生活垃圾流化床气化特性的实验研究与模型预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展和人们生活水平的提高,可以开发利用的资源和能源越来越少,而生活垃圾的“品质”却日益升高。合理处置和利用生活垃圾是全世界都面临的一个难题。在生活垃圾的处置方法中,焚烧法因其显著的减容、减重和高效的能量回收而成为了许多国家在垃圾管理和处置体系中不可或缺的部分。随着环保要求的日益提高,对于生活垃圾焚烧污染物的排放提出了越来越严格的要求,因此,改进生活垃圾焚烧流程,减少垃圾焚烧过程中污染物的排放和提高能量利用效率是当前垃圾焚烧技术发展的方向。垃圾气化熔融技术被称为第二代垃圾焚烧技术,它将低温气化和高温熔融相结合,在显著减少二噁英、重金属等污染物排放的同时,有效提高能量的利用、回收效率。在日本等发达国家垃圾气化熔融已呈现出取代垃圾焚烧的态势。
     在此背景下,本文从垃圾气化熔融技术在我国应用的可行性出发,利用Aspen Plus软件,模拟了我国具有代表性的城市生活垃圾的气化熔融过程,针对热值分别为4000kJ/kg,5000kJ/kg和6000kJ/kg的垃圾,讨论了空气当量比、预热空气温度、水分含量等因素对气化熔融关键温度的影响,并以热值5000kJ/kg含水率60%的垃圾为例,提出了基于垃圾干燥和高温空气预热相结合的生活垃圾气化熔融方案。
     在可行性研究的基础上,利用热重红外结合的方式对生活垃圾典型组分的热解过程进行了描述和讨论,比较了不同物料热解过程和产物的异同;结合自行设计的实验装置,分析了高升温速率对生活垃圾热解过程和产物的影响。
     利用10kg/h的流化床气化实验平台,对生活垃圾典型组分的流化床气化产物进行了研究,获得了垃圾各组分流化床气化产物的物质和能量分布规律,并讨论了温度对产物组成的影响。此外,对两组分和四组分垃圾的气化特性进行了流化床气化实验研究,通过比较法分析了可能存在的交互影响及其影响规律。在此基础上,研究了流化床气化过程中二噁英的生成和排放特性,分析了PVC含量和空气当量比对气化过程二噁英生成特性的影响。
     在实验研究的基础上,采用灰色理论的方法,分析了垃圾特性、垃圾成分和操作工况与气化特性之间的相关性。并利用相关性较高的参数作为输入数据,基于人工神经网络建立并优化了垃圾气化特性预测模型,实现了以生活垃圾物理组表征的成预测其气化产物的目的。
The development of society and economy has consumed large numbers of energy and increased the yield and the energy value of municipal solid waste(MSW) dramatically. That's the reason why to develop a property method to make a good use of MSW is a great problem that the whole world is facing. Incineration was one of the most essential way of MSW disposal due to its significant volume and weight reduction and highly efficient of energy recovery. With the increasing requirements of environmental protection, improving of MSW incineration process to reduce pollutant emissions is the main direction of the development of MSW incineration technology. MSW gasification and melting technology has been referred as the second generation of waste incineration technology, it's a combination of low temperature gasification and high temperature melting achieved significant reduction of dioxin, heavy metals and other pollutants emission. In Japan and other developed countries a trend have been shown that the incineration was replaced by gasification and melting system.
     Under thus context, this paper start from the study of the possibility if the MSW gasification and melting system can been applied in China. Aspen Plus was used to simulate the MSW gasification and melting process of representative Chinese MSW for the calorific value of 4000kJ/kg,5000kJ/kg and 6000kJ/kg respectively. The influence of air coefficient, air preheat temperature and moisture content were discussed. A special flow Chinese MSW gasification and melting system with dry and high temperature air preheat was developed which is suitable for MSW with the calorific value of 5000kJ/kg and moisture content of 60%.
     After the feasibility study, pyrolysis characteristic of the typical components of MSW was studied by TG/FTIR, the pyrolysis behavior and products was discussed. A special designed facility was used to study the pyrolysis behavior and products of MSW typical components at a higher heating rate. By comparing these data, the influence of heating rate on the pyrolysis was discussed.
     A 10kg/h fluidized-bed gasifier was used to carry out the experiments of fluidized-bed gasification of both single component and their mixtures. The mass and energy distribution of products were discussed as well as the influence of temperature on the composition of the product. In addition, by comparing the weighted sums and the experimental data, the possible interactions and its impact were discussed. The study of the fluidized bed gasification of simulated MSW and the generation characteristics of dioxin by different PVC content and air ratio was studied.
     Based on experimental studies, a gray theory methods was used to analyze the correlations of the composition, operating conditions with the gasification characteristics. And a higher degree correlation parameters was used as the input data, to establish and predict the products of MSW gasification by the prediction model build by artificial neural network.
引文
[1]. 中华人民共和国统计局,中国统计年鉴.2003,中国统计出版社:北京.
    [2]. 中华人民共和国统计局,中国统计年鉴.2004,中国统计出版社:北京.
    [3]. 中华人民共和国统计局,中国统计年鉴.2005,中国统计出版社:北京.
    [4]. 中华人民共和国统计局,中国统计年鉴.2006,中国统计出版社:北京.
    [5]. 中华人民共和国统计局2008年年度统计报告.2008;http://www.stats.gov.cn/tigb/ndtigb/qgndtigb/t20090226_402540710.htm.
    [6]. U.S. Epa. Municipal Solid Waste Generation, Recycling, and Disposal in the United States:Facts and Figures for 2007 2007; http://www.epa.gov/epawaste/nonhaz/municipal/pubs/msw07-fs.pdf.
    [7]. Karin Blumenthal Wim Kloek. EUROSTAT Statistics in focus-Generation and treatment of waste.2009; http://epp.eurostat.ec.europa.eu/portal/page/portal/product details/publication? p_product_code=KS-SF-09-030.
    [8]. Food and Rural Affairs of Uk Department for Environment. Municipal waste management in the European Union.2006; http://www.defra.gov.uk/environment/statistics/waste/kf/wrkfD8.htm.
    [9]. 日本环境省网站,http://www.env.go.jp/.
    [10]. 孙向军,龙吉生,岳优敏,等.满足eu2000/76/Ec标准的垃圾焚烧厂烟气处理工艺探讨[J].环境卫生工程,2007.15(5):1-3.
    [11]. 林同.日本城市生活垃圾焚烧[J].中国城市环境卫生,2006(2):39-40.
    [12]. 王华.无害化城市生活垃圾熔融焚烧技术的研究进展[J].工业加热,2002.31(6):1-6.
    [13]. 周宏,涂晓玲.日本生活垃圾的管理及处理[J].城市问题,2007(7):89-92,101.
    [14]. 张亚尊,张磊张帆.我国城市生活垃圾的处理和发展趋势[J].中国环境管理干部学院学报,2007.17(3):9-11,35.
    [15]. 张庆红.我国目前垃圾焚烧处理现状[J].锅炉制造,2006(3):41-42.
    [16].徐文龙,刘晶昊.我国大城市垃圾焚烧处理技术应用分析[J].城市管理与 科技,2007.9(4):9-13.
    [17]. 熊小康,张竞天.我国常用垃圾焚烧炉特性及发展趋势[J].国际电力,2005.9(5):26-28.
    [18]. 张继南,贾翠娟.城市垃圾处理技术应用与发展[J].广西轻工业,2007.23(6):73-75.
    [19]. 赵由才,张益.生活垃圾焚烧技术[M].2000:化学工业出版社
    [20]. Erwan Autret,Francine Berthier,Audrey Luszezanec, et al. Incineration of municipal and assimilated wastes in France:Assessment of latest energy and material recovery performances[J]. Journal of Hazardous Materials,2007. 139(3):569-574.
    [21]. 周丹,马涛,吕彦力.典型煤气化技术的发展与应用[J].中国科技信息,2008(22):32-32,34.
    [22]. 刘卫平.煤气化技术的发展和现状[J].氮肥技术,2007.28(5):7-11,41.
    [23]. 蒋建新.煤气化技术的发展现状及趋势[J].石油知识,2007(5):28-29.
    [24]. Ladislav Bebar, Petr Stehlik, Leos Havlena, et al. Analysis of using gasification and incineration for thermal processing of wastes[J]. Applied Thermal Engineering,2005.25(7):1045-1055.
    [25]. 胡建杭,王华等.城市生活垃圾能源化技术的发展动态[J].能源工程,2001(4):13-15.
    [26]. 王华,何方,马文会,等.二恶英零排放化生活垃圾直接气化熔融焚烧技术[J].工业加热,2001(2):6-10.
    [27]. B. R. Stanmore. The formation of dioxins in combustion systems[J]. Combustion and Flame,2004.136(3):398-427.
    [28]. 王华.城市生活垃圾气化熔融焚烧技术[J].有色金属,2003.55(B03):104-107.
    [29]. 胡建杭,王华,刘慧利,等.城市生活垃圾气化熔融焚烧技术[J].环境科学与技术,2008.31(11):78-81.
    [30]. 王华,何方等.二亚英零排放生活垃圾气化熔融制气技术[J].太阳能学报,2002.23(2):260-264.
    [31]. 肖刚,倪明江,池涌,等.城市生活垃圾低污染气化熔融系统研究[J].环境科学,2006.27(2):381-385.
    [32]. 肖睿,金保升等.基于低温气化和高温熔融焚烧方法处理城市生活垃圾[J].能源研究与利用,2001(3):28-30.
    [33].肖刚,城市垃圾流化床气化与旋风燃烧熔融特性研究[D].2006,浙江大学:杭州.
    [34]. 李斌,严建华.城市生活垃圾的燃烧特性[J].燃料化学学报,1998.26(6):564-568.
    [35]. 李斌,谷月玲.城市生活垃圾典型组分的热解动力学模型研究[J].环境科学学报,1999.19(5):562-566.
    [36]. 金保升,仲兆平.城市生活垃圾热分解特性的试验研究[J].环境工程,1998.16(6):51-55.
    [37].冯新华,龙世刚,张龙来,等.废塑料与煤粉的热解特性对比及动力学研究[J].钢铁研究学报,2006.18(11):11-14,26.
    [38]. 温俊明,池涌,罗春鹏,等.城市生活垃圾典型有机组分混合热解特性的研究[J].燃料化学学报,2004.32(5):563-568.
    [39]. 温俊明,城市生活垃圾热解特性试验研究及预测模型[D].2006,杭州:浙江大学博士学位论文:
    [40]. R. Miranda,C. Sosa_Blanco, D. Bustos-Martineza, et al. Pyrolysis of textile wastes:Ⅰ. Kinetics and yields[J]. Journal of Analytical and Applied Pyrolysis, 2007.80(2):489-495.
    [41]. S. Kim. Pyrolysis kinetics of waste PVC pipe[J]. Waste Management,2001. 21(7):609-616.
    [42]. Jaakko Jauhiainen,Juan A. Conesa,Rafael Font, et al. Kinetics of the pyrolysis and combustion of olive oil solid waste[J]. Journal of Analytical and Applied Pyrolysis,2004.72(1):9-15.
    [43]. E. Grieco,M. BernardiG Baldi. Styrene-butadiene rubber pyrolysis:Products, kinetics, modelling[J]. Journal of Analytical and Applied Pyrolysis,2008. 82(2):304-311.
    [44]. S. Seidelt, M. Muller-Hagedorn, H. Bockhorn. Description of tire pyrolysis by thermal degradation behaviour of main components[J]. Journal of Analytical and Applied Pyrolysis,2006.75(1):11-18.
    [45]. 李新国,李丽梅,周欣,等.垃圾筛上物热解特性的实验研究[J].环境科学学报,2005.25(7):971-975.
    [46]. 王艳,张书廷,张于峰,等.城市生活垃圾低温热解产气特性的实验研究[J].燃料化学学报,2005.33(1):62-67.
    [47]. C. Diez,O. Martinez,L. F. Calvo, et al. Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered[J]. Waste Management,2004.24(5):463-469.
    [48]. 任强强,赵长遂,庞克亮.生物质热解的tga-Ftir分析[J].太阳能学报,2008.29(7):910-914.
    [49]. 王树荣,刘倩,郑赞,等.基于热重红外联用分析的生物质热裂解机理研究[J].工程热物理学报,2006.27(2):351-353.
    [50]. 王树荣,刘倩,骆仲泱,等.基于热重红外联用分析的纤维素热裂解机理研究[J].浙江大学学报:工学版,2006.40(7):1154-1158.
    [51]. 尹雪峰,李晓东,罗建松,等.温度和气氛对PAHs由从头合成反应生成PCDD/Fs的作用[J].燃烧科学与技术,2008.14(2):117-121.
    [52]. S. P. Bhattacharya. Gasification Performance of Australian Lignites in a Pressurized Fluidized Bed Gasifier Process Development Unit Under Air and Oxygen-enriched Air Blown Conditions[J]. Process Safety and Environmental Protection,2006.84(6):453-460.
    [53]. Wen Li,Hailiang Lu,Haokan Chen, et al. The volatilization behavior of chlorine in coal during its pyrolysis and CO2-gasification in a fluidized bed reactor[J]. Fuel,2005.84(14-15):1874-1878.
    [54]. A. Van Der Drift,J. Van DoornJ. W. Vermeulen. Ten residual biomass fuels for circulating fluidized-bed gasification [J]. Biomass and Bioenergy,2001. 20(1):45-56.
    [55]. 吕鹏梅,熊祖鸿,王铁军,等.生物质流化床气化制取富氢燃气的研究[J].太阳能学报,2003.24(6):758-764.
    [56]. 吕鹏梅,常杰,付严,等.生物质流化床催化气化制取富氢燃气[J].太阳能学报,2004.25(6):769-775.
    [57]. Pier Ugo Foscolo,Antonio German,Nader Jand, et al. Design and cold model testing of a biomass gasifier consisting of two interconnected fluidized beds[J]. Powder Technology,2007.173(3):179-188.
    [58]. Takahiro Murakami,Guangwen Xu,Toshiyuki Suda, et al. Some process fundamentals of biomass gasification in dual fluidized bed[J]. Fuel,2007. 86(1-2):244-255.
    [59]. D. Y. C. LeungC. L. Wang. Fluidized-bed gasification of waste tire powders[J]. Fuel Processing Technology,2003.84(1-3):175-196.
    [60]. Gang Xiao,Ming-Jiang Ni,Yong Chi, et al. Low-temperature gasification of waste tire in a fluidized bed[J]. Energy Conversion and Management,2008. 49(8):2078-2082.
    [61]. Rui Xiao,Baosheng Jin,Hongcang Zhou, et al. Air gasification of polypropylene plastic waste in fluidized bed gasifier[J]. Energy Conversion and Management,2007.48(3):778-786.
    [62].肖刚,池涌,倪明江,等.Pvc塑料流化床气化试验研究[J].燃料化学学报,2005.33(6):708-712.
    [63]. Umberto Arena,Lucio ZaccarielloMaria Laura Mastellone. Tar removal during the fluidized bed gasification of plastic waste[J]. Waste Management,2009. 29(2):783-791.
    [64]. T. R. Mclendon,A. P. Lui,R. L. Pineault, et al. High-pressure co-gasification of coal and biomass in a fluidized bed[J]. Biomass and Bioenergy,2004. 26(4):377-388.
    [65]. Jhon F. Velez,Farid Chejne,Carlos F. Valdes, et al. Co-gasification of Colombian coal and biomass in fluidized bed:An experimental study[J]. Fuel, 2009.88(3):424-430.
    [66]. Y. G. Pan,E. Velo,X. Roca, et al. Fluidized-bed co-gasification of residual biomass/poor coal blends for fuel gas production[J]. Fuel,2000. 79(11):1317-1326.
    [67]. Maria P. Aznar, Miguel A. Caballero, Jesus A. Sancho, et al. Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant[J]. Fuel Processing Technology,2006.87(5):409-420.
    [68]. M. Pohorel,M. Voseck,P. Hejdov, et al. Gasification of coal and PET in fluidized bed reactor[J]. Fuel,2006.85(17-18):2458-2468.
    [69]. M. Blumenstock,R. Zimmermann,K. W. Schramm, et al. Influence of combustion conditions on the PCDD/F-, PCB-, PCBz-and PAH-concentrations in the post-combustion chamber of a waste incineration pilot plant[J]. Chemosphere,2000.40(9-11):987-993.
    [70]. 李晓东,杨忠灿,严建华,等.垃圾焚烧炉氯源对氯化氢和二噁英排放的影响[J].工程热物理学报,2003.24(6):1047-1050.
    [71].董长青金保升.神经网络法用于预测城市生活垃圾热值[J].热能动力工程,2002.17(3):275-278.
    [72]. 张东平,金余其,严建华,等.煤与垃圾流化床焚烧HCl排放及BP神经网络预测[J].煤炭学报,2004.29(3):333-337.
    [73]. 张东平,严建华,池涌,等.流化床垃圾焚烧N0x排放的神经网络预测[J].电站系统工程,2004.20(3):1-3.
    [74]. 李东,顾恒兵.重庆市主城区生活垃圾现状调查与分析[J].重庆环境科学,2001.23(1):67-69.
    [75]. 李晓东,陆胜勇等.中国部分城市生活垃圾热值的分析[J].中国环境科学,2001.21(2):156-160.
    [76].刘东,江丁酉等.武汉市城市生活垃圾组分变化的主成分分析[J].环境卫生工程,2001.9(4):173-176.
    [77]. 李尉,王江等.河南省城市生活垃圾处理及利用现状分析[J].中国资源综合利用,2002(3):37-41.
    [78].刘跃勇,汝宜红等.北京市生活垃圾成分及理化特性分析[J].北方交通大学学报,2002.26(4):50-52.
    [79]. 李建新,王永川,张美琴,等.国内城市生活垃圾特性及其处理技术研究[J].热力发电,2006.35(1):11-14.
    [80]. 孙培锋,李晓东,池涌,等.城市生活垃圾热值预测的研究[J].能源工程,2006(5):39-42.
    [81]. 李旭玲,胡美莉.提高生活垃圾热值的有效途径——厦门市城市生活垃圾热值初探[J].环境卫生工程,2007.15(5):46-48.
    [82]. 王岩,裴宗平孙晓虎.徐州市生活垃圾处理现状及资源化研究[J].环境科学与管理,2007.32(2):14-17.
    [83]. 郝萍,郭建勋宋崇正.鸡西市城市生活垃圾焚烧发电可行性简析[J].环境卫生工程,2008(3):63-64.
    [84]. 何晟,朱水元郁莉强.苏州市生活垃圾特性分析及处理对策[J].环境卫生工程,2008(6):62-64.
    [85]. 梁文.沈阳市新农村生活垃圾调查及治理对策研究[J].环境科学与管理,2008.33(3):36-39.
    [86]. 徐永锋,杨学军,周金顺,等.昆明市春季生活垃圾分析及处理[J].可再生能源,2008(1):93-96.
    [87].郑振涛,李美叶,王玮境,等.济南生活垃圾资源化处理模式探讨[J].城市管理与科技,2008.10(2):64-65.
    [88]. 高亮,周立等.赴欧洲垃圾焚烧厂考察报告[J].环境卫生工程,2001.9(2):84-88.
    [89]. 徐嘉,城市生活垃圾典型组分的流化床气化特性试验研究.2004,浙江大学:杭州.
    [90].李水清,姚强,李润东,等.城市垃圾气化熔融工艺的理论计算和技术分析[J].动力工程,2004.24(1):125-131.
    [91]. Mehrdokht B. NikooNader Mahinpey. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS[J]. Biomass and Bioenergy,2008. 32(12):1245-1254.
    [92]. 汪洋,于广锁于遵宏.运用Gibbs自由能最小化方法模拟气流床煤气化炉[J].煤炭转化,2004.27(4):27-33.
    [93]. 陈汉平,赵向富,米铁,等.基于aspen Plus平台的生物质气化模拟[J].华中科技大学学报:自然科学版,2007.35(9):49-52.
    [94].谢安俊,刘世华.模拟软件—Aspen Plus[J].石油与天然气化工,1995.24(4):247-251.
    [95]. Technology Aspen, Aspen Plus 11.1 Unit Operation Models.2001.
    [96].徐越,吴一宁危师让.基于aspen Plus平台的干煤粉加压气流床气化性能模拟[J].西安交通大学学报,2003.37(7):692-694,706.
    [97]. Ligang ZhengEdward Furimsky. ASPEN simulation of cogeneration plants[J]. Energy Conversion and Management,2003.44(11):1845-1851.
    [98]. Zhao Yuehong,Wen HaoXu Zhihong. Conceptual design and simulation study of a co-gasification technology [J]. Energy Conversion and Management,2006. 47(11-12):1416-1428.
    [99]. Tech Aspen. Aspen Plus 11.1 user guide[J].2001.
    [100]. Christopher HigmanMaarten Van Der Burgt, Gasification Processes, in Gasification (Second Edition).2008, Gulf Professional Publishing:Burlington. p.91-191.
    [101]. Amirhomayoun Saffarzadeh,Takayuki Shimaoka,Yoshinobu Motomura, et al. Petrogenetic characteristics of molten slag from the pyrolysis/melting treatment of MSW[J]. Waste Management,2009.29(3):1103-1113.
    [102]. Gang Xiao,Ming-Jiang Ni,Yong Chi, et al. Gasification characteristics of MSW and an ANN prediction model[J]. Waste Management,2009. 29(1):240-244.
    [103].傅维镳,张永廉,王清安.燃烧学[M].1989:高等教育出版社.
    [104]. E. Post,S. Rahner, H. Mohlerb, et al. Study of recyclable polymer automobile undercoatings containing PVC using TG/FTIR[J]. Thermochimica Acta,1995. 263:1-6.
    [105]. A. Marcilla, A. Gomez, S. Menargues Menargues. TG/FTIR study of the thermal pyrolysis of EVA copolymers[J]. Journal of Analytical and Applied Pyrolysis,2005.74(1-2):224-230.
    [106]. Predel MKaminsky W. Pyrolysis of mixed polyolefins in a fluidized—bed reactor and on a pro—GC/MS to yield aliphatic waxes[J]. Polymer Degradation and Stability,2000(70):373-385.
    [107]. R. Bassilakis,R. M. CarangeloM. M. A. Wojtowicz. TG-FTIR analysis of biomass pyrolysis[J]. Fuel,2001.80(12):1765-1786.
    [108]. W. De Jong,A. PironeM. M. A. Wojtowicz. Pyrolysis of Miscanthus Giganteus and wood pellets:TG-FTIR analysis and reaction kinetics[small star, filled][J]. Fuel,2003.82(9):1139-1147.
    [109]. M. X. Fang,D. K. Shen,Y. X. Li, et al. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis,2006.77(1):22-27.
    [110].徐嘉,城市生活垃圾典型组分的流化床气化特性实验研究[D].2004,杭州:浙江大学.
    [111].李水清;姚强;李润东;池涌.城市垃圾气化熔融工艺的理论计算和技术分析[J].动力工程,2004.24(1):125-131.
    [112].张加权,典型城市生活垃圾组分流化床热解气化特性及反应机理研究[D].2005,杭州:浙江大学
    [113]. Jhon F. Veleza,Farid Chejne,A Carlos, et al. Co-gasification of Colombian coal and biomass in fluidized bed:An experimental study[J]. Fuel,2009. 88(3):424-430.
    [114]. Kazuhiko Tasaka,Takeshi FurusawaAtsushi Tsutsumi. Biomass gasification in fluidized bed reactor with Co catalyst[J]. Chemical Engineering Science,2007. 62(18-20):5558-5563.
    [115]. Ragnar Warnecke. Gasification of biomass:comparison of fixed bed and fluidized bed gasifier[J]. Biomass and Bioenergy,2000.18(6):489-497.
    [116]. K. G. Mansaray,A. E. Ghaly,A. M. Al-Taweel, et al. Air gasification of rice husk in a dual distributor type fluidized bed gasifier[J]. Biomass and Bioenergy,1999.17(4):315-332.
    [117]. P. M. Lv,Z. H. Xiong,J. Chang, et al. An experimental study on biomass air-steam gasification in a fluidized bed[J]. Bioresource Technology,2004. 95(1):95-101.
    [118]. X. T. Li,J. R. Grace,C. J. Lim, et al. Biomass gasification in a circulating fluidized bed[J]. Biomass and Bioenergy,2004.26(2):171-193.
    [119]. C. S. Psomopoulos,A. BourkaN. J. Themelis. Waste-to-energy:A review of the status and benefits in USA[J]. Waste Management,2009.29(5):1718-1724.
    [120]. Trang T. T. DongByeong-Kyu Lee. Analysis of potential RDF resources from solid waste and their energy values in the largest industrial city of Korea[J]. Waste Management,2009.29(5):1725-1731.
    [121].李晓东,杨忠灿,严建华,等.含氯废弃物燃烧过程中HCl排放特性[J].化工学报,2003.54(10):1486-1489.
    [122]. Naoki Yokohama,Hiroaki Otaka,Ichiro Minato, et al. Evaluation of gas-particle partition of dioxins in flue gas Ⅰ:Evaluation of gasification behavior of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in fly ash by thermal treatment[J]. Journal of Hazardous Materials,2008.153(1-2):395-403.
    [123]. Naoki Yokohama,Hiroaki OtakaMunetaka Nakata. Evaluation of gas-particle partition of dioxins in flue gas Ⅱ:Estimation of gas-particle partition of dioxins in dust-rich flue gas by parallel sampling with different conditions [J]. Journal of Hazardous Materials,2008.153(1-2):404-411.
    [124].徐旭,燃烧过程中二嗯英的生成及排放特性的研究[D].2002,杭州:浙江大学
    [125]. F. Iino,T. Imagawa,M. Takeuchi, et al. Formation rates of polychlorinated dibenzofurans and dibenzo-p-dioxins from polycyclic aromatic hydrocarbons, activated carbon and phenol[J]. Chemosphere,1999.39(15):2749-2756.
    [126]. Roland WeberHanspaul Hagenmaier. Mechanism of the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chlorophenols in gas phase reactions[J]. Chemosphere,1999.38(3):529-549.
    [127]. Mohammednoor Altarawneh,Bogdan Z. Dlugogorski,Eric M. Kennedy, et al. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)[J]. Progress in Energy and Combustion Science,2009. In Press, Corrected Proof.
    [128]. Brian K. Gullett,Kevin R. BruceLaura O. Beach. Formation of chlorinated organics during solid waste combustion[J]. Waste Management & Research, 1990.8(3):203-214.
    [129].李润东,聂永丰,李爱民,等.垃圾焚烧飞灰熔融过程二嗯英分解特性[J].化工学报,2004.55(4):668-672.
    [130].张东平,城市生活垃圾流化床焚烧过程酸性气体排放及其人工神经网络预测[D].2003,杭州:浙江大学.
    [131].闻新.MATLAB神经网络应用设计[M].2000,北京:科学出版社.
    [132].丛爽.面向MATLAB工具箱的神经网络理论与应用(第2版)[M].2003,合肥:中国科学技术大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700