非晶晶化法制备SAZ系纳米复相陶瓷及其结构、性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莫来石作为其主晶相之一的SiO_2-Al_2O_3-ZrO_2(SAZ)系复相陶瓷具有很好的化学稳定性和高温强度,较高的抗蠕变性,较低的热膨胀系数和导热系数,是一种极具前景的高温结构材料。但是莫来石较低的本征韧性影响该材料广泛应用。ZrO_2颗粒的引入,有可能在保持其高温特性的同时,使其室温性能获得明显改善,从而进一步扩大其应用领域。本论文针对目前通过超微细粉致密化制备SAZ系陶瓷材料存在的诸如烧结温度高(一般高于1500℃),致密化难,增韧相种类有限且成本高等一些问题,寻求了一种新的制备方法-非晶原位受控晶化法,在较低温度1100~1200℃下制得均匀、致密、高可靠性的结构陶瓷材料-SAZ系纳米复相陶瓷。该方法能有效避免高温烧结以及烧结过程中纳米粉末的团聚和晶粒异常长大,实现显微结构的有效控制。通过借助DSC、XRD、SEM、TEM、EDS和IR等现代分析测试技术,较系统地研究了SAZ系非晶形成和析晶特点,显微结构特征,物相组成变化等。优化了组分配方和制备工艺,探索了析晶机理和晶体生长的规律,研究了成分-结构-工艺之间的内在规律性;通过表征材料的力学性能,研究了组成-结构-性能的关系,探讨了添加剂及其含量对非晶晶化法制备SAZ系纳米复相陶瓷结构和性能的影响。获得如下主要结论:
     1、在SiO_2-Al_2O_3-ZrO_2系中,按照低共熔点附近的配方熔制非晶,虽然温度低,但非晶析晶倾向大,难以实现均匀大块非晶的制备;而富硅的莫来石区配方,于1650~1700℃下熔制,经快速冷却能获得完全透明的大块非晶。TiO_2的加入能有效降低非晶熔制温度和高温熔体的粘度,有利于SAZ非晶制备。Al_2O_3,ZrO_2含量对非晶制备有重大影响,它们的较佳取值范围分别为35~40 wt%和10~20 wt%。熔制温度越高,保温时间越长,得到的熔体越均匀;适当提高熔化温度,可相对缩短保温时间。冷却速度控制也是制得均匀非晶的关键技术。经过对组分的优化,添加剂的筛选,在低于1700℃下熔成均匀的SAZ系熔胶,经超快速强制冷却凝固得到完整的SAZ系大块透明非晶。
     2、SAZ系非晶在析晶过程中主要存在两个反应:首先在930~1050~C温度区间内析出t-ZrO_2;然后在1100~1200℃温度区间内继续析出莫来石和方石英。在热处理过程中,非晶经历了分相、成核和析晶的演化过程。经900℃左右热处理后出现分相,形成了富Si区和富Zr区;920~950℃开始从非晶中析出t-ZrO_2;随着热处理温度升高,接着生成过渡尖晶石相;随后过渡尖晶石相与非晶SiO_2反应生成莫来石相,过剩的非晶SiO_2转化为方石英。该过程可概括如下:
     3、通过SAZ系非晶的热分析并进行析晶动力学参数计算发现,该系非晶析晶活化能低,容易整体晶化。其中,典型配方TZ2非晶的t-ZrO_2析晶活化能在518~538 kJ·mol~(-1)之间,莫来石的析晶活化能在522~545 kJ·mol~(-1)之间;典型配方Z1非晶的t-ZrO_2析晶活化能在556~578 kJ·mol~(-1)之间,莫来石析出活化能在497~522 kJ·mol~(*1)之间。
     4、通过研究晶核剂种类、含量对SAZ系非晶析晶过程的影响发现,TiO_2、ZrO_2两种晶核剂对促进SAZ系非晶成核和降低其晶化温度都是有效的,但是所起的作用不同。TiO_2的加入主要是有利于t-ZrO_2的析出,对莫来石析出影响不大;ZrO_2的加入对t-ZrO_2和莫来石的析出均有利。当TiO_2/ZrO_2≥1/2时,随着TiO_2含量的增加,在相同的热处理工艺条件下,容易导致堇青石、钛酸锆等不利杂相的出现;当TiO_2/ZrO_2≤1/2时,随着ZrO_2含量的增加,在相同的热处理条件下,不容易导致堇青石、钛酸锆等不利杂相的出现:当只有单一晶核剂ZrO_2存在时,随着ZrO_2含量的增加,在相同的热处理条件下,容易导致堇青石等不利杂相的出现。采用复合晶核剂(TiO_2和ZrO_2)能有效改善SAZ系非晶的晶化行为。
     5、热处理工艺对Z系、T系和TZ系纳米复相陶瓷的性能和结构影响很大。核化温度、核化时间、晶化温度以及晶化时间等参数对材料性能的影响并不是单一不相关的,而是存在一个合理的搭配。本文采用DSC方法和性能指标测定确定了Z1和TZ1配方非晶最佳热处理工艺。其中Zl配方最佳的核化工艺是:核化温度T_N=950℃,核化时间t_n=2.0 h。在此核化工艺下,Z1配方样品经1150℃保温2.0 h后获得最佳力学性能:抗弯强度和断裂韧性分别为520MPa,5.13 MPa·m~(1/2)。TZ1配方样品的最佳热处理工艺为:核化温度920℃,核化时间2.0 h,晶化温度1150℃,晶化时间4.0 h,其最佳断裂韧性为7.48 MPa·m~(1/2)。经过对热处理工艺的优化,材料的力学性能明显提高,尤其是材料的室温断裂韧性。材料性能提高归功于材料结构改善。其中,核化温度和晶化温度对材料显微结构中晶粒大小、形状的影响较核化时间和晶化时间更为显著。核化温度过低或过高,均降低成核效果,导致晶粒粗化。SAZ系非晶在920~950℃预处理(核化),再在1100~1150℃热处理(晶化),颗粒呈球形状,大小均匀,分布致密,尺寸大约在20~50 nm,是一种较理想的纳米显微结构;晶化温度升高(≥1300℃),晶粒迅速长大,由原来的球似状变成条块状(大部分)晶体,少数条块状晶体的长径达微米级是一种较理想的微米显微结构。另外,晶化温度直接影响材料的物相组成和体积密度。温度越高,t-ZrO_2含量减少,m=ZrO_2含量增多,体积密度下降。两步热处理工艺的制定及优化,是控制材料显微结构的关键,也是本论文的关键技术之一。
     6、TiO_2、ZrO_2含量对Z系、T系和TZ系复相陶瓷性能的影响也很大,随着ZiO_2含量的增加,T系材料的显微硬度先增加后减小,而断裂韧性呈现下降趋势。随着ZrO_2含量的增加,TZ系材料的显微硬度出现两种变化:当晶化温度低于1200℃时,其随着ZrO_2含量的增加略有增大,当晶化温度高于1200℃时,反而略有下降。但其断裂韧性随着ZrO_2含量的增加而增加。比较Z1和TZ1配方试样的最佳力学性能发现,复合晶核剂能进一步提高该系材料的断裂韧性。其中TiO_2最佳含量为5、wt%,材料的断裂韧性为7.48 MPa·m~(1/2)。7、Y_2O_3、La_2O_3掺杂对SAZ系非晶的形成、析晶以及材料相结构、显微结构及力学性能等的影响规律表现为,适量Y_2O_3和La_2O_3的加入降低了非晶的熔制温度,抑制了冷却过程中的失透现象,有利于非晶形成,而且不影响主晶相的析出。Y_2O_3主要固溶于ZrO_2中,稳定t-ZrO_2。试样的断裂韧性和抗弯强度随着Y_2O_3添加量增加,先近线性增大,随之趋向稳定,而后又迅速减小。当Y_2O_3添加量为1.0 wt%时,获得了较好的综合力学性能,断裂韧性和抗弯强度分别为4.5 MPa·m~(1/2)和460MPa。其强韧化机制主要为t-ZrO_2相变增韧。La_2O_3主要存在于玻璃相中,强化晶界。试样的断裂韧性和抗弯强度随着La_2O_3添加量增加,先增大后减小。当La_2O_3添加量为0.6 wt%时,断裂韧性最大4.74 MPa·m~(1/2);当La_2O_3添加量为1.2 wt%时,抗弯强度最大514 MPa。其强韧化机制主要为大颗粒桥联和晶界强化。La,Y复合掺杂更有利于提高SAZ系纳米复相陶瓷的综合力学性能,尤其是材料的抗弯强度。
As one of promising high-temperature structural materials, SiO_2-Al_2O_3-ZrO_2(SAZ) composite ceramic with mullite as their one of the main phases is well-known for its excellent chemical stability, good high-temperature strength, high creep resistance, low thermal conductivity and low thermal expansion co-efficient. However, the lower intrinsical toughness of mullite restricts its use. In general, ZrO_2 can improve its room-temperature mechanical properties with unique characteristics at high temperature, Which promotes the wide spread applications of SAZ composite ceramics. However, zirconia-mullite composite ceramics are difficult to sinter to high density by conventional route because it normally requires high sintering temperature which will result in the grain abnormal growth. In addition, the source of toughening agents is limited and they are usually expensive. In this paper, SAZ nano-composite ceramics with dense and homogenous microstructure were fabricated at relatively low temperature (1100-1200℃) by in-situ controlled crystallizing from SAZ amorphous bulk. This method can overcome the negative effects due to abnormal growth of nano-grains at high sintering temperature, and can control the microstructure effectively. The preparation and crystallization behaviors of SAZ amorphous bulk were investigated by DSC, XRD, SEM, TEM, EDS and IR techniques. Some important relationships between compositions, processing, structure and properties were studied. The effects of the additives on the structure and mechanical properties of SAZ nano-composite ceramics prepared by this method were analyzed. Several important conclusions can be summarized as follows:
     1 It is difficult to obtain homogeneous amorphous bulk from the composition zone near the eutectic point in the system of SiO_2-Al_2O_3-ZrO_2 due to thire strong ability of crystallization, although the melting temperatures are low. The transparent amorphous bulks are obtained in the zones with rich silicon. The dopant of TiO_2 shows a positive effect on the formation of SAZ amorphous bulk, lowering the high-temperature meltage viscosity. Al_2O_3 and ZrO_2 have great effects on the formation of amorphous bulk and thire optimum contents are 35-40 wt% and 10-20 wt%, respectively. The more homogeneous sol was obtained by raising the melting temperature or prolonging the melting time. In addition, it is important to control the cooling speed. By careful selection of composition and additives, the homogeneous SAZ sol was prepared at 1650-1700℃and transparent amorphous bulk was obtained after the controlled cooling speed quenching.
     2 There are two crystallization reactions during the heat treatment for SAZ amorphous bulk. The first crystallization reaction occurs in 930-1050℃. The tetragonal zirconia is formed. The second crystallization reaction occurs in 1100-1200℃. The main crystalline phases of mullite and cristobalite are produced. The amorphous bulks undergo structural changes by heat treatment at different temperature. Phase segregation occurs at about 900℃, resulting in the formation of Si-rich and Al, Zr-rich regions. The t-ZrO_2 is crystallized from the Al, Zr-rich region at 920-950℃followed by poorly defined Al-Si spinel. With the increase of temperature, mullite forms by reaction between Al-Si spinel and amorphous silica, and at the same time, cristobalite is formed from the excessive amorphous silica. The crystallization process can be characterized as follows:
     3 With the help of thermal analysis, crystallization kinetics parameters were calculated. It has been found that the crystallization activation energy of the SAZ amorphous is low. The crystallization activation energy of t-ZrO_2 for one typical sample TZ2 is 518-538kJ·mol~(-1) and that of mullite is 522-545kJ·mol~(-1). The crystallization activation energy of t-ZrO_2 for another typical sample Z1 is 556-578kJ·mol~(-1) and that of mullite is 497-522kJ·mol~(-1).
     4 The composite additives of ZrO_2 and TiO_2 are useful to improve the crystallization behaviors of SAZ amorphous bulk. With the increase of TiO_2, the crystallization temperature of t-ZrO_2 is decreased and there is no evident effect on that of mullite formation. With the increase of ZrO_2, the crystallization temperatures of them are decreased together. When the ratio of TiO_2/ZrO_2 is excess 1/2, the unfavorable phases such as cordierite and ZrTiO_4 are formed easily at low crystallization temperature with the increase of TiO_2. When the ratio of TiO_2/ZrO_2 is less than 1/2, the unfavorable phases such as cordierite and ZrTiO_4 are not easy to form with the increase of ZrO_2. But the unfavorable phase of cordierite is formed easily with the increase of ZrO_2 in the samples doped with ZrO_2 only.
     5 The comprehensive mechanical properties and structure of T, TZ and Z nano-composite ceramics are affected greatly by the heat treatment processing. Nucleating temperature and time and crystallization temperature and time are interrelated. The optimal heat treatment processing of Z1 and TZ1 samples was determined by means of DSC analysis and property measurement evaluation. The fracture toughness and flexural strength of Z1 sample obtained under the optimal heat treatment processing (nucleated at 950℃for 2.0 h and crystallized 1150℃for 2.0 h) are 5.13 MPa·m~(1/2), 520MPa, respectively. The fracture toughness of the typical sample TZ1 obtained under the optimal heat treatment processing (nucleated at 920℃for 2.0 h and crystallized 1150℃for 4.0 h) is 7.48 MPa·m~(1/2). The promoted properties are attributed to the improved microstructure. With the research of the effects of thermal treatment processing on the microstructure of the samples, it shows that the heat treatment temperature and time have an important effect on the size and shape of grains, especially the nucleating and crystallization temperature. Too high or too low nucleating temperature is not advantageous to nucleate. The sample nucleated at 920-950℃followed by heated at 1100- 1150℃shows very dense and homogenous microstructure with the size of ball-like grains about 20-50 run. With the increase of heat treatment temperature up to 1300℃, the grains grow quickly and some grow into platelike grains with the size about 5μm. In addition, the phases and bulk density are effected by crystallization temperature. The higher of crystallization temperature, the less of t-ZrO_2 and the more of m-ZrO_2, and the lower of bulk density. Optimizing the two-step heat treatment is crucial for the microstructure control of SAZ nano-composite ceramic.
     6 With the research of the effects of the additives of TiO_2 and ZrO_2 on the properties of T, TZ and Z nano-composite ceramics, it has been found that the fracture toughness of SAZ nano-composite ceramics are improved a lot by the composite additives and the optimal content of TiO_2 additive is no more than 5 wt%. With the increase of TiO_2 in the T samples, the microhardness is increased then decreased, but the fracture toughness declined. With the increase of ZrO_2 in the TZ samples, the fracture toughness is increased while the change of microhardness is related to crystallizing temperature. Under 1200℃, the microhardness is increased, but above 1200℃, it is decreased.
     7 With the research of the effects of the additives of Y_2O_3 and La_2O_3 on the crystallization behaviors of SAZ amorphous bulk, it has been found that the addition of Y_2O_3 and La_2O_3 has some beneficial effects on the formation of SAZ amorphous bulk by lowering the melting temperature, but has no effects on the main phases. Y_2O_3 makes zirconia more stable by the formation of solid solution. With the increase of Y_2O_3, the fracture toughness and flexural strength of ZY samples are firstly raised, then retained and dropped finally. The comprehensive mechanical properties of the sample doped with 1.0 wt% Y_2O_3 are optimal, its fracture toughness and flexural strength were 4.5MPa·m~(1/2) and 460Mpa respectively. Its strengthening and toughening mechanism is the transformation from t-ZrO_2 to m-ZrO_2. The fracture toughness and flexural strength of ZYL samples firstly increases and then decreases with the content of La_2O_3. The sample with 0.6 wt% La_2O_3 has high fracture toughness 4.74 MPa·m~(1/2) and the sample with 1.2 wt% La_2O_3 has high flexural strength 514 MPa. In the ZYL samples, in addition to the contribution of bridge join of large particles, the boundary strengthening is also one of the main strengthening and toughening mechanism since La_2O_3 are mailly distributed in glass phase.
引文
[1]郭景坤.陶瓷材料的强化与增韧途径的探索.无机材料学报,1998,13(1): 23-26
    
    [2]郭景坤.中国先进陶瓷研究及其展望.材料研究学报,1997,11(6):594-599
    
    [3]郭景坤.中国结构陶瓷研究的进展及其应用前景.硅酸盐通报.1995,4: 18-28
    
    [4]靳喜海,高濂.纳米复相陶瓷的制备、显微结构和性能.无机材料学报, 2001,16(2):200-206
    
    [5] Liu Dean-Mo, Lin Bor-Wen, Fu Chen-Tsu. Porosity dependence of mechanicalstrenghth and fracture toughness in SiC-Al_2O_3-Y_2O_3 ceramics. Journal of theAmerican Ceramic Society, 1995,103(5): 878-881
    
    [6] Akimune Yoshio, Katano Yasushi.Thermal and mechanical properties ofSiCp/Al_2O_3 composite. Journal of the American Ceramic Society, 1991, 99(12):1265-1267.
    
    [7] Sawaguchi Akihiro, Toda Kohji, Niihara Koichi. Mechanical electrical propertiesof Al_2O_3 /SiC nano-composite. Journal of the American Ceramic Society, 1991,99(6): 523-526
    
    [8] Thompson A M, Helen M C, Martin P H. Crack healing and stress relaxtion inAl_2O_3 /SiC nano-composites. Journal of the American Ceramic Society, 1995,78(3): 567-571
    
    [9]周秋生.碳化硅/莫来石/氧化铝复合陶瓷的研制:[博士学位论文].长沙,中 南大学.2001
    
    [10] Deng Zhen-Yan, Shi Jian-Lin, Zhang Yu-Feng, et al. Creep and creep-recoverybehavior in silicon-carbide-particle-reinforced Alumina. Journal of the AmericanCeramic Society, 1999, 82(4): 944-952
    
    [11] Hidemi Watanabe, Osamu Kimura. Size effect of SiC particle on the mechanicalproperties of SiC/Al_2O_3 composite.粉体ぉょひ粉末冶金, 1996,43(2): 230-235
    
    [12] Sato Shigemi, Chu Min-Cheol, Yasuyishi Kobayashi, et al. Improvement of hightemperature strength of mullite by dispersion of SiC particals. 粉体粉体ぉょひ粉末冶金, 1996,43(12): 1429-1434
    
    [13] Ashizuka Masahiro, Honda Takeshi, Kubota Yoshitaka. Effect of grain size oncreep in mullite ceramices. Journal of the American Ceramic Society 1991, 99(4):292-295
    
    [14] Yang Jian-Feng, Chao Yong-Ho, Singh Jitendra P. Fabrication and mechanicalproperties of Si_3N_4/SiC nanocomposite with pressureless sintering andsinter-post-hiping. Journal of the Ceramic Society of Japan, 1998,106(10):951-957
    
    [15] Nihara K. New design concept of structure ceramics-ceramic nanocomposites.Journal of the Ceramic Society of Japan, 1991,99(10): 974-979
    
    [16] Izaki K, Hakkei K, Ando K, et al. Ultrastructure processing for advancedceramics, New Youk, John Willey & Sons, 1988: 891
    
    [17] Xu Yueping, Nakahira Atsushi, Niihara Koichi. Characteristics of Al_2O_3 /SiCnano-composite prepared by Sol-Gel processing. Journal of the Ceramic Societyof Japan, 1994,102(3): 312-315
    
    [18] Martin Sternitzke, Brian Derby, Richard J Brook. Alumina/silicon carbidenanocomposites by hybrid polymer/powder processing: microstructures andmechanical properties. Journal of the American Ceramic Society, 1998, 81(1):41-48
    
    [19] Igor Levin, Wayne D Kaplan, David G Brandon. Effect of SiC submicrometerparticle size and content on fracture toughness of alumina-SiC nanocomposites.Journal of the American Ceramic Society, 1995, 78(1): 254-256
    
    [20] Miyata Motoyuki,Sawai Yuichi, Yasutomi Yoshiyuki. Microstructure ofSi_3N_4-SiC ceramics prepared from Si-SiO-C mixed powder.Journal of theCeramic Society of Japan, 1998,106(9): 873-876
    
    [21]#12
    
    [22]#12
    
    [23]王宏志,高濂,归林华等.SiC-ZrO_2(3Y)-Al_2O_3纳米复合材料的制备及性能. 无机材料学报,1999,14(2):280-286
    
    [24]高濂,王宏志,洪金生.SiC-ZrO_2(3Y)-Al_2O_3纳米复相陶瓷的力学性能和 显微结构.无机材料学报,1999,14(5):795-799.
    
    [25]吴人洁,江东亮,漆宗能.复合材料.天津:天津大学出版社,2000,262
    
    [26] Alanpiciacchio, et al. Journal of the American Ceramic Society, 1994, 77: 2157-2164.
    
    [27]陈远志,梁勇.在Si_3N_4/SiC纳米复相陶瓷研究进展.中国陶瓷,1999,35(2): 69-70
    
    [28] Sato Shigini, et al.J.Ceram.Soc.Jpn. 1995,103(7): 676-679
    
    [29]张国军.纳米复相结构陶瓷的原位反应合成.过程工程学报,2002,2(4): 21-23
    
    [30] Dai J Y, Li X D, Ye H Q, et al. Characterization of TiB_2-Ti (CN)-Ni ceramics by transmission and analytical electron microscopy. Materials Letters, 1993,16: 317-321.
    
    [31] Zhang G J. Preparation of TiB_2-TiC_(0.5)N_(0.5) ceramic composite by reactive hot-pressing and its microstructure. Ceramics International, 1995,21: 29-31.
    
    [32] Tatsuki Ohiji, et al. J Am Ceram Soc, 1994,77(12): 3259-3262
    
    [33] Yasuda Eiichi, et al. J Am Ceram Soc Jpn. 1992,100(4): 514-519
    
    [34]李金望,田杰谟.Si_3N_4/SiC纳米复合陶瓷的制备、结构和性能.无机材料学 报,1998,29(5):452-457
    
    [35] Carroll L, Sternitzke M, Derby B. Silicon carbide particle size effects inalumina based nanocomposites. Acta Mater. 1996,44(11): 4543-4552
    
    [36] Niihara K, Nakahira A. Structural ceramic nanocomposites by sintering method:roles of nano-size particles. In Ceramics: Towards the 21~(st) Century. The CeramSoc Jpn. 1992,404-417.
    
    [37] Davidge R W, Twigg P C and Riley F L. Effects of silicon carbide nano-phaseon the wet erosive wear of polycrystalline alumina. J Euro Ceram Soc. 1996,16(7): 799-802.
    
    [38] Levin I, Kaplan W D, Brandon D G, et al. Effect of SiC submicrometer particlesize and content on fracture toughness of alumina-SiC nanocomposites. J AmCeram Soc. 1995, 78(1): 254-256.
    
    [39]陈大明.纳米陶瓷复合材料进展.材料工程,1996,(6):8-12.
    
    [40]刘福田,常钧,王志等.ZrO_2-3Al_2O_32SiO_2-Al_2O_3/SiC_n纳米-微米复相陶瓷 的反应烧结技术.陶瓷工程,2001,10:35-38
    
    [41]王昕,孙康宁,尹衍升等.纳米复合陶瓷研究进展.复合材料学报,1999, 16(1):105-110
    
    [42]高家化,沈志坚,丁子上.陶瓷基纳米复合材料.复合材料学报,1994, 11(4):1-7
    
    [43] Martin Sternitzke. Review: structural ceramics nano-composite, J Europ CermSoc, 1997,17(5): 1061-1082.
    
    [44] Yasuoka M, Hirao K, Brito M E, et al. High strength and high-fracture-toughnessceramics in the Al_2O_3/LaAl_(11)O_(18) system. J Am Ceram Soc, 1995,78(7):1853-1856.
    
    [45] Niihara K, Nakahira A. Strengthening and toughening mechanisms in nanocomposite ceramics.Ann Chim Fr, 1991,16:479-486.
    
    [46] Wang H Z, Gao, L, Guo J K. The effect of nanoscale SiC particles on the microstructure of Al_2O_3 ceramics. Ceramics International, 2000,26: 391-396
    
    [47]赵鹏,张良莹,姚喜.复相功能玻璃陶瓷及其溶胶-凝胶罚制备.功能材料, 2000,31(1):15-17
    
    [48]陈国华,刘心宇.尾矿微晶玻璃的制备及其性能研究.硅酸盐通报,2005, 24(2):80-83
    
    [49]岳振星.周济.张洪国.铁氧体-微晶玻璃纳米复合材料的结构与性能.无 机材料学报,1999,14(3):375-379
    
    [50]程慷果,万菊林,梁开明.氧化锆增韧微晶玻璃的制备.硅酸盐学报,1998, 26(3):365-368
    
    [51] Schneider H, Okada K, Pask J A. Mullite and mullite ceramics. Wiley, NewYouk, 1994
    
    [52] Clousen N, Jahn J. Mechanical properties of sintered in-situ reactedmullite-zirconia composites. J Am Ceram Soc, 1996, 63(3): 228-232
    
    [53]杜春生,杨正方,袁启明.反应烧结制备氧化锆增韧莫来石陶瓷.硅酸盐 通报,1999,(6):63-67
    
    [54] Orange G, Fantozzi G, Cambier F et al. High tenperture mechanical properties of reaction-sintered mullite/ zirconia and mullite/aluminia/zirconia composites. Journal of Materials Science, 1985,20: 2533-2540
    
    [55]唐绍裘,李国军,谢志鹏.莫来石-氧化锆复相陶瓷材料原位反应烧结机理 的研究.材料科学与工艺,2000,8(3):21-25
    
    [56]赵世柯,黄校先,郭景坤.ZrSiO_4/Al_2O_3制备氧化锆-莫来石复相陶瓷反应 烧结机制.无机材料学报,2000,15(6):1102-1106
    
    [57] Khor K A, Yu L G, LiY, et al. Spark plasma reaction sintering of ZrO_2-Mullite composites from composites from plasma spheroidized zircon/alumina powders. Mater Sci Eng, 2003, A339 (1-2): 286-296
    
    [58] Khor K A, Li Y. Crystallization behaviors in the plasma-spheroidized alumina/zircon mixtures. Mater Lett, 2001,48(2): 57-63.
    
    [59]梁波,阚艳梅,靳喜海.纳米/纳米型和晶间型ZTM/Al_2O_3复相陶瓷抗热震 性能的研究.中国陶瓷,2001,37(4):22-25.
    
    [60]贺振富,郭瑞松,杨正方等.溶胶凝胶法、液相包裹法制备超细ZTM复合粉 末.硅酸盐通报,1996,(5):28-30
    
    [61] Garvie R G, Hannink R H, Pascoe R T. Nature.1975,258: 703-706
    
    [62] Rincon J M, Dinger T R, Thomas G, et al. Microstructure of mullite/ZrO_2 andmullite/Al_2O_3/ZrO_2 tough ceramic composites. Acta Metal, 1987, 35(5):1155-1179
    
    [63] Lathabai S, Hay D G, Wagner F, et al. Reaction-bonded mullite/zirconiacomposites. J Am Ceram Soc.1996,79(1): 248-256
    
    [64] Moya J S, Osendi M I. Effect of ZrO_2(ss) in mullite on the sintering andmechanical properties of mullite/ZrO_2 composites. J Mater Sci Lett. 1983,2:599-601
    
    [65] Shin D, Orr K K. Microstructure-mechanical property relationships in hotisostatically pressed alumina and zirconia-toughened alumina. J Am Ceram Soc.1990,73: 1181-1188
    
    [66] Yuan QiMing, Jan JiaQi, Jin ZhengGuo. Preparation and properties ofzirconia-toughened mullite ceramics. J Am Ceram Soc. 1986,69(3): 265-267
    
    [67] Alexander K B, Becher P F, Wang X, et al. Internal stresses and the martensitestart temperature in alumina-zirconia composites: effects of composition andmicrostructure. J Am Ceram Soc. 1995,78: 291-296
    
    [68]刘茜,陈玉茹,袁启明等.莫来石-氧化锆复合材料中氧化锆的强韧化机理. 硅酸盐学报,1992,20(4):353-357.
    
    [69]徐利华,丁子上,黄勇.先进复相陶瓷的研究现状和展望(Ⅱ)----高组元 陶瓷复合材料的研究进展.硅酸盐通报.1996,6:42-46
    
    [70] Ncgami M, Nagasaka K. Toughened glass-ceramics containing ZrO_2 and Al_2O_3 prepared by the sol-gel process from metal alkoxides. Journal of Non-Crystalline Solids, 1987,100(1-3): 298-302
    
    [71] Cales B. Ceramic Matrix Composition in "2~(nd) European symposium onengineering ceramics", Ed by Riley F L, Elsevier Applied Science, London andNew Youk, 1987,171
    
    [72] Fagberazzi G, Enzo S. A structural study of metastable tetragonal zirconia in anAl_2O_3-ZrO_2-SiO_2-Na_2O glass ceramic system. Journal of Materials Science, 1980,15 (11) :2693-2699
    
    [73] Sridharan S, Tomozawa M. Toughening of glass-ceramics by both transformableand transformed zirconia. Journal of Non-Crystalline Solids, 1995, 182(3):262-269
    
    [74] McCoy M, Lee W E, Heuer A H. Crystallization of MgO-Al_2O_3-SiO_2-ZrO_2??glasses. Journal of the American Ceramic Society, 1986,69(3): 292-300
    
    [75] Lertherman C L. Mechanical properties of a transformation-toughened glass-ceramics. Journal of Materials Science, 1990,25(10): 4488-4452
    
    [76] Sue Y J. Spherulitic growth from a phase separated vitreous matrix in a cordierite-Y-stabilized zirconia glass-ceramics. Journal of the American Ceramic Society, 1991, 74(1): 85-91
    
    [77] Kasoga T, Yoshita M. Bioactivity of zirconia-toughened glass-ceramics. Journal of the American Ceramic Society, 1992, 75(7): 1884-1891
    
    [78] Tomoko U, Toshihiro K, Shin N, et al. Microstructure of mica-based nanocomposite glass-ceramics. Journal of the American Ceramic Society, 1993, 76(2): 539-542
    
    [79]张玉峰,诸培南.LCMAS微晶玻璃/Y-TZP复相材料.无机材料学报,1994, 9(2):156-160
    
    [80] Sarno R D, Tomozawa M. Toughening mechanisms for a zirconia-lithium alminosilicate glass ceramic. Journal of Materials Science, 1995, 30(17): 4380-4386
    
    [81] Lin M H, Wang M C. Phase transformation and characterization of TiO_2 and ZrJO_2 addition in the Li_2O-Al_2O_3-SiO_2 gels. Journal of Materials Research, 1996, 11(10): 2611-2617
    
    [82]陈伟民,陈楷.ZrO_2在微晶玻璃中的增韧作用.材料科学与工程,1998,16(3): 73-77
    
    [83] Evans G H. Ceramic Microstructure, 1991, 86: 775-794
    
    [84] Jerzy Zarxyki, Past and Present of sol-gel Science and Technology. J of sol-gel Science and Fechnology, 1997(8): 17-22
    
    [85]闫洪,窦明民,李和平.二氧化锆陶瓷的相变增韧机理和应用.陶瓷学报, 2000,21(1):46-50
    
    [86]王零森编著.特种陶瓷.中南工业出版社,1996
    
    [87]谢志鹏,高立春,李文超等.晶种诱导长柱状晶生长规律与高韧性氧化铝陶 瓷材料.中国科学(E辑).2003,33(1):11-18
    
    [88] Evans A G, Faber K T. Toughening of ceramics by circumferential microcracking. J Am Ceram Soc, 1981,64(7): 394-398
    
    [89]夏傲,苗鸿雁,李永强.氧化锆微晶玻璃的研究进展,中国玻璃,2003,(1): 25-29
    
    [90] Faber K T, Evans A G Crack deflection processes-Ⅰ. Theory, Acta metal.1983,31(4): 565-658
    
    [91] Faber K T, Evans A G Crack deflection processes-Ⅱ. Experiment, Actametal. 1983,31(4): 577-579
    
    [92] Davidge R W. Mechanical behaviour of ceramics, Cambridge university press, 1990
    
    [93]徐纶芝.弹性力学.高等教育出版社,1982.
    
    [94] Taya M, et al. Toughening of ceramics by circumferential microcracking. J Am Ceram Soc, 1990,73(5): 1382-1389
    
    [95]穆柏春.陶瓷材料的强韧化.北京:冶金工业出版社,2002:93-122
    
    [96] Pena P, Miranzo P, Moya J S, et al. Multicomponent toughened ceramicmaterials obtained by reaction sintering part 1 ZrO_2-Al_2O_3-SiO_2-CaO system, JMater Sci, 1985,20: 2011-2022
    
    [97] Miranzo P, Pena P, Moya J S, et al. Multicomponent toughened ceramicmaterials obtained by reaction sintering part 2 ZrO_2-Al_2O_3-SiO_2-MgO system, JMater Sci, 1985, 20: 2702-2710
    
    [98] Miranzo P, Pena P, Aza S D E, et al. TEM study of reaction-sinteredzirconia-mullite composites with CaO and MgO additions. J Mater Sci, 1987, 22:2987-2992
    
    [99] Melo M F, Moya J S, Pena P, et al. Multicomponent toughened ceramicmaterials obtained by reaction sintering part 3 ZrO_2-Al_2O_3-SiO_2-TiO_2 system, JMater Sci, 1985,20:2711-2718
    
    [100] Zdaniewski W. DTA and X-ray analysis study of nucleation and crystallizationof MgO-Al_2O_3-SiO_2 glasses containing ZrO_2, TiO_2 and CeO_2. J Am ceram Soc,1975, 58(5-6): 163-169
    
    [101]Mcmillan P W. Glass-Ceramics. London: Academic Press, 1979: 74-78
    
    [102] Das Kaberi, Mukherjee B, Banerjee G Effect of yttria on mechanical andmicrostructural properties of sintered mullite-zirconia composites. J EuropCeram Soc, 1998,18(12): 1771-1777
    
    [103] James P F. Volume nucleation in silicate glasses.In Glass and Glass-Ceramics, ed. M H Lewis. Chapman and Hall, London, 1989, 59-105
    
    [104] Gutzow I, Shmelzer J. The Vitreous State-Structure, Thermodynamics,Rheology and Crystallization. Springer Verlag, Berlin, New Youk, 1995
    
    [105] Besborodov M A. Glass-Ceramic Materials. Naukai Technika, Minsk,1982(in??Russian)
    
    [106] Ray C S, Day D E. Nucleation and crystallization in glasses as determined byDTA. Ceramic transactions, J Am Ceram Soc, 1993,30: 207-224
    
    [107] Thakur R L. Determining the suitability of nucleating agents forglass-ceramics. In advanced in Nucleation and Crystallization in Glasses, Ed L LHench and S Wfrieman. American ceramic Society, Westerville, OH, 1971,166-173
    
    [108] Parsel D. Optimization of a glass-ceramic heat treatment schedule thoughthermal analysis. Ceramic transactions, J Am Ceram Soc, 1993,30: 285-291
    
    [109] Xu X J, Ray C S, Day D E. Nucleation and crystallization ofNa_2O.2CaO.3SiO_2 glass by differential thermal analysis. J Am Ceram Soc. 1991,74: 909-914
    
    [110] Tkalcec E, Kurajica S, Ivankovic H. Isothermal and non-isothermalcrystallization kinetics of zinc-aluminosilicate glasses. Thermochimical Acta,2001,378:135-144
    
    [111] Rawlings R D. Production and properties of silceram glass-ceramics. InGlass-ceramic Materials-Fundamentals and Applications Series of Monographson Material Science, Engineering and Technology, Mucchi Editore, Modena,1997, 115-133
    
    [112] Bryden R H, Caley W F. Determination of nucleation temperature of a limealuminosilicate glass-ceramic by differential thermal analysis. J Mater Sci Lett,1997, 16: 56-58
    
    [113] Alexander Karamanov, Paola Pisciella and Matio Pelino. The effect of Cr_2O_3as a nucleating agent in Iron-rich glass-ceramics. J Europ Ceram Soc, 1999, 19:2641-2645
    
    [114]迟玉山.硬盘基板用微晶玻璃的析晶过程与力学性质:[博士学位论文],上 海:中国科学院上海硅酸盐研究所,2001.
    
    [115] Toraya H, Yoshimura M, Somiya S. Calibration curve for quantitative analysis of the monoclinic-tertragonal ZrO_2 system by X-ray diffraction. J Am Ceram Soc.1984,6:C112-C119
    
    [116]莫志深.x射线衍射法测定聚合物结晶度.理学x射线衍射仪用户协会 论文选集.1990,3(1):1-15.
    
    [117] Evans A G, Charles E A. Fracture toughness determinations by indentation. J Am Ceram Soc. 1976, 59(7-8): 371-372
    
    [118] Anstis G R, Chantikul P, Lawn B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I . J Am Ceram Soc. 1981, 16(10): 2745-2752
    
    [119] Ponton C B, Rawlings R D. Mechanical properties of siliceramic glass-ceramics. Mater Sci Tech, 1989, 5(9): 865-872
    
    [120]GB/T6569-1986工程陶瓷弯曲强度实验方法
    
    [121] Ebadzadeh T, Ghasemi E. Effect of TiO_2 addition on the stability of t-ZrO_2 inmullite-ZrO_2 composites prepared from various starting materials. CeramicsInternational, 2002,28(4): 447-450
    
    [122] Descamps P, Sakaguchi S, Poorteman M, et al. High-temperaturecharacterization of reaction- sintered mullite-zirconia composites. J Am CeramSoc, 1991,74(10): 2476-2481
    
    [123] Wen-Cheng J Wei, H C Kao, M H Lo.Phase transformation and graincoarsening of zirconia/mullite composites. J Eur Ceram Soc, 1996, 16:239-247(1100,1300)
    
    [124]杨南如主编.无机非金属材料测试方法.武汉:武汉工业大学出版社,1993
    
    [125] Warren B E, Pines A G Atomic Consideration of immiscibility in glass systems.J Am Ceram Soc. 1940,23: 219
    
    [126] Mcmillan P W. Glass-Ceramics Secondedition. Academy Press, Lendon, 1979
    
    [127]单瑛、李家治、邓译群等,堇石基玻璃分相对析晶行为的影响,硅酸盐学 报,1981,9(4):403-407
    
    [128] Vogel W, Holland W, Nucleation and crystallization Rineticy of an MgO-Al_2O_3-SiO_2 base glass with various dopants, In: Advances in Ceramics, VolANucleation and Crystallication in Glasses. Ed. By J H Simmons, D R Uhlmann, G H Besll, New Youk: Am Ceram soc press.
    
    [129] Filipovich V N, Kalinina A M. Mechanism of the crystalline phase formation on heating of certain glasses. International congress on glass, 7~(th), Bruxelles, 1965
    
    [130] Monica Popa, Jose M, Calderon-Moreno, et al. Crystallization of gel-derived and quenched glasses in the ternary oxide Al_2O_3-ZrO_2-SiO_2 system. J Non-cryst Solids. 2002,297: 290-300
    
    [131] Mackenzie K J D. Infrared Frequency Calculations for ideal mullite (3Al_2O_3·2SiO_2). J Am Ceram Soc. 1972, 55(2): 68-71
    
    [132] Mcpherson R.Preparation of mullite-zirconia composites from glass powder.J Am Ceram Soc. 1986,69(3): 297-298.
    
    [133] Dong X L, William J T. Mullite formation kinetics of a single-phase gel. J Am Ceram Soc, 1990, 73(4): 964-969
    
    [134]李红.以钙云母为主相的高强度可削牙科微晶玻璃的研究.[博士学位论 文].四川:四川大学,2002
    
    [135] Wei W, Halloran J W. Transformation kinetics of diphasic aluminosilicategels. J Am Ceram Soc, 1988, 71, 581-587
    
    [136] Li D X. and Thomson W J. Kinetic mechanisms for the mullite formationfrom sol -gel precursors. J Mater Res, 1990, 5,1963-1969
    
    [137] Hu L, Messing W J. Tetragonal to rthorhombic transformation during mulliteformation, J Mater Res, 1991,6, 819-824
    
    [138] Sundaresan, S. Mullitization of diphasic aluminasilicate gels. J Am CeramSoc, 1991,74,2388-2392
    
    [139]郭瑞松,蔡舒,季惠明等.工程结构陶瓷,天津:天津大学出版社,2002, 94-112
    
    [140]靳喜海.复合添加剂ZTM烧结及性能的影响.[博士学位论文].天津: 天津大学,1999
    
    [141] Neilson G F. Nucleation and crystallization in ZrO_2-nucleated glass-ceramicsystems. In: Advances in nucleation and crystallization in glass, Columbus, Ohio,1971:73-82
    
    [142] Dusil J, Cervinka L. Kinetics of bulk crystallization inMgO-Al_2O_3-SiO_2-ZrO_2-TiO_2 melts. Glass Techn, 1976, 17(3): 106-111
    
    [143] Iihan A, Ksay A, Daniel M, et al. Mullite for structural, eflectronic and opticalapplications. J Am Ceram Soc, 1991,74(10): 2343-2358
    
    [144] Smith D G W, Mcconnel J D C. Acomparative electron diffraction study ofsillimanite and some nutural and artificial mullites.Mineral Mag, 1966,35(274): 810-814
    
    [145] Burnham C W. Compositional limites of mullite and the sillimanite-mullitesolide solution problem. Carnegie inst, Washington, Year Book, 1964, 63:227-229
    
    [146] Saalfeld H. The domain structure of 2:1 mullite (2Al_2O_3SiO_2).Mineral, Abh,1979,134(3): 305-316
    
    [147] Agrell S O, Smith J V. Cell Dimensions, solid solution, polymorphism andidentification of mullite and sillimanite. J Am Ceram Soc, 1960,43(2): 69-76
    [148] Aramaki S, Roy R. Revised phase diagram for the system Al_2O_3~-SiO_2. J Am Ceram Soc, 1962,45(5): 229-242.
    [149] Angel R J, Prewiff C T. Crystal structure of mullite: A reexamination of the average structure. Am Mineral, 1986, 71: 1476-1482
    [150] Cameron W E. Compositions and cell dimensions in mullite. Am Ceram Soc Bull, 1977,56(11): 1003-1011
    
    [151] Kriven W M, Pask J A. J Am Ceram Soc, 1983,66: 649-652
    [152] Bhattacharjee S, Singh S K, galgali R K. Preparation of zirconia toughened mullite by thermal plasma. Mater Lett, 2000,43: 77-80
    [153] Alizadeh P, Marghussian V K. Effect of nucleating agents on the crystallization behavior and microstructure of SiO_2-CaO-MgO (Na_2O) glass-ceramics. J Eur Ceram Soc, 2000, 20: 775-782
    [154] Saruhan B, Albers W, chneiderH S, et al. J Eur Ceram Soc, 1996,16:1075-1079
    [155] Komarneni S, Suwa Y, Roy R. Application of compositionally dysphasic xerogels for enhanced densitication: the system Al_2O_3-SiO_2. J Am Ceram Soc,1986,69(7): 155-156
    [156] Wei W C, Halloran J W. Phase transformation of dysphasic aluminosilicate gels. J Am Ceram Soc, 1988, 71(3): 166-172
    [157] Hyatt M J, Bansal N P. Phase transformations in xerogels of mullite composition. J Mater Sci, 1990,25: 2815-2821
    [158] Lee J S, Yu S C. A characterization of mullite prepared from coprecipitated 3Al_2O_3-2SiO_2 powders. J Mater Sci, 1992,27: 5203-5208
    [159] Schneider H, Voll D, Saruhan B, et al. Constitution of the Y -alumina phase in chemically produced mullite precursors. J Eur Ceram Soc, 1994,13: 441-448
    [160] Sanz J, Sobrados I. J Am Ceram Soc, 1991,74(10): 2398-2403
    [161] Jin Xi-Hai, Gao Lian, Guo Jing-kun. The structural change of dysphasic mullite gel studied by XRD and IR spectrum analysis. J Eur Ceram Soc, 2002, 22:1307-1311
    [162] Okada K, Otsuka N. Characterization of the spinel phase from SiO_2-Al_2O_3 xerogels and the formation process of mullite. J Am Ceram Soc, 1986, 69(9):652-656
    [163] Low I M, Mcpherson R. The origins of the mullite formation. J Mater Sci,1989,24:926-936.
    
    
    [164] Chakravorty A K. Intermediate Si-Al spinel phase formation in phasetransformation of diphasic mullite gel. J Mater Sci, 1993,28: 3839-3844
    
    [165] Srikrishna K, Tomas G, Martinez R, et al. Kaolinite-mullite reaction series: aTEM study. J Mater Sci, 1990,25: 607-612.
    
    [166] Emilija Tkalcec, Stanislav Kurajica, Hruoje Ivankovic. Diphasic aluminosilicategels with two stage mullization in temperature range of 1200-1300℃. J EurCeram Soc, 2005,25: 613-626
    
    [167] Campos A L, Silva N T, Melo F C L, et al. Crystallization kinetics oforthorhombic mullite from diphasic gels. Journal of Non-Crystalline Solids,2002,304(1): 19-24
    
    [168] Wen-Cheng J. Wei, H C Kao, M H Lo. Phase Transformation and graincoarsening of zirconia/mullite composites. J Euro. Ceram. Soc, 1996, 16:239-247
    
    [169] Holmstron M, Charbier T, Soch P. Reaction-sintered ZrO_2-mullite composites.Mater Sci Eng, 1989, A109: 105-109
    
    [170] Alizadeh P, Marghussian V K. Effect of nucleating agents on thecrystallization behavior and microstructure of SiO_2-CaO-MgO(Na_2O)glass-ceramics. Journal of the European Ceramic Society, 2000. 20: 775-782
    
    [171] Leonelli C, Manfredini T, Paganelli M. Crystallization of some anorthite-diopside glass precursors. Journal of Materials Science, 1991, 26: 5041-8046
    
    [172]乔汉军,金志诰.微晶玻璃的发展-组成、性能及应用.硅酸盐通报, 1994,4:52-56
    
    [173]金格瑞.陶瓷导论.北京:中国建筑工业出版社,1987:338-340
    
    [174] Jonhson W A, mehl R F. Reaction kinetics in processes of nucleation and growth. Transactions of American Institute of Mining and Engineers, 1939, 135:416-442
    
    [175] Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis. Res Natl Bur Stand, 1956, 57(4): 217-221
    
    [176] Ozawa T. Kinetics of glass crystallization. Journal of Thermal Analog, 1970, 15(2): 301-305
    
    [177] Ozawa T. Kinetics of Nonisothermal crystallization. Polymer, 1971, 12(1): 150-158
    [178] Augis J A, Bennett J E. Calculation of the avrami parameters for heterogeneous solid-state reactions using a modification of the Kissinger method. Journal of Thermal Analog, 1978,13(2): 283-292
    
    [179] Takei K, kameshima Y, Yasumori A, et al. Crystallization kinetics of mullite from Al_2O_3-SiO_2 glasses under non-isothernal conditions. J Europ Ceram Soc.2001,21(14): 2487-2493
    [180] Low L M, Mcpersonal R. Crystallization of gel-derived mullite-zirconia composites. J Mater Sci, 1989,24: 951-958
    [181] Petch N J, J Iron Steel Inst, 1953,174:1
    [182] Li W Q, Gao L. Processing, microstructure and mechanical properties of 25vol% YAG-Al_2O_3 nanocomposites. NanoStructured Materials, 1999, 11(8):1073-1080
    
    [183] Das Kaberi, Banerjee G. Mechanical properties and microstructures of reaction sintered mullite-zirconia composites in the presence of an addition-dysprosia. J Europ Ceram Soc. 2000,20:153-157
    [184] Koyama T, Hayashi S, Yasumori A, et al. Microstructure and mechanical properties of mullite/zirconia composites prepared from alumina and zircon under various firing conditions. J Europ Ceram Soc. 1996,16: 231-237
    [185] Miao X, Scheppokat S, Claussen N, et al. Characterisation of an oxidation layer on reaction bonded mullite/zirconia composites by indentation. J Europ Ceram Soc. 1998,18:653-659.
    
    [186] Clarke P J P, Tettersail H G, et al. Proc Brit Ceram Soc, 1966,6: 163
    [187] Schwiete H E, Granizke K E, Karsch K H. Warmeleitfahigkeit feuerfester materialien des systems Al_2O_3-SiO_2 zwischen 200 und 1600℃. Ber Dtsch keram Ges. 1961,38:529
    [188] Kerner E H. The elastic and thermo-elastic properties of composite media.Proc Phys Soc, 1956,69B: 808-813
    
    [189] Bateman C A, Bennison S J, Harmer M D, Mechanism for the role of magnesia in the sintering of alumine containing small amounts of a liquied phase. J Am Ceram Soc, 1989,72(7): 1241-1245
    
    [190] Berry K A, Harmer MP, Effect of MgO solute on microstructure development in Al_2O_3. J Am Ceram Soc 1986, 69(2): 143-149
    
    [191] Bai K S, White C L, Anisotropic calcium segregation to the surface of Al_2O_3,J Am Ceram Soc, 1987,70(9): 582-586
    
    
    [192]蔡舒,袁启明,孟佳宏等.氧化锆(氧化钇)增韧莫来石陶瓷的组成与强 韧化机理的研究.硅酸盐通报,2000,(6):11-15
    
    [193]刘维跃,刘美华.氧化铈对改善ZTM陶瓷性能的作用.硅酸盐通报, 1996,(3):10-13
    
    [194]李国军,黄效先,诏绍裘等.2Y_2O_(3-x)CeO_2对ZTM复相陶瓷相组成、显微 结构、力学性能的影响.材料料学与工程,2000,18(3):43-47
    
    [195] Kong L B, Zhang T S, Ma J, et al. Mullite phase formation in oxide mixtures in the presence of Y_2O_3, La_2O_3 and CeO_2. Journal of Alloys and Compounds, 2004, 372:290-299
    
    [196] She J, Mechnich P, Schmucker M, et al. J Eur Ceram Soc. 2002,22: 323-328
    
    [197]蔡舒,孟佳宏,袁启明.La_2O_3添加剂对ZTM陶瓷中柱状莫来石晶粒自生 长的影响.材料导报,2000,14:64-65
    
    [198] Kolitsch U, Seifert H J, Ludwing T, et al. Phase equilibria and crystal chemistry in the Y_2O_3-Al_2O_3-SiO_2 system. J Mater Res, 1999, 14: 447-455
    
    [199] Levin G E M, Robbins C R, H F Mcmurdie. Phase diagram for ceramics. The Am Ceram Soc hic, 1969,2586
    
    [200]西北轻工学院主编.玻璃工艺学.轻工业出版社,1982
    
    [201]迟玉山,沈菊云,陈学贤等.La_2O_3在MgO-Al_2O_3-SiO_2-TiO_2微晶玻璃中的 作用.无机材料学报,2002,17(2):348-352

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700