用户名: 密码: 验证码:
2024铝合金搅拌摩擦焊管材塑性变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空航天领域结构轻量化的发展,对薄壁构件的需求越来越多,铝合金异形截面薄壁构件在飞机及航天器结构制造中的应用范围不断扩大。此类构件形状复杂,径厚比大,对管材尺寸和成形性能提出了新的要求。采用传统铝合金管材制造方法,很难获得大直径薄壁铝合金管材,因此迫切需要研发面向内高压成形的薄壁铝合金管材制造技术。为了解决该难题,本文提出了铝合金管材搅拌摩擦焊(FSW)旋压复合成形工艺。以2024铝合金为研究对象,揭示了FSW管材制备过程中组织演变规律与塑性变形行为,给出了螺旋焊缝管材内高压成形特征及壁厚分布规律,为解决薄壁铝合金管材制备及后续成形的难题提供新方法和理论依据。
     采用FSW板材接头,研究了接头组织及塑性变形行为,获得了热处理对接头延伸率的影响规律。焊态接头组织性能差异,导致变形不均匀,延伸率下降44%。热处理可以改善接头变形均匀性,提高延伸率。接头延伸率随热处理温度升高,先增加后降低。300℃时,达到最高值,为焊态的1.6倍。
     通过铝合金管材FSW旋压成形实验,给出了旋压减薄率对管材组织及力学性能的影响规律。结果表明:旋压对母材晶粒细化比焊缝更明显,减薄率达70%时,母材晶粒从200μm降至3.5μm。旋压减薄率越大,管材晶粒细化效果越显著,管材强度也越高。
     通过热处理及自由胀形实验,揭示了加热温度对管材组织及胀形性能的影响规律。300℃时,旋态管材变形组织转变为细小等轴晶和大角度晶界的再结晶组织,焊缝晶粒约为1.7μm,母材晶粒约为4μm,管材组织均匀性显著改善。350-400℃时,管材晶粒异常长大,并沿厚度分层,外层晶粒为内层的4-6倍。管材膨胀率随温度升高,先增加后降低。300℃管材膨胀率最高,为旋态的2.1倍。热处理控制管材组织稳定性,决定了管材成形性能。
     通过自由胀形实验,获得了焊缝强度匹配对FSW管材环向壁厚分布的影响规律。发现等组配管材距焊缝圆心角30°和180°母材壁厚减薄严重,最大减薄为20.6%,这与高组配管材壁厚分布规律类似;低组配管材,破裂于焊缝,最大减薄为23.7%,焊缝减薄明显高于母材。塑性理论分析表明:焊缝强度差异,导致高组配管材截面焊缝相邻及对向母材曲率半径较大,等效应力高于其他母材,从而壁厚减薄严重。
     通过变径管内高压成形实验,获得了螺旋焊缝管材壁厚减薄规律。发现管材轴向壁厚减薄呈M形:距对称面1/4膨胀区长度处减薄严重,而两端及对称面减薄较小。管材环向壁厚减薄规律与自由胀形管材类似,但壁厚分布更均匀。这主要是通过预成形,使焊缝相邻母材先贴模,缓解过度减薄。
     利用数值模拟,揭示了螺旋焊缝管材自由胀形时壁厚分布与应力状态的关系。发现FSW管材胀形时截面发生畸变。高组配时,焊缝相邻母材曲率半径大于其他母材,受到环向及轴向双拉应力较大,应变较高,壁厚减薄严重。低组配时,管材截面曲率半径分布与高组配相反,焊缝相邻母材受到环向及轴向双拉应力较小,应变较低,壁厚减薄较小。
Due to the increasingly urgent lightweight demand in the aerospace industry,the application of thin-walled aluminum alloy tube fittings continue to expand inthe aircraft and aerospace industry. Such fittings with complex shape have alarge radius-to-thickness ratio, which put forward more strict requirements fortube geometry and formability. It is difficult to obtain such large diameter thin-walled aluminum tube by the conventional aluminum tubing manufacturingmethod. Thus an urgent need for research and development of hydroformingthin-walled tube is required. In this paper, large diameter thin-walled aluminumwere produced using a hybrid process combining friction stir welding andspinning.2024aluminum alloy was studied as the base materials. Therelationship between the microstructure and plastic deformation behavior of theFSW joints were revealed during FSW tube preparation and the manufacturingproblem of the thin aluminum pipe was solved. The hydroforming characteristicsand wall thickness distribution law of spiral weld pip were given, aiming toprovide theory foundation and technology support to the application of the newprocess.
     The relationship between the microstructure and the plastic deformationbehavior of the FSW joints was examined. The effect of the post-weld heattreatment on the plastic deformation characteristics of the FSW joints wasrevealed. The microstructure heterostructure of the joints lead to non-uniformmechanical properties and plastical deformation, and the elongation of the jointdecreases44%. Deformation heterogeneity of the joint is improved by the post-weld heat treatment and the joint showed high ductily. The plasticity of the jointincreases firstly and then decreases with increasing the annealing temperature.When the temperature is300℃, the plasticity has a maximum value, which is1.6times higher than that of the welded joint.
     Combined spinning composite forming process of aluminum alloy FSWtube experiments, the effect spinning thinning rate on microstructure andmechanical properties of FSW pipe was given. It is found that the grain refiningeffect is more obvious with increasing the reduction of spinning. The grain sizeof base metal (BM) is decreased from200μm to3.5μm, with spinning thinning rate of70%. The more uniform distribution of grains in the weld and BM isgiven. The strength of the tube increases significantly with increasing thereduction of spinning.
     The microstructure of the FSW tube was controlled by heat treatment, andthe effect the annealing temperature on the microstructure of the tube wasobtained. The bulging performance variation of the FSW tube after heattreatment was revealed during the hydroforming. When the temperature is below300℃, the deformed microstructure of the spin state of the pipe change into therecrystallized microstructure of fine equiaxed grain and large-angle grainboundaries. The grains of the weld are approximately1.7μm and the grains ofbase material are4μm. The organization uniformity of the tube has beensignificantly improved. When the temperature is350-400℃, the abnormalgrowth of the tube occurs, and the delamination along the thickness of the tubeis obvious in which the outer layer grain is4-6times higher than that of theinner layer. With increasing temperature, the expansion coefficient of the FSWtube first increases and then decreases. When the temperature is300℃, theexpansion coefficient of the tube has a maximum value, which is1.6timeshigher than that of the spinning. The expansion coefficient of the FSW tube canbe significantly increased by heat treatment, which is due to that the heattreatment can control the organizational stability and further improve theformability of FSW tube.
     The effect strength matching coefficient on the wall thickness distributionof spiral weld was obtained during the hydroforming. It is found that the BMnear the weld (nearly30°and180°) combined with the area opposite the weldshows a great thinning of23.7%for the tube, which is consist with the wallthickness distribution of the tube with a high-strength matching coefficient. Thetube with a low-strength matching coefficient ruptures in the weld with themaximum thinning of23.7%, which is significantly higher than that of the BM.The mechanical analysis points out that the BM near the weld combined with thearea opposite the weld show larger equivalent stress for the tube with a high-strength matching coefficient, thus above region show seriously thinning.
     Base on the experimental research of hydroforming multidiameter tube withspiral weld, the thickness distribution law of the FSW tube could be obtained. It is found that the axial wall thinning shows M-shaped distribution. Severethinning is found in the expansion zone of1/4from symmetry plane alonglongitudinal direction, and the thinning in the ends of tube including symmetryplane is smaller. Hoop thinning of tube is similar to the free bulging tube, but itshows more uniform thickness distribution. By pre-forming, the contacting-dieof the cross-section is controlled, and base metal adjacent weld contacts diefirstly. Therefore, the uniformity of thickness distribution is improved.
     The numerical simulations were conducted to reveal the relationshipbetween thickness distribution, cross-sectional shape and stress state of spiralweld tube during free bulging. It is found that cross-section of the FSW tube isno longer circular. The radius of the base metal adjacent weld is greater thanother BM for η=1.2tube, and suffer higher hoop and axial tensile stress, whichlead to severe thinning. The distribution of the radius for η=0.9tube is oppositeto the η=1.2tube. The hoop and axial tensile stress of base metal adjacent weldis smaller, which lead to less thinning of the tube.
引文
[1] Dohmann F, Hartl C H. Hydroforming-a method to manufacture lightweightparts[J]. Journal of Materials Processing Technology,1996,60(1):669-676.
    [2] Dohmann F, Hartl C H. Tube hydroforming: research and practicalapplication[J]. Journal of Materials Processing Technology,1997,71(1):174-186.
    [3]苑世剑.现代内高压成形技术[M].北京:国防工业出版社,2009:3-9.
    [4] Nandan R, DebRoy T, Bhadeshia H K D H. Recent advances in friction-stirwelding-process, weldment structure and properties[J]. Progress in MaterialScience,2008,53(6):980-1023.
    [5] Mishra R S, Ma Z Y. Friction stir welding and processing[J]. MaterialsScience and Engineering Reports,2005,50(1):1-78.
    [6]邓小民.铝合金无缝管生产原理与工艺[M].北京:冶金工业出版社,2007:5-15
    [7] Wong C C, Dean T A, Lin J. A review of spinning, shear forming and flowforming processes[J]. International Journal of Machine Tools&Manufacture.2003,43(14):1419-1435.
    [8] Music O, Allwood J M, Kawai K. A review of the mechanics of metalspinning[J]. Journal of Materials Processing Technology,2010,210(1):3-23.
    [9] Chang S C, Huang C A, Yu S Y. Tube spinnability of AA2024and7075aluminum alloys[J]. Journal of Materials Processing Technology,1998,80-81:676-682.
    [10]赵云豪.我国旋压材料与产品概述[J].锻造与冲压,2006,10:26-30.
    [11] Baoudou A H, Peyre P, Vannes A B. Reduction of porosity content generatedduring Nd: YAG laser welding of A356and AA5083aluminium alloys[J].Materials Science and Engineering A,2003,363(1-2):40-52.
    [12] Trzil J J. Electron beam welding2219aluminum alloy for pressure vesselapplications[J]. Welding Journal,1969,44:395-408.
    [13] Nunes A C. Variable polarity plasma arc welding in space shuttle externaltank[J]. Welding Journal,1984,63(9):27-35.
    [14] Hartl C H. Research and advances in fundamentals and industrialapplications of hydroforming[J]. Journal of Materials Processing Technology,2005,167(2-3):383-392.
    [15] Koc M, Altan T. An overall review of the tube hydroforming (THF)technology[J]. Journal of Materials Processing Technology,2001,108(3):384-393.
    [16]苑世剑,何祝斌,刘钢.轻合金热态液力成形技术[J].锻压技术,2005,(6):75-80.
    [17] Hama T, Asakawa M, Makinouchi A. Investigation of factors which causebreakage during the hydroforming of an automotive part[J]. Journal ofMaterials Processing Technology,2004,150(1-2):10-17.
    [18] Fuchizawa S. Recent Developments in Tube Hydroforming Technology inJapan[J]. Journal of Plasticity Engineering,2007,14(5):171-179.
    [19]李成功,傅恒志,于翘编.航空航天材料[M].北京:国防工业出版社,2002:33-35
    [20] Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller W S.Recent development in aluminum alloys for aerospace applications[J].Materials Science and Engineering A,2000,280(1):102-107.
    [21]宋鹏,王小松,徐永超,苑世剑,内压对薄壁铝合金管材充内高压弯过程的影响[J],中国有色金属学报,2011,21(2):1-7.
    [22] Yuan S J, Yuan W J, Wang X S. Effect of wrinkling behavior on formabilityand thickness distribution in tube hydroforming[J]. Journal of MaterialsProcessing Technology.2006,177(1-3):668-671.
    [23] Cheng D M, Teng B G, Guo B. Analysis of deformation and defects inhydroforming of y-shaped tubes[J]. Journal of Harbin Institute ofTechnology,2008(2),15:206-210.
    [24] Lademo O G, Hopperstad O S, Langseth M. An evaluation of yield criteriaand flow rules for aluminium alloys[J]. International Journal of Plasticity,1999,15(2):191-208.
    [25] Hill R. Theoretical plasticity of textured aggregates[J]. MathematicalProceedings of the Cambridge Philosophical Society,1979,85:179-191.
    [26] Hill R. Constitutive modeling of orthotropic plasticity in sheet metal[J].Journal of the Mechanics Physics of Solids,1990,38(3):405-417·
    [27] Hill R. A user-friendly theory of orthotropic plasticity in sheet metal[J].International Journal of Mechanical Sciences,1993,35(1):19-25.
    [28] Logan R W, Hosford W F. Upper-bound anisotropic yield locus calculationsassuming <111> pencilgilde[J]. International Journal of MechanicalSciences,1980,22(7):419-430.
    [29] Bralat F, Lian J. Plastic behaviour and stretchability of sheet metals. Part I: Ayield function for orthotropic sheet under plane stress conditions[J].International Journal of Plasticity,1989,5(1):51-66.
    [30] Pearce R. Some aspects of anisotropic plasticity in sheet metals[J].International Journal of Mechanical Sciences,1968,10(12):995-1004.
    [31] Woodthorpe J, Pearce R. The anomalous behaviour of aluminum sheet underbalanced biaxial tention[J]. International Journal of Mechanical Sciences,1970,12(4):341-347.
    [32] Barlat F, Lege D J, Brem J C. A six-component yield function for anisotropicmaterials[J]. International Journal of Plasticity,1991,7(7):693-712.
    [33] Barlat F, Becker R C. Yielding description for solution strengthenedaluminum alloys sheets[J]. International Journal of Plasticity,1997,13(4):385-401.
    [34] Barlat F, Maeda Y, Chung K. Yield function development for aluminum alloysheets[J]. Journal of the Mechanics Physics of Solids,1997,45(11):1727-1763.
    [35] Barlat F, Brem J C, Yoon J W, Chung K, Dick R E, Lege D J. Plane stressfunction for aluminum alloy sheets-part1: theory[J]. International Journal ofPlasticity,2003,19(9):1297-1319.
    [36] Abedrabbo N, Pourboghrat F, Carsley J. Forming of AA5182-O andAA5754-O at elevated temperatures using coupled thermo-mechanical finiteelement models[J]. International Journal of Plasticity,2007,23(5):841-875.
    [37] Iadicola M A, Foecke T, Banovic S W. Experimental observations ofevolving yield loci in biaxially strained AA5754-O[J]. International Journalof Mechanical Science,2008,24(11):2084-2101.
    [38] Mattiasson K, Sigvant M. An evaluation of some recent yield criteria forindustrial simulations of sheet forming processes[J]. International Journal ofMechanical Science,2008,50(4):774-787.
    [39] Yoon J W, Hong S H. Modeling of aluminum alloy sheets based on newanisotropic yield functions[J]. Journal of Materials Processing Technology,2006,177(1-3):134-137.
    [40] Hopperstad O S, Leira B J, Remseth S, Tromborg E. Reliability basedanalysis of a stretch-bending process for aluminum extrusions[J]. Computersand Structures,1999,71(1):63-75.
    [41]吴向东,万敏,周贤宾.各向异性板料屈服轨迹的研究[J].材料科学与工艺,2004,(12):394-397.
    [42]孙成智,陈关龙,林忠钦等.各向异性屈服准则对铝合金板成形预测精度的影响[J].塑性工程学报,2004,11(3):59-63·
    [43] Kuwabara T, Yoshida K, Narihara K. Anisotropic plastic deformation ofextruded aluminum alloy tube under axial forces and internal pressure[J].International Journal of Plasticity.2005,21(1):101-117.
    [44] Kuwabara T, Ishiki M, Kuroda M, Takahashi S. Yield locus and workhardening behavior of a thin-walled steel specimen subjected to combinedtension–internal pressure[J]. Journal De Physique IV,2003,105:347-354.
    [45] Kuwabara T, Ikeda S, Asano Y. Effect of anisotropic yield functions on theaccuracy of springback simulation [C]//Proceedings of the8th internationalconference on numerical methods in industrial forming processes, New York,2004:887-890.
    [46] Kuwabara T. Advances in experiments on metal sheets and tubes in supportof constitutive modeling and forming simulations[J]. International Journal ofPlasticity,2007,23(3):385-419.
    [47] Mikael J, Larsgunnar N, Kjell S. On constitutive modeling of aluminumalloys for tube hydroforming applications[J]. International Journal ofPlasticity,2005,21(5):1041-1058.
    [48] Mikael J, Larsgunnar N, Kjell S. Tube hydroforming of aluminiumextrusions using a conical die and extensive feeding[J]. Journal of MaterialsProcessing Technology,2008,198(1-3):14-21.
    [49] Korkolis Y P, Kyriakides S. Inflation and burst of anisotropic aluminumtubes for hydroforming applications[J]. International Journal of Plasticity,2008,24(3):509-543.
    [50] Yuan S J, Hu Z L, Wang X S. Evaluation of formability and materialcharacteristics of aluminum alloy friction stir welded tube produced by anovel process[J]. Materials Science Engineering A,2012,543:210-216.
    [51] Alaswad A, Benyounis K Y, Olabi A G. Tube hydroforming process: Areference guide[J]. Materials and Design,2012,33:328-339.
    [52] Imaninejad M, Subhash G, Loukus A. Experimental and numericalinvestigation of free-bulge formation during hydroforming of aluminumextrusions[J]. Journal of Materials Processing Technology,2004,147(2):247-254.
    [53] Hwang, Y M, Lin, Y K. Analysis and finite element simulation of the tubebulge hydroforming process[J]. Journal of Materials Processing Technology,2002,125-126:821-825.
    [54] Manabe K, Suzuki K, Mori S, Nishimura H. Bulge forming of thin walledtubes by micro-computer controlled hydraulic press [C]//Proceedings of the1st international conference on technology of plasticity, Tokyo,1984:111-116.
    [55] Fuchizawa S. Influence of strain hardening exponent on the deformation ofthin-walled tube of finite length subjected to hydrostatic internal pressure[C]//Proceedings of the1st international conference on technology ofplasticity, Tokyo,1984:297-302.
    [56] Fuchizawa S. Deformation of metal tubes under hydrostatic bulge formingwith closed die [C]//Proceedings of the3st international conference ontechnology of plasticity, Tokyo,1990:1543-1548.
    [57] Fuchizawa S. Influence of plastic anisotropy on deformation of thin-walledtube in bulge forming [C]//proceedings of the second internationalconference on technology of plasticity, Stuttgart, Germany, Springer,1987,2:727-732.
    [58] Imaninejad M, Subhash G, Loukus A. Influence of end-condition during tubehydroforming of aluminum extrusion[J].Mechanical Science,2004,46(8):1195-1212.
    [59] Hwang Y M, Lin Y K, Altan T. Evaluation of tubular materials by ahydraulic bulge test[J]. International Journal of Machine Tools andManufacture.2007,47(2):343-351.
    [60] Song W J, Kim J, Kang B S. Experimental and analytical evaluation on flowstress of tubular material for tube hydroforming simulation[J]. Journal ofMaterials Processing Technology,2007,191(1-3):368-371.
    [61] Thomas W M. Friction stir welding and related friction processcharacteristics [C]//7th INALCO Conference, Cambridge,98:15-17
    [62]栾国红,郭德伦,张田仓,李辉.革命性的宇航结构件焊接新技术-搅拌摩擦焊[J].航空制造技术,2002,(12):31-36.
    [63] Knipstrom K E, Pekkari B. Friction stir welding process goes commercial[J].Welding Journal,1997,76(6):55-57.
    [64]夏德顺,王国庆.搅拌摩擦焊接在运载火箭上的应用[J].导弹与航天运载技术,2002,(4):27-32
    [65] www.boeing.com/defense-space/space/delta/id/inde0601.pdf
    [66]栾国红,郭德伦,关桥,张田仓.飞机制造工业中的搅拌摩擦焊研究[J].航空制造技术,2002,(10):43-46.
    [67]邢美源,姚君山,刘杰.新一代运载贮箱搅拌摩擦焊应用研究[J].上海航天,2006,(4):39-43.
    [68]唐伟,郭听昱, Mclure J C.搅拌摩擦焊及其在铝合金连接中的应用.第九次全国焊接会议论文集[C].哈尔滨:中国焊接学会,1999,529-532.
    [69] Talwar R, Bolser D, Lederich R, Baumann J. Friction stir welding ofairframe structures[C]//2nd Int. FSW Symposium, Gothenburg, Sweden,2000:26-28.
    [70] Brooker M J, Van Deudekom A J M, Kallee S W. Applying friction stirwelding to the ariane5main motor thrust frame[C]//Second InternationalSymposium on Friction Stir Welding, Gothenburg,2000:507-511.
    [71] Thomas W M, Staines D G, Norris I M, Frias R D. Friction Stir WeldingTools and Developments[J]. Welding in the World,2003,47(11-12):10-17.
    [72] Mahoney M W, Rhodes C G, Flintoff J G, Spurling R A, Bingel W H.Properties of friction-stir-welded7075T651aluminum[J]. Metallurgical andMaterials Transactions A,1998,29(7):1955-1964.
    [73] Sato Y S, Kokawa H. Distribution of tensile property and microstructure infriction stir weld of6063aluminum[J]. Metallurgical and MaterialsTransactions A,2001,32(12):3023-3031.
    [74] Chen Y, Liu H, Feng J. Friction stir welding characteristics of different heattreated state2219aluminum alloy plates[J]. Materials Science andEngineering A,2006,420(1-2):21-25.
    [75] Srivatsan T S, Vasudevan S, Park L. The tensile deformation and fracturebehavior of friction stir welded aluminum alloy2024[J]. Materials Scienceand Engineering A,2007,466(1-2):235-245.
    [76] Ayd n H, Bayram A, Uguz A, Akay S K. Tensile properties of friction stirwelded joints of2024aluminum alloys in different heat-treated-state[J].Materials&Design,2009,30(6):2211-2221.
    [77] Starink M J, Deschamps A, Wang S C. The strength of friction stir weldedand friction stir processed aluminium alloys[J]. Scripta Materialia,2008,58(5):377-382.
    [78] Khodir S A, Shibayanagi T. Friction stir welding of dissimilar AA2024andAA7075aluminum alloys[J]. Materials Science and Engineering B,2008,148(1-3):82-87.
    [79] Cabibbo M, Meccia E, Evangelista E. TEM analysis of a friction stir-weldedbutt joint of Al–Si–Mg alloys[J]. Materials Chemistry and Physics,2003,81(2-3):289-292.
    [80] Liu H J, Fujii H, Maeda M, Nogi K. Tensile properties and fracture locationsof friction-stir-welded joints of2017-T351aluminum alloy[J]. Journal ofMaterials Processing Technology,2003,142(3):692-696.
    [81] Cavaliere P, Squillace A, Panella F. Effect of welding parameters onmechanical and microstructural properties of AA6082joints produced byfriction stir welding[J]. Journal of Materials Processing Technology,2008,200(1-3):364-372.
    [82] Genevois C, Deschamps A, Denquin A, Doisneau-cottignies B. Quantitativeinvestigation of precipitation and mechanical behaviour for AA2024frictionstir welds[J]. Acta Materialia,2005,53(8):2447-2458.
    [83] Sato Y S, Kokawa H, Enomote M, Jogan S. Microstructural evolution of6063aluminum during friction-stir welding[J]. Metallurgical and MaterialsTransactions A,1999,30(9):2429-237.
    [84] Genevois C, Deschamps A, Vacher P. Comparative study on local and globalmechanical properties of2024T351,2024T6and5251O friction stirwelds[J]. Materials Science and Engineering A,2006,415(1-2):162-170.
    [85] Ren S R, Ma Z Y, Chen L Q. Effect of welding parameters on tensileproperties and fracture behavior of friction stir welded Al–Mg–Si alloy[J].Scripta Materialia,2007,56(1):69-72.
    [86] Rhodes C G, Mahoney M W, Bingel W H, Calabrese M. Fine-grainevolution in friction-stir processed7050aluminum[J]. Scripta Materialia,2003,48(10):1451-1455.
    [87] Sullivan A, Robson J D. Microstructural properties of friction stir weldedand post-weld heat-treated7449aluminum alloy thick plate[J]. MaterialsScience and Engineering A,2008,478(1-2):351-360.
    [88] Hassan K A A, Norman A F, Price D A, Prangnell P B. Stability of nuggetzone grain structures in high strength Al alloy friction stir welds duringsolution treatment[J]. Acta Materialia,2003,51(7):1923-1936
    [89] Krishnan K N. The effect of post weld heat treatment on the properties of6061friction stir welded joints[J]. Journal of Materials Science,2002,37(3):473-480
    [90] Ayd n H, Bayram A, Durgun I. The effect of post-weld heat treatment on themechanical properties of2024-T4friction stir-welded joints[J]. Materialsand Design,2010,31(5):2568-2577.
    [91] Chen Y C, Liu H J, Feng J C. Effect of post-weld heat treatment on themechanical properties of2219-o friction stir welded joints[J]. Journal ofMaterials Science,2006,41(1):297-299.
    [92] Charit I, Mishra R S. Abnormal grain growth in friction stir processedalloys[J]. Scripta Materialia,2008,58(5):367-371.
    [93] Chen Y C, Feng J C, Liu H J. Stability of the grain structure in2219-Oaluminum alloy friction stir welds during solution treatment[J]. MaterialsCharacterization,2007,58(2):174-178.
    [94] Sato Y S, Park S H C, Kokawa H. Microstructural factors governinghardness in friction-stir welds of solid-solution-hardened Al alloys[J].Metallurgical and Materials Transactions A,2001,32(12):3033-3042.
    [95] Feng J C, Chen Y C, Liu H J. Effects of post-weld heat treatment onmicrostructure and mechanical properties of friction stir welded joints of2219-O aluminium alloy[J]. Materials Science and Technology,2006,22(1):86-90.
    [96] Marré M, Ruhstorfer M., Tekkaya A E, Zaeh M F. Manufacturing oflightweight frame structures by innovative joining by forming processes[J].International Journal of Material Forming,2009,2(1):307-310.
    [97] Dubourg L, Gholipour J, Jahazi M. Friction stir welding of2024-T3aluminum tubes for hydroforming application[C]//Proceedings of the8thInternational Conference, Trends in Welding Research.2008:549-556.
    [98] Fratini L, Piacentini M. Friction stir welding of3D industrial parts: jointstrength analysis[C]//ASME Proceedings of the8th Biennial Conference onEngineering Systems Design and Analysis. Turino,2006:4-7.
    [99] D'urso GD, Longo M, Giardini C. Characterization of friction stir weldedtubes by means of tube bulge test[C]//AIP-Conference Proceedings, Belfast,2011:1243-1248.
    [100] Chang S C, Wang C C, Huang C A, Chang Y, Chen T L. Fabrication of2024aluminum spun tube using a thermomechanical treatment process[J]. Journalof Materials Processing Technology,2001,108(3):294-299
    [101] Safarkhanian M A, Goodarzi M, Boutorabi S M A. Effect of abnormal graingrowth on tensile strength of Al–Cu–Mg[J]. Journal of Materials Science,2009,44(20):5452-5458.
    [102] Attallah M M, Salem H G. Friction stir welding parameters: a tool forcontrolling abnormal grain growth during subsequent heat treatment[J].Materials Science and Engineering A,2005,391(1-2):51-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700