed specimens didn’t crack at the engineering strain up to 80%, but all as-cast specimens cracked at engineering strain beyond 35%. Also, the result shows that the higher the strain rate used, the better is the deformability of the spray formed alloy. However, the as-cast alloy is reverse.
     The hyperbolic sine function of sinh(0 .0031σp)instead of exponent equation of ln Z = 72+0.018σP, fitted for the spray formed alloy.
     The activation energy map and processing map of the spray formed alloy were established according to the constitutive equations. A small platform region exhibits at 1110~1140℃,1.0~10s-1 in the activation energy map. However, flow stability occurs at 1110~1140℃, 1.0~10s-1 in processing map, with to efficiency power dissipation being max. in this region. The flow stability region corresponds to the small platform region, and the spray formed alloy possesses better workability in the region. Flow instability occurs at 1050~1080℃, 0.01~0.1s-1 in processing map, the deformed specimens cracked in this region.
     The microstructure observation indicates that the dynamic recrystallization (DRX) of the spray formed alloy occurs in deformation, which related with temperature, strain rate and strain. With increasing of strain rate, testing temperature and strain, the extent of DRX is increased, which causes development of deforming workability with increasing of strain rate. Nevertheless the DRX extent of the as-cast alloy decreased with the increase of strain rate, resulting in the worse workability.
     In contrast to as-cast alloy, the peak aging time of the spray formed alloy was significantly shortened, and the peak ageing hardness of the former was lower than that of the latter. The difference of two alloys in ageing characteritics was attributed to high solid solubility, high vacancy concentration, low vacancy migration energy and high dislocation density for the spray formed alloy.
     For the spray formed alloy, it is found that theγ′size growth fits with LSW ripening theory, viz r 3∝trelationship. The calculation shows that, theγ′phase growing activation energy is 133.9kJ/mol, thereby theγ′phase growth kinetics equation as follows:
     Two heat treatment procedures are determined according to solution and ageing treatment tests. In the first treatment, the alloys were solutionized at 1140℃for 6h and air cooled, and aged at 850℃for 6h and then air cooled. In the second treatment, aging at 780℃for 8h and air cooling was added on the basis of the first treatment. The mechanical properties of the heat treated the spray formed alloy were studied. The results show that its properties are better than those of the as-cast, which is attributed to cooperation among the primary, secondary and tertiaryγ′phases. The fracture surfaces are characterized by dimple aggregation.
引文
1 R.H.Brichnell. Structure and properties of a nickel-based superalloy produced by Osprey atomisation-deposition.Metallgrgical Transactions. 1986, 17A(4): 583~591
    2 H.C.Fiedler, T.F.Sawyer, R.W.Kopp, A.G.Leatham. The Spray Forming of Superalloys. Journal of Metals.1987, 39(8): 28~33
    3 P.D.Prichard,R.P.Dalal.Spraycast-XTM superalloy for aerospace applications. The Minerals, Metal and Materials Society. 1992:205~213
    4 M.G.Benz, T.F.Sawyer, W.T.Carter, R.J.Zabala, et al. Nitrogen in spray formed superalloys. Powder Metallurgy. 1994,37(3): 213~218
    5 J.F.Sun, J.Shen, Z.Y.Li, Q.C.Li. Heat transfer behaviour of superalloy droplets during spray forming. Acta Metallurgica Sinica. 2000,13(2):800~805
    6 M.Walter, M.Stockinger, J.Tockner. Spray forming and post processing of superalloy rings. Proceedings of the International Symposium on Superalloys and Various Derivatives, Superalloys 718, 625, 706 and Derivatives,Pittsburgh, PA, United States.2005:429~440
    7 E.J.Lavernia, N.J.Grant. A Review: Spray Deposition of Metals. Materials Science and Engineering A.1988, 98:381~396
    8 P.S.Grant. Spray forming. Progress in Materials Science.1995,39 (4~5): 497 ~ 545
    9 A.L.Moran, R.E.Rebis. Structure and property evaluation of large-diameter spray-formed superalloy piping. Journal of Testing and Evaluation. 1996,24(5):302~315
    10 Q.Xu, E.J.Lavernia. Microstructural evolution during the initial stages of spray atomization and deposition. Scripta Materialia, 1999,41(5):535~540
    11 B.Cantor, K.H.Baik, P.S.Grant. Development of microstructure in spray formed alloys. Progress in Materials Science.1997,42:373
    12 A.R.E.Singer. Recent Developments in the Spray Forming of Metals. International Journal of Powder Metallurgy and Powder Technology.1985, 21(3): 219~234
    13 E.Brinksmeier, M.Schunemann. Generation and forming of spray-formed flat products. Journal of Materials Processing Technology. 2001,115:55~60
    14 A.Leatham. Spray forming: alloys, products and markets. Metal Powder Report.1999,54(5): 8
    15 A.Lawley, A.G.Leatham. Spray forming commercial production principle and practice. Materials Science Forum. 1999,299~300:407~415
    16 H.R.Müller, S.Hansmann, K.Ohla. Influence of process parameters on segregation and porosity in spray-formed Cu-Sn-billets. Proceedings of the International Conference on Spray Deposition and Melt Atomization, Bremen, Germany.2000:205~218
    17 W.D.Cai, E.J.Lavernia. Modeling of porosity during spray forming: part Ⅰeffects of processing parameters. Metallurgical and Materials Transactions B.1998,29:1085~1096
    18 H.M.Hu, Z.H.Lee, D.R.White. On the evolution of porosity in spray-deposited tool steels. Metallurgical and Materials Transactions A.2000,31:725~735
    19 V.S.Leal, W.M.Silva. Particle size distribution in the radial direction of the spray cone and its influence on the formation of porosity in Fe-6%Si alloy processed by spray forming. Materials Science Forum. 2003,416~418:425~430
    20 M.A.Dunlavy, R.Shivpuri, S.L.Semiatin. Failure during hot working of spray-formed Rene’88. Materials Science and Engineering, 2003, A359(1-2):210~219
    21 孙剑飞,沈军,曹福洋,等.喷射沉积镍基高温合金的研究进展.材料导报.1999,13(2):10~12
    22 李正邦,钢铁冶金前沿技术.冶金工业出版社.1997:10
    23 P.Mathur,S.Annavarapu, D.Apclian. Process control modelling and applications of spray casting. Journal of Metals. 1989,41(10): 23~28
    24 A.R.E.Singer. Development in spray forming.Proceedings of the 1986 International Powder Metallurgy Conference and Exhibition, Duesseldorf, W Ger, Verlag Schmid GmbH.1986,298~302
    25 G.Gillen, P.Mathur, D.Apelian, A.Lawley. Spray deposition: the interaction of meterial and process parameters. Progress in Powder Metallurgy.1986,42: 753~773
    26 P.S.Grant, B.Cantor, L.Katgerman. Modelling of droplet dynamic and thermal historys during spray forming-ⅡEffect of process parameters. Acta Metallurgical Materialia.1993, 41(11): 3109~3118
    27 J.H.Hattel, N.H.Pryds, J.Thorborg. The effect of droplet size distribution on gas temperature during the spray forming process. Scripta Materialia. 1999,42(2): 145~150
    28 A.K.Srivastava, R.C.Anandani, A.Dhar, A.K.Gupta. Effect of thermal conditions on microstructural features during spray forming. Materials Science and Engineering. 2001, A304~306(1~2): 587~591
    29 孙剑飞,沈军,曹福洋,李庆春.喷射成形高温合金沉积态组织的形成与演变.特种铸造及有色合金. 2002,4:9~11
    30 S.Anand, T.S.Srivatsan. Yue Wu, E.J.Lavernia. Processing, microstructure and fracture behaviour of a spray atomized and deposited aluminum-silicon alloy. Journal of Materials Science.1997,32(11): 2835~2848
    31 R.Doherty. Modelling microstructure development in spray forming. International Journal Powder Metallugrical. 1997,33(3):50~60
    32 J.S.Lee,J.Y.Jung,E.S.Lee, et al.Microstructure and properties of titanium boride dispersed Cu alloys fabricated by spray forming.Materials Science and Engineering A,2000,277:274–283
    33 S.Kang, Dong-Hoon Chang. Modelling of billet shapes in spray forming using a scanning atomizer. Materials Science and Engineering. 1999, A260(1~2):161~169
    34 S.Ramesh, Minisandram, M.Robin. Prediction of thermal history of performs produced by the clean metal spray forming process. Materials Science and Engineering. 2002, A326(1):184~193
    35 M.Krauss, D.Bergmann, U.Fritsching. In-situ particle temperature, velocity and size measurements in the spray forming process. Materials Science and Engineering A. 2002,326:154–164
    36 C.S.Cui, F.Y.Cao, Q.C.Li. Formation mechanism of the pressure zone at the tip of the metl delivery tube during the spray forming process. Journal of Materials Processing Technology. 2003,137:5~9
    37 Mário Cézar Alves da Silva, C.Bolfarini, C.S.Kiminami. Magneticproperties of spray formed Fe-6%Si alloy. Key Engineering Materials. 2001,189~191:643~648
    38 A.H.Kasama, R.D.Cava, A.Mourisco. Microstructure of spray formed 2.9%C-22%Cr high Chromium white cast iron. Materials Science Forum. 2003,416~418:419~424
    39 J.G.Zhang, H.S.Shi, D.S.Sun. Research in spray forming technology and its applications in metallurgy. Journal of Materials Processing Technology. 2003,138:357~360
    40 张济山,崔华,段先进,等.雾化喷射沉积成型凝固过程模拟研究.金属学报.1998,34(1):7~12
    41 李周,张国庆,田世藩,颜鸣皋. 高温合金特种铸造技术―喷射铸造的研究和发展.金属学报,2002,38(11):1186~1190
    42 刘东明,赵九州,叶恒强. 喷射成形中金属液滴凝固过程的计算机模拟.金属学报.2003,39(4):375~380
    43 彭超群. 喷射成形技术.中南大学出版社,2004:62~63
    44 Tae Kwon Ha, Woo-Jin Park, Sangho Ahn, Young Won Chang. Fabrication of dpray-formed hypereutectic Al–25Si alloy and its deformation behavior. Journal of Materials Processing Technology. 2002,130-131:691~695
    45 Woo-Jin Kim, J.H.Yeon, J.C.Lee. Superlastic deformation behavior of spray-deposited hyper-eutectic Al-25Si alloy. Journal of Alloys and Compounds. 2000,308:237~243
    46 Y.Wu, L.Del Castillo, E.J.Lavernia. Superplasticity of 5083 alloys produced by spray deposition. Scripta Materialia. 1996,34(8),1243~1249
    47 Y.H.Frank Su, C.S.Sam Chiang, Chi Y.A.Tsao. Extrusion characteristics of spray-formed AC9A aluminum alloy. Materials Science and Engineering. 2004, A364:305~312
    48 Y.H.Frank Su, Y.C.Chen, Chi Y.A.Tsao. Workability of spray-formed 7075 Al alloy reinforced with SiCp at elevated temperature. Materials Science and Engineering. 2004, A364:296~304
    49 杨守杰,戴圣龙,李树索,韩雅芳. 反应喷射沉积 5083 铝合金的微观组织.中国有色金属学报.2003,13(6):1473~1476
    50 S.J.Yang, S.S.Li,S.L.Dai,Y.F.Han. Superplasticity of spray deposited 5083 Al-Mg alloy. Chinese Journal of Aeronautics. 2004,17(1):47~52
    51 詹美燕,夏伟军,张 辉,傅定发.喷射沉积―挤压 FVS0812 耐热铝合金的热 压 缩 变 形 流 变 行 为 研 究 . 湖 南 科 技 大 学 学 报 ( 自 然 科 学版).2004,19(2):37~41
    52 C.Rodenburg, M.Krzyzanowski, J.H.Beynon, W.M.Rainforth. Hot workability of spray-formed AISI M3:2 high-speed steel. Materials Science and Engineering. 2004, A386(1-2): 420~427
    53 Satoru Matsuo, Teiichi Ando, Nicholas J.Grant. Grain refinement and stabilization in spray-formed AISI 1020 steel. Materials Science and Engineering. 2000, A288(1): 34~41
    54 J.G.Zhang, B.Yan, H.Zhang. Superplastic Ultra-high carbon steels produce by spray forming. Materials Science Forum. 2003, (426-432): 919~924
    55 章靖国.中德喷射成形新材料研讨会在京召开.理化检验―无理分册.2005, (41),12
    56 林一坚,张靖国,史海生,樊俊飞.等.用喷射成形工艺生产的超高碳钢.钢铁研究学报.2006,18(7):39~42
    57 D.J.Bryant, R.Dalal, D.Furrer. Spraycast-XTM process for advanced high strength alloys for ring/casting components. Paul Ellerington. Proceedings of The Third International Conference on Spray Forming. Cardiff, UK.1996: 79~88
    58 M.A.Dunlavy, R.Shivpuri, S.L.Semiatin. Failure during hot working of spray-formed Rene’88. Materials Science and Engineering A. 2003.359:210~219
    59 张国庆,田世藩,李周,等. 结构材料喷射成形技术与雾化沉积高温合金.材料科学与工艺.1999,Sup7:63~68
    60 Z.Li, G.Q.Zhang, Z.H.Zhang, S.F.Tian. Investigation into hot deformation behavior of spray formed superalloy GH742. Acta Metallurgica Sinica. 2004,17(2): 205~209
    61 袁华,李周,张国庆,等. 喷射成形 GH4169 合金环形件的显微组织和力学性能.钢铁研究学报.2003,15(7):686~689
    62 姚瑞平,张国庆,李周,等.喷射成形 GH742y 高温合金的高温变形特性.钢铁研究学报.2003,15(7):683~685
    63 R.Rautioaho, T.Saven. Ductility spray deposited Ni3Al-base intermetallic compounds. Scripta Materialia. 1997,37(12):1895~1900
    64 C.Y.Chen, C.Y.A.Tsao. Spray forming of silicon added AZ91 magnesium alloy and its workability. Materials Science and Engineering. 2004, A383(1):21~29
    65 M.M.Sharma, M.F.Amateau, T.J.Eden. Aging response of Al-Zn-Mg-Cu spray formed alloys and their metal matrix composites. Materials Science and Engineering A. 2006, 424(1-2): 87~96
    66 E.G.Gomes, J.L.Rossi. Heat treatment effect on spray formed Al/SiC composite. Key Engineering Materials. 2001,189~191:496~502
    67 V.C.Srivastava, A.Schneider, V.Uhlenwinkel. Age-hardening characteristics of Cu-2.4Ni-0.6Si alloy produced by the spray forming process. Journal of Materials Processing Technology. 2004,147(2):174~180
    68 R.M.Lima, E.R.B.Jesus, J.L.Rossi. Effect of heat treatment on the microstructure of spray formed AISI M2 high-speed steel. Materials Science Forum. 2003,416-418:95~100
    69 乐永康,王恩泽,孙建科,张迎元,等. 喷射沉积 6066Al 合金的时效析出特性. 材料开发与应用.2003,18(6):1~3
    70 张永安,王锋,朱宝宏,等. 喷射成形 Al10.8Zn2.8Mg1.8Cu 合金沉淀析出强化行为.中国有色金属学报.2006,16(11):1845~1849
    71 崔华,王洪斌,段先进,张济山,等. 喷射成形高锌 Al-Zn-Mg-Cu 合金的时效行为. 北京科技大学学报. 2006,28(10):938~940
    72 刘仲武,米国法,田世藩,李周,等. 氮气雾化喷射沉积变形镍基高温合金. 中国有色金属学报. 1999,9(Sup.1):100~105
    73 G.Appa Rao, M.Kumar, M.Srinivas, D.S.Sarma. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718. Materials Science and Engineering A. 2003,355(1-2): 114~125
    74 J.P.Poirier, D.C.Guan (Trans.). Plastic Deformation of Crystal. Dalian: Dalian Science and Technology University Press, 1989:128
    75 R.Milovic, D.Manojlovic, M.Andjelic. Hot workability of M2 type high-speed steel. Steel Research. 1992,62:78~84
    76 W.Roberts. Dynamic changes that occur during hot working and their significance regarding microstructural development and hot workability. G.Krauss (Eds), Deformation, Processing and Structure. Metals Park,American Society for Metals. 1984:109~84
    77 H.J.McQueen, N.D.Ryan. Constitutive analysis in hot working. Materials Science and Engineering. 2002, A322(1-2): 47
    78 N.D.Ryan, H.J.McQueen. Stainless steels. Inst of Metals. London,1987:498
    79 B.P.Kashyap, M.C.Chaturvedi. Activation energy for superplastic deformation on IN718 superalloy. Scripta Materialia. 2000,43(5):429~433
    80 A.R.Mashreghi, H.Monajati, M.Jahazi, S.Yue. Hihg temperature deformation of nickel base superalloy Udimet 520. Materials Science and Technology. 2004,20(2):161~166
    81 L.X.Zhou, T.N.Baker. Effects of strain rate and temperature on deformation behaviour of IN 718 during high temperature deformation. Materials Science and Engineering. 1994,A177(1-2):1~9
    82 H.Yuan, W.C.Liu. Effect of the δ phase on the hot deformation behavior of Inconel 718. Materials Science and Engineering. 2005, A408(1-2):281~289
    83 S.C.Medeiros, Y.V.R.K.Prasad, W.G.Frazier, R.Srinivasan. Microstructural modeling of metadynamic recrystallization in hot working of IN718 superalloy. Materials Science and Engineering. 2000, A293(1):198~207
    84 C.Bruni, A.Forcellese, F.Gabrielli. Hot workability and models for flow stress of Nimonic 115 Ni-base superalloy. Journal of Materials Processing Technology. 2002,125-126:242~247
    85 S.L.Semiatin, D.S.Weaver, P.N.Fagin, M.G.Glavicic. Deformation and recrystallization behavior during hot working of a coarse-grian, nickel-base superalloy ingot material. Metallurgical and Materials Transactions. 2004, A35(2):679~693
    86 张伟洪,张士宏.NiTi 合金热压缩实验数据的修正及本构方程.金属学报. 2006,(42)10:1036~1040
    87 Y.Prasad, T.Seshacharyulu. Modeling of hot deformation for microstructural control. International Materials Reviews. 1998,43(6): 243~ 258
    88 Y.Prasad, P.Ramachandra Rao, K.Chattopadhyay. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242. Metallurgical Transactions A. 1984,15(10):1883~1892
    89 Y.V.R.K.Prasad, S.Sasidhara. Hot working guide: a compendium ofprocessing maps. Materials Park, OH, ASM International, 1997:25
    90 C.TSims, N.S.Stoloff, W.C.Hagel. Superalloys Ⅱ -high temperature materials for aerospace and Industrial power.John Wiley & Sons,1987:5~10
    91 N.Srinivasan, Y.V.R.K.Prasad. Hot working characteristics of nimonic 75, 80A and 90 superalloys: a comparison using processing maps. Journal of Materials Processing Technology. 1995,5(1-4):171~192
    92 S.C.Medeiros, W.G.Frazier, Y.V.R.K.Prasad. Hot deformation mechanisms in a powder metallurgy nickel-base superalloy IN625. Metallurgical Transactions A. 2000,31(9):2317~2325
    93 鞠泉,李殿国,刘国权.15Cr-25Ni-Fe 基合金高温塑性变形行为的加工图.金属学报. 2006,42(2):218~224
    94 S.C.Medeiros, Y.V.R.K.Prasad, W.G.Frazier, R.Srinivasan. Micrstructural modeling of metadynamic in hot working of IN718 superalloy. Materials Science and Engineering A. 2000,293(1):198~207
    95 Y.Prasad, T.Seshacharyulu, S.C.Medeiros. Microstructural modeling and process control during hot working of commercial Ti-6Al-4V: response of lamellar and equiaxed starting microstructures. Materials and Manufacturing Processes. 2000,15(4): 581~604
    96 S.L.Semiatin, D.S.Weaver, P.N.Faginet. Deformation and recrystallization behavior during hot working of a coarsen-grain, Nickel-base superalloy ingot material. Metallurgical and Materials Transactions A. 2004,35A(2): 679~693
    97 Y.K.Cho, D.Y.Yoon, M.F.Henry. The effects of deformation and pre-heat-treatment on abnormal grain growth in Rene 88 superalloy. Metallurgical and Materials Transactions A. 2001,32(12): 3077~3090
    98 L.X.Zhou, T.N.Baker. Effects of dynamic and metadynamic recrystallization on microstructures of wrought IN-718 due to hot deformation. Materials Science and Engineering A. 1995, 196(1-2): 89~95
    99 J.M.Zhang, L.Z.Ma, J.Y.Zhuang, Q.Deng. Constitutive relationship of superalloy IN718. Acta Metallurgica Sinica (English Edition). 1996, 9(6): 473~477
    100 M.Haghi, L.Anand. High-temperature deformation mechanisms and constitutive equations for the oxide dispersion-strengthened superalloy MA956. Metallurgical Transactions A. 1990,21(2):353~364
    101 张北江,赵光普,胥国华,等. GH742 合金热变形行为与微观组织演化. 金属学报. 2005,41(11):1207~1214
    102 张北江,赵光普,焦兰英,等. 热加工工艺对 GH4586 合金微观组织的影响. 金属学报. 2005,41(4):351~356
    103 黄乾尧,李汉康.高温合金,冶金工业出版社.2000:19
    104 M.A.Meyers, D.J.Benson, O.Vohringer,et al. Constitutive description of dynamic deformation: physically-based mechanisms. Material Science Engineer. 2002, A322 (1-2): 194~216
    105 N.K.Park, B.H.Kim, S.L.Lee. Deformation modes of a Ni-base superalloy under compression. Scripta Metallurgica Materialia. 1993,29(1):117~122
    106 O.Kwon, A.J.DeArdo. HSLA steels: Metallurgy and Application. ASM, Metals Park,1986:287
    107 J.L.Martin,B.L.Piccolo,T.Kruml, et al. Characterization of thermally activated dislocation mechanisms using transient tests. Material Science Engineer. 2002, A322(1-2): 118~125
    108 D.Walgraef. Rate equation approach to dislocation dynamics and plastic deformation. Material Science Engineer. 2002, A322(1-2) : 167~175
    109 J.T.Liu, H.B.Chang, R.H.Wu. Investigation on hot deformation behavior of AISI T1 high-speed steel. Materials Characteriazation. 2000(45): 175~186
    110 H.J.McQeen, S.Yue, N.D.Ryan, E.Fry. Hot working characteristics of steels in Austenitic state. Journal of Materials Processing Technology. 1995, 53(1-2):293~310
    111 C.Imbert, N.D.Ryan, H.J.McQueen. Hot workability of three grades of tool steel. Metallurgical Transactions A. 1984,15(10):1855~1864
    112 R.C.Weast.Handbook of Chemistry and Physics. CRC Press, FL,1979:66
    113 Burachynsky, Vladimyr, J.R.Cahoon. Theory for solute impurity diffusion, which considers Engel-Brewer valences, balancing the Fermi energy levels of solvent and solute, and differences in zero point energy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997.28A(3): 563~582
    114 李超.金属学原理.哈尔滨工业大学出版社.1989:226
    115 孙剑飞.镍基高温合金 GH742 喷射成形过程热传输与组织形成机制.哈尔滨工业大学博士论文.1999:76~80
    116 许文勇,李周,张国庆,袁华.等.喷射成形 GH742y 晶粒长大规律研究.航空材料学报. 2006,26(3):52~55
    117 周纪华,管克智. 金属塑性变形阻力.机械工业出版社. 1989:109~110
    118 S.S. 葛 列 里 克 . 金 属 和 合 金 的 再 结 晶 . 仝 健 民 ( 译 ). 机 械 工 业 出 版社,1985:207~208
    119 D.W. Livesey, C.M. Sellars. Hot deformation characteristics of Waspaloy. Materials Science and Technoloy. 1985,1(2):136~144
    120 P.R.Bhowal, N.M.Bhathena. Development of a necklace microstructure during isothermal deformation and its properties relative to uniform microstructure. Metallurgcial Transactions A. 1991, 22(9): 1999~2008
    121 H.Monajati, M.Jahazi, S.Yue. Deformation characteristics of isothermally forged Udimet 720 nickel-base superalloy. Metallurgical and Materials Transactions A. 2005,36:897~898
    122 H.J.McQueen. Initiating nucleation of dynamic recrystallization primarily in polycrystals. Materials Science and Engineering. 1988,101:149~160
    123 A.A.Guimaraes, J.J.Jonas. Recrystallization and aging effects associated with the high temperature deformation of Waspaloy and Inconel 718. Metallugrical Transactions A. 1981,12A(9): 1655~1666
    124 A.Ges, O.Fornaro, H.Palacio. Long term coarsening of γ′ precipitates in a Ni-base superalloy. Journal of Materials Science. 1997,32(4):3687~3691
    125 G.Shen, S.L.Semiatin, R.Shivpuri. Modeling microstructural development during forgeing of Waspaloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science.1995,26(7):1795~1803
    126 S.Q.Zhao, X.S.Xie, G.D.Smith.Gamma prime coarsening and age-hardening behaviors in a new nickel base superalloy. Materials Letters. 2004,58(11):1784~1787
    127 R.S.Moshtaghin, S.Asgari. Growth kinetics of γ′ precipitates in superalloy IN-738LC during long term aging. Materials and Design. 2003, 24(5): 325~ 330
    128 H.Monajati, M.Jahazi, R.Bahrami, S.Yue. The influence of heat treatment conditions on γ′ characteristics in Udimet 720. Materials Science and Engineering. 2004. A373(1-2):286~293
    129 H.T.Kim, S.S.Chun, X.X.Yao, Y.Fang. Gamma prime precipitating and ageing behaviours in two newly developed nickel-base superalloys. Journal of Materials Science.1997,32(18):4917~4923
    130 M.P. Jackson, R.C. Reed. Heat treatment of UDIMET 720Li: the effect of microstructure on properties. Materials Science & Engineering A. 1999, 259(1):85~97
    131 陈志强,韩雅芳,钟振纲,魏朋义,等.多元高温合金固溶极限预测.航空材料学报. 1998,18(3):10~12
    132 米国发.快速凝固 Al-Cr 合金显微组织及其耐热性研究.哈尔滨工业大学硕士论文. 1992:56
    133 戚正风.固态金属中的扩散与相变,机械工业出版社. 1998:59
    134 P.Hautoj? rvi. 正电子湮没技术.何元金,郁伟中(译).科学出版社,1983:240
    135 刘仲武,米国法,张国庆,等.氮气雾化喷射沉积变形镍基高温合金.中国有色金属学报.1999,9(Suppl.1):100~105
    136 陈继勤,陈敏熊,赵世敬.晶体缺陷.浙江大学出版社.1992:126
    137 吕俊英,杨洪才,王志兴,等.一种高温合金的 γ′相析出初期长大动力学.东北大学学报. 1994,15(2):184~188
    138 S.A.Hackney, G.J.Shiflet. Pearlite growth mechanism. Acta Metallurgica. 1987,35(5): 1019~1028
    139 I.Calliari, M.Magrini, M.Dabala. Microstructural evolution of Udimet 720 superalloy. Journal of Materials Engineering and Performance. 1999;8(1): 111~115
    140 E.F.Bradey. Superalloys: A Technical Guide. ASM International.1988:89
    141 于熙泓,张静华,胡壮麒.镍基高温合金在时效过程中 γ′枝晶生长形态及机制.金属学报. 1994,30(12):551~554
    142 R.E.Smallman. 现代物理冶金.冶金工业出版社. 1980:262~264
    143 侯介山,郭建亭,周兰章,叶恒强. K44 镍基高温合金长期时效过程中 γ′相粗化对拉伸性能的影响. 金属学报. 2006,42(5):481~486
    144 刘建涛,刘国权,胡本芙,宋月鹏,等.FGH96 合金中 γ′ 相的高温粗化行为. 稀有金属材料与工程. 2006,35(3):418~422
    145 黄继华.金属及合金中的扩散.冶金工业出版社. 1996:18~27
    146 J.M.Oblak, J.E.Doherty, A.F.Giamei. Precipitation of gamma in the gamma prime of nickel-based superalloys. Metallurgical Transactions. 1974, 5(5):1252~1255
    147 K.Kusabiraki, X.Zhang, T.Ooka. Growth of cellular δ phase in a 69Ni-15Cr-8Fe-6Nb alloy. ISIJ International. 1995, 35(12): 1502~1508
    148 郭士文,张玉锁,童开峰,杨洪才.镍基高温合金长期时效后 γ′相长大动力学.东北大学学报(自然科学版). 2003,24(6):576~579
    149 T.Sakai,Y.Nagao,M.Ohashi, J.J.Jonas. Flow stress and substructural change during transient dynamic recrystallization of nickel. Materials Science and Technology.1986.2(7):659~665
    150 J.W.Martin, R.D.Doherty, B.Cantor. Stability of the Microstructure in Metallic Systems. Cambridge University Press. 1997:296
    151 刘伯操,全宏声,邢致信,等. 航空材料应用手册.北京航空材料研究院.1996:198
    152 E.Nembach. Effect of dislocation splitting on gamma prime-hardening. Material Science and Technology. 1985,1(4):268~269
    153 E.Nembach. Particle Strengthening of Metals and Alloys. John Wiley and Sons. 1996:102
    154 M.Heilmaier, U.Leetz, B.Reppich. Order strengthening in the cast nickel-based superalloy IN 100 at room temperature. Materials Science and Engineering A. 2001,319-321:375~378
    155 王德尊.金属力学性能.哈尔滨工业大学出版社. 1993:87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700