防明火绝热柔性复合织物的失效行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为在明火火场等温差极大的环境下,不致灼伤并正常工作,消防及特殊工作人员需通过功能服装作有效安全、移动方便地隔热防护。而纺织材料在火场等高温强热流环境下的非静态使用,不可避免地会有热防护功效不足和材料老化的问题。这将导致材料形态和力学、物理、化学性能的变化,甚至发生热防护行为异常和功能失效。目前消防类热防护服装在实际应用中,耐火焰温度冲击性能较弱,在火场中停顿时间偏短(800℃时,t<10min),其本质问题是耐高温和隔热功的不足。为解决此类问题,以满足轻质、柔性、无障碍移动,和高效、智能、及安全的防护,本课题针对明火火场的高温强热流环境,研究开发防火绝热柔性复合织物,用于高温(800℃左右)火场环境下的防火和热隔绝。
     在复合织物结构上,针对火场环境中的传热方式,在筛选热反射材料、耐高温纤维材料和蓄热相变材料(PCM)的基础上,整体设计出由外向内依次为热反射层、相变吸热复合层和隔绝舒适层的柔性复合织物,并对复合织物的制备和加工工艺做了实用性尝试,以期使织物实现高效、长时间的热防护效果。
     在复合织物的构成材料上,考虑到火场的高温强热流环境,并对耐高温纤维材料的热学性能进行对比,选用玄武岩纤维和玻璃纤维作为复合织物的纤维隔热材料;由于明火火场的辐射强度很大,金属铝箔具有较高的热反射率且性价比高,故而选择金属铝箔作为热反射材料,并将铝箔与耐高温纤维织物基布粘结作为复合织物的外层热反射层;依据相变能量高、使用安全、材料易获取的原则,选用Pentaerythritol (季戊四醇)作为复合织物中的相变材料;考虑到相变材料发生相变前后的相对附着固定,选用耐高温纤维的针刺毡作为相变吸热复合层的基体;隔绝舒适层主要是进一步隔绝热量,从而保证人体舒适,故而选取阻燃棉织物。为保证复合织物的柔性,以及相变材料的相对固定,采用缝制的方式对各功能结构层进行复合加工成形。
     在对复合织物的实用表征上,为测量织物在明火火场暴露条件下的防火绝热性能和长时间的失效行为,本研究设计制造了自主知识产权的织物防明火绝热性能测试装置FPPAS-1(Flaming Protective Performance Analysis System-1)。该装置真实模拟火场高温强热流环境,以分布式高精度温度传感器实时在线测量织物试样正、反面温度TR、TB及其随火场作用时间的变化曲线;并由此提出和建立了防火织物的防火隔热效率E、温度安全系数TcS、时间安全系数EtS和总防火安全指数等四类8个防火绝热效能和安全性评价指标。此外,在反复高温与明火冲击试验下,本研究对测试装置的精度进行了标定测量,对织物防明火绝热性能的变化进行了表征。
     对防火绝热柔性复合织物的防火绝热性能的测试表明,复合织物小样均具有优良的防火绝热性能,这归因于复合织物各功能结构层的功能的有效分解分担作用。将各复合织物的防火绝热效能和安全性评价指标进行对比可知,耐高温纤维材料为玄武岩纤维的施加相变材料的复合织物呈现出最优的热防护性能,其单位面积重量为832.8g/m2,防持续火焰舔舌和绝热的温度高达509℃,比未施加相变材料时提高了83℃。这表明作为功能分担的相变材料在织物中有效地发挥了吸热隔绝作用。
     复合织物经五次5min明火火场的反复暴露实验后,玄武岩纤维PCM复合织物的防火绝热温度的保持率为82.1%,且织物表面除发生轻微炭化发黄外无脆性破坏现象。对复合织物施加相变材料前后的温差能量估计以及与纯相变材料应发挥能量的对比,表明相变能的效率很低,在16.7%~30.7%范围内,这由相变材料的质量损失和热损耗导致;对施加相变材料前后的复合织物的基本力学性能测试,证实复合织物的强度和弯曲刚度在反复火场暴露实验后均有所下降,但仍分别保持在65%和75%以上。此结果说明所得复合织物在反复火场作用下,不仅保持其热防护性能,而且力学性能的变化也在允许范围内。
     基于前人理论,结合实测结果,建立了织物防火绝热性能测试系统的传热模型。该模型综合考虑了明火火场、织物、空气层和人体皮肤条件,是一个导热传热、对流传热和辐射传热相耦合的逐层传热模型。并采用Matlab软件对传热模型进行了模拟仿真求解,计算出复合织物及其各功能结构层的温度分布;将复合织物及其功能结构层的数值计算结果与实测结果相比较,可知理论计算值与实测结果高度吻合,尤其在火场高温环境中的稳态传热阶段吻合度近乎100%。这表明所提出的传热模型具有极好的精准性和实用性。
     传热模型的数值分析和防火绝热复合织物的实测结果,均表明在防火绝热织物性能及其传热机理方面的进展与突破,但更高效、长时间的防护,更理想的高温相变材料的发现及其效能的发挥机制仍有空间需进一步探索。
In order to keep focused on their job and avoid getting burn injury when exposed to flashover environment with a high temperature, firefighters and other special working staff should wear functional clothing to ensure them to be safe and convenient to move and protect from thermal strike. The non-static use of textile materials in the fire scene with a high temperature and heat fluxes, would inevitably result in insufficiency of the thermal protective performance and the aging decomposition of the material. This will lead to not only the changes of the morphological structure, mechanical, physical and chemical properties, but also the abnormal behavior and the invalidation of the thermal protective performance. Recently firefighting protective clothing is weak in the flame temperature resistant and the exposure time (less than10min at800℃and higher) when exposed to a fire scenario, the essence of which is the inadequate of high temperature resistance and heat insulating property. To address these issue and meet the requirement of light-weight, flexible and non-mobility obstacles, and achieve high efficient, intelligent, reliable fire protective performance, the research focuses on the developing of fire protective and thermal insulating flexible composite fabrics, which are mainly used to protect human from high temperature field, based on the analysis of the fire environment with a temperature of800℃and high heat fluxes.
     Considering the coupled heat transfer of thermal conduction, radiation and convection of the fire environment, the existing thermal reflective materials, high-temperature resistant fiber materials and heat storage phase change materials (PCMs) were compared and evaluated. To obtain high efficient and long term thermal protective performance, the overall composite fabric was designed with three functional layers:the thermal reflective layer, the heat storage composite layer and the thermal comfortable liner. The tentative processing and preparation of the composite fabrics were also implemented practically.
     Take into account the high heat fluxes of flashover, the basalt fiber and glass fiber were used as heat insulation materials of the composite fabric after comparing the thermal properties of the existing high temperature resistant fiber materials. The aluminium foil was selected as thermal radiation reflective material, due to its high reflectance and high cost performance. The outer thermal reflective layer, which is composed of aluminum foil and the woven substrate fabrics made of basalt fiber or glass fiber, could reflect most of the radiant heat. Pentaerythritol was used as phase change material based on the principle of high fusion heat, safe in use and easy access. In view of the application and the relatively fixed location of PCM, the punched felt, made of thermal resistant fiber, was used as the matrix of heat storage composite layer. The thermal comfortable liner made of flame retardant cotton fiber, was used to insulate the residual heat and make firefighters feel comfortable. To make the composite fabric flexible and the PCM fixed in the fabric, the sewing process was adopted to the forming of the composite fabric.
     In order to characterize the fire protective performance and the thermal invalidation behaviour of the fabric when subjected to fire exposure, a fire protective performance testing apparatus entitled "FPPAS-1"(Flaming Protective Performance Analysis System-1) with self-owned intellectual property right was designed and developed. The apparatus could simulate the fire environment with high temperature and intensive heat fluxes. During the fire exposure experiment, the fabrics were exposed to the fire scenario simulated for5min, and then natural cooling was performed for10min. The real time temperature of the right and back surfaces of the fabrics and the temperature curves versus time, were measured by the distributed thermal sensors. Four kinds of8indexes of fire protective fabrics, especially the fire protective and thermal insulating efficiency E, the critical temperature safe factor TcS' the endurable time safe factor EtS and the fire protective safe index, were proposed and established to rate fire insulating performance and evaluate security of the fabrics. In addition, the repeated high temperature exposure and fire assaults experiments, and the calibration of measurement precision, were conducted on the apparatus.
     Flexible composite fabrics prepared presented excellent fire protective performance, due to the effective function bearing of the functional structure layer. It was revealed that the composite fabric made of basalt fiber material and PCM, the weight per unit area of which is832.8g/m2, exhibited the best thermal protective performance by comparing the fire protective and thermal insulating indexes. The long term thermal insulating temperature of the fabric under fire exposure is509℃, which is83℃higher than the composite fabric without PCM. The result illustrated that the PCM has effectively play a role of heat absorbing and thennal insulating during the fire exposure.
     The retention rate of the thermal insulating temperature of the composite fabric made of basalt fiber and PCM, was81.2%after5times of fire exposure experiment. Apart from slight charring and getting yellow, no brittle damage occurred on the surface of the fabric. The temperature differential energy was calculated between the composite fabric with PCM and without PCM, which revealed that the efficient of PCM is limited to16.7%~30.7%, which were attibuted to the weight and heat loss of PCM. The mechanical properties of the composite fabrics showed that both the strength and the bending stiffness had decreased during the repeated fire exposure experiment, but the retention rate remained at more that65%and75%, respectively. All the results indicated that the composite fabric maintained thermal protective performance as well as mechanical properties after5times of repeated fire exposure experiment.
     Based on the previous theories, a heat transfer model of the fire protective testing apparatus has been established. The heat transfer model, comprehensively considering the factor of fire scene, fabric, air layer and human skin, is a coupled multilayer heat transfer model of heat conduction, convection and radiation. Matlab software was used to simulate and solve the heat transfer model on account of the boundary conditions of the fire exposure experiment. The temperature distribution of the composite fabric and the single functional layers were numerically calculated. By comparing the numerical results with the experimental results of the composite fabrics and the single functional layers, it is revealed that the heat transfer model coincide with the experimental to great extent. What is delighted is the coincidence degree is close to100%during the steady heat transfer stage. So the proposed numerical heat transfer model is precise and reliable.
     Great progress and breakthrough has been made in developing the fire protective and thermal insulating composite fabrics and the heat transfer mechanism, by numerical analysis of heat transfer model and the evaluation of the fire protective performance of the composite fabrics. But thermal protective clothing with more efficient and longer thermal protection, better PCMs and the mechanism of PCMs still need further investigated and developed.
引文
[I]R.L. Baker. A review of gaps and limitations in test methods for first responder protective clothing and equipment [R]. Final report presented to the National Personal Protection Technology Laboratory at the National Institute for Occupational Safety and Health, January 31,2005, pp 8-9.
    [2]B.W. Butler and J.D. Cohen. Firefighter Safety Zones:A Theoretical Model Based on Radiative Heating [J]. International Journal of Wildland Fire.1998,8(2):73-77.
    [3]P. Bajaj and A.K. Sengupta. Protective Clothing [J]. Textile Progress,1992,22 (2-4):1-10, 25-39.
    [4]R.M. Perkins. Insulative values of single-layer fabrics for thermal protective clothing [J]. Textile Research Journal,1979,49 (4):202-212.
    [5]C. Lee, II Y. Kim and A. Wood. Investigation and correlation of manikin and bench-scale fire testing of clothing systems [J]. Fire and Materials,2002,26(6):269-278.
    [6]N.J. Abbott and S. Schulman. Protection from fire:nonflammable fabrics and coatings [J]. Journal of Industrial Textiles,1976,6(1):48-64.
    [7]K.W. Graves. Fire Fighter's Exposure Study [R]. Technical Report AGFSRS 71-2, Wright-Patterson Air Force Base (December 1970), p.52.
    [8]ASTM F2700-08. Standard Test Method for Unsteady-State Heat Transfer Evaluation of Flame Resistant Materials for Clothing with Continuous Heating [S].
    [9]J.O. Stull. Comparison of conductive heat resistance and radiant heat resistance with thermal protective performance of fire fighter protective clothing [J]. ASTM Special Technical Publication,1997,248-268.
    [10]ISO 17492-2003, Clothing for protection against heat and flame--Determination of heat transmission on exposure to both flame and radiant heat [S].
    [11]G. Sun, H.S. Yoo and N. Pan. Radiant Protective and Transport Properties of Fabrics Used by Wildland Firefighter [J]. Textile Research Journal,2000,70(7):567-573.
    [12]ISO 13506-2008, Protective clothing against heat and flame--Test method for complete garments--Prediction of burn injury using an instrumented manikin [S].
    [13]ASTM F1930-00(2008). Standard Test Method for Evaluation, of Flame Resistant Clothing for Protection Against Flash Fire Simulations Using an Instrumented Manikin [S].
    [14]J.H. Veghte. Fire Fighters' Protective Clothing:Design Criteria [M]. Second Edition, Janesville Division of Lion Apparel, Dayton, OH,1988.
    [15]M. Day and P.Z. Sturgeon. Thermal Radiative Protection of Fire Fighters'Protective Clothing [J]. Fire Technology,1987,23(1):49-59.
    [16]S. Chen, Q.K. Zheng, G.D. Ye and G.H. Zheng. Fire-retardant properties of the viscose rayon containing alkoxycyclotriphosphazene [J]. Journal of Applied Polymer Science, 2006,102(1):698-702.
    [17]王西亭,张燕.Kynol纤维及其新进展[J].中国个体防护装备,2001,1:8-10.
    [18]常铁军,祈欣等编著.材料近代分析测试方法[M].黑龙江:哈尔滨工业大学出版社.1999,8.
    [19]于伟东,储才元编著.纺织物理[M].上海:东华大学出版社.2002,238-246.
    [20]J.R. Brown and B.C. Ennis. Thermal Analysis of Nomex and Kevlar Fibres [J]. Textile Research Journal,1977,47(1):62-66.
    [21]L. Penn and F. Larsen. Physicochemical Properties of Kevlar 49 Fiber [J]. Journal of Applied Polymer,1978,23 (1):59-73.
    [22]赵稼祥.美国Kevlar布性能测试分析[J].纤维复合材料,1994,11(2):32-39.
    [23]刘晓艳.柔性高性能纤维的光热稳定性研究[D].东华大学博士论文,2005.
    [24]T. Kuroki, Y. Tanaka, T. Hokudoh and K. Yabuki. Heat resistance properties of poly (p-phenylene-2,6-benzobisoxazole) Fiber [J]. Journal of Applied Polymer Science,1997, 65(5):1031-1036.
    [25]斯奎,宁荣昌.PBO纤维耐热性研究及进展[J].材料导报,2006,20(1):73-76.
    [26]叶健青,张玉华等.芳砜纶的热稳定性分析[J].东华大学学报,2005,31(2):13-16.
    [27]张丽,李亚滨,刘建中.芳砜纶纤维耐热性能的研究[J].天津工业大学学报,2006,25(6):17-19.
    [28]M.M. Hirschler. Analysis of thermal performance of two fabrics intended for use as protective clothing [J]. Fire and Materials.1997,21(3):115-121.
    [29]R. Davis, J. Chin, C.C. Lin and S. Petit. Accelerated weathering of polyaramid and polybenzimidazole firefighter protective clothing fabrics [J]. Polymer Degradation and Stability,2010,95(9):1642-1654.
    [30]R. Pinero. PBI:High performance in extreme conditions [J]. Revista de la Industria Textil. 2004, (423):62-66.
    [31]V. Kurkov and V. Labok. Fabrics made of stone [J]. Industrial Fabrics Bulletin,2003,13 (2):42-44.
    [32]M. Swink and M. Sokolinsky. Continuous filament basalt fiber shows promise in high-temperature applications [J]. International Fiber Journal,2002,17(4):52-56.
    [33]A.G. Novitskii and V.V. Sudakov. An unwoven basalt-fiber material for the encasing of fibrous insulation:an alternative to glass cloth [J]. Refractories and Industrial Ceramics, 2004,45(4):239-241.
    [34]M.A. Schiavon, S.U.A. Redondo and I.V.P. Yoshida. Thermal and morphological characterization of basalt continuous fibers [J]. Ceramics,2007,53(326):212-217.
    [35]东华大学TMT团队.光热防护复合织物报告(内部).2005年10月.
    [36]G. Stylios. Optimization of commercial coatings for technical textiles [J]. Technical Textiles International,2005,14:19-22.
    [37]蔡利海.熔融纺丝法智能温度调节纤维的研制与性能分析[D].天津工业大学硕士论文,2003.
    [38]Z.Y. Wang, E.H. Han and W. Ke. Effect of nanoparticles on the improvement in fire-resistant and anti-ageing properties of flame-retardant coating [J]. Surface and Coatings Technology,2006,200 (20-21):5706-5716.
    [39]J. Barton. Technical challenges in coating and laminating [J]. International Dyer,2006, 191(5):17-18,20-21.
    [40]S.X. Wang, Y. Li, J.Y. Hu, Hiromi Tokura and Q.W. Song. Effect of phase change material on energy consumption of intelligent thermal protective clothing [J]. Polymer Testing,2006,25(5):580-587.
    [41]M.L. Nuckols. Analytical modeling of a diver dry suit enhanced with micro-encapsulated phase change materials [J]. Ocean Engineering,1999,26(6):547-564.
    [42]F.L. Tan and S.C. Fok. Cooling of helmet with phase change material [J]. Applied Thermal Engineering.2006,26(17-18):2067-2072.
    [43]N. Sarier and E. Onder. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics [J]. Thermochimica Acta,2007, 452(2):149-160.
    [44]Y.G. Bryant. Melt spun fibers containing microencapsulated phase change material [J]. Advances in Heat and Mass Transfer in Biotechnology,1999,44:225-234.
    [45]石海峰.光热转换蓄热调温纤维的研制[D].天津:天津工业大学,2002.
    [46]华涛,杨元.热防护服热防护性能测试方法的探讨[J].产业用纺织品,2003,21(10):34-36.
    [47]朱方龙,张渭源.新型耐高温服装的热防护性能测试仪[J].产业用纺织品.2006,24(2):36-40.
    [48]张渭源,朱方龙.一种热防护服装或织物的热防护性能测试装置[P].中国专利:200510024922.7,2009-03-04.
    [49]朱方龙,张渭源.新型防护织物热辐射系数测试仪[J].纺织学报,2006,27(5):34-36,40
    [50]ASTM F1939-08. Standard Test Method for Radiant Heat Resistance of Flame Resistant Clothing Materials with Continuous Heating [S].
    [51]ASTM F2702-08. Standard Test Method for Radiant Heat Performance of Flame Resistant Clothing Materials with Burn Injury Prediction [S].
    [52]ISO 6942-2002, Protective clothing--Protection against heat and fire-Method of test: Evaluation of materials and material assemblies when exposed to a source of radiant heat [S].
    [53]A.M. Stoll and M.A. Chianta. Heat Transfer through Fabrics as Related to Thermal Injury [J]. Transactions New York Academy of Science,1971,33(7):649-670.
    [54]Joel Edwards Sipe. Development of an Instrumented Dynamic Mannequin Test to Rate the Thermal Protection Provided by Protective Clothing [D]. Worcester:Worcester Polytechnic Institute,2004.
    [55]M.A. Camenzind, D.J. Dale and R.M. Rossi. Manikin test for flame engulfment evaluation of protective clothing:Historical review and development of a new ISO standard [J]. Fire and Materials,2007,31(5):285-295.
    [56]NFPA 2112, Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire [S].2007 Edition.
    [57]Hummel, R. Barker, K. Lyons, A.S. Deaton and J. Morton-Aslanis. Development of Instrumented Manikin Hands for Characterizing the Thermal Protective Performance of Gloves in Flash Fire Exposures [J]. Fire Technology,2011,47(3):615-629.
    [58]George V. Hadjisophocleous, Noureddine Benichou. Performance crieteria used in fire safety design [J]. Automation in Construction,1999,8(4):489-501.
    [59]Guowen Song. Modeling Thermal Protection Outfits For Fire Exposures [D]. Raleigh: North Carolina State University,2002.
    [60]A.M. Raimundo and A.R.Figueiredo. Personal protective clothing and safety of firefighters near a high intensity fire front [J]. Fire Safety Journal,2009,44(4):514-521.
    [61]F.C. Henriques. Studies of thermal injury:the predictability and the significance of thermally induced rate process leading to irreversible epidermal injury [J]. Archives of Pathology,1947,43(5):489-502.
    [62]F. Xu, T.J. Lu and K.A. Seffen. Biothermomechanical behavior of skin tissue [J]. Acta Mechanica Sinica,2008,24(1):1-23.
    [63]J.M. Cavanagh, D.A. Torvi, K.S. Gabriel and G.A. Ruff. Test Method for Evaluating Fabric Flammability and Predicted Skin Burn Injury in Microgravity [J]. Microgravity Science and Technology,2006,18(2):14-26.
    [64]李瑜璋.用“消防假人”测定消防员人体烧伤程度[J].消防科学与技术,1999,4:29-30.
    [65]朱方龙.热防护服隔热防护性能测试方法及皮肤烧伤度评价准则[J].中国个体防护装备,2006,4:26-31.
    [66]李红燕,吴宣润,张渭源,杨凯.热防护服织物性能与综合防护能力的关系[J].纺织学报,2008,29(9):59-61,71.
    [67]崔志英,张渭源.强热流量下耐热阻燃织物的热防护性能[J].纺织学报,2008,29(9):56-58,66.
    [68]]王秀丽,周璐瑛.阻燃防火服及其开发策略[J1.上海纺织科技,2001,29(4):44-46.
    [69]Y.M. Lee and R.L. Barker. Thermal Protective Performance of Heat-Resistant Fabric in Various High Intensity Heat Exposures [J]. Textile Research Journal,1987,57 (3): 123-132.
    [70]G.N. Mercer, H.S. Sidhu. Mathematical modelling of the effect of fire exposure on a new type of protective clothing [J]. Australia and New Zealand Industrial and Applied Mathematics Journal,2008,49:289-305.
    [71]L. Benisek and W.A. Phillips. Protective Clothing Fabrics. Part2:Against Convective Heat (open-flame) Hazards [J]. Textile Research Journal,1981,51(3):191-196.
    [72]G. Argentino. High security fabric:US,5941186 [P].1999-08-24.
    [73]E. Carpus, D. Toma, C. Niculescu and F. Poruschi. Fireproof multilayer for individual protective equipment, Part Ⅰ [J]. Industria Textila,2003,54(4):222-224.
    [74]B. Kutlu and A. Cireli. Thermal Analysis and Performance Properties of Thermal Protective Clothing [J]. Fibres and Textiles in Eastern Europe,2005,13(3):58-62.
    [75]李红燕,张渭源.消防服用织物的阻燃性能及其TPP值[J].纺织学报,2008,29(5):84-88.
    [76]李红燕,吴宣润,张渭源.多层织物系统综合热防护性能[J].材料科学与工程学报,2008,26(4):520-525.
    [77]邓传明,于伟东.太空环境中舱外航天服的外层防护问题[J].东华大学学报(自然群学版),2004,30(4):110-116.
    [78]陈金静,于伟东.轻薄柔性多层隔热材料研究进展[J].材料导报,2008,22(6):41-44.
    [79]M. Mohammadi, P. Banks-Lee, P. Ghadimi. Determining effective thermal conductivity of multilayered nonwoven fabrics [J]. Textile Research Journal,2003,73(9):802-808.
    [80]D.A. Torvi and J.D. Dale. Effects of variations in thermal properties on the performance of flame resistant fabrics for flash fires [J]. Textile Research Journal,1998,68(11): 787-796.
    [81]石宏亮.耐高温纺织品传热性能研究[J].上海纺织科技,2002,30(5):43-44.
    [82]G. Song, R.L. Barker, H. Hamouda et al. Modeling the thermal protective performance of heat resistant garments in flash fire exposures [J]. Textile Research Journal,2004,74 (12): 1033-1040.
    [83]M. Gasperin and D. Juricic. The uncertainty in burn prediction as a result of variable skin parameters:An experimental evaluation of burn-protective outfits [J]. Burns,2009,35(7): 970-982.
    [84]M. Gasperin, D. Juricic, B. Musizza and I. Mekjavi. A model-based approach to the evaluation of flame-protective garments [J]. ISA Transactions,2008,47(2):198-210.
    [85]D. Juricic, B. Musizza, M. Gasperin, I. Mekjavic, M. Vrhovec and G. Dolanc. Evaluation of fire protective garments by using instrumented mannequin and model-based estimation of burn injuries [C]. In:2007 Mediterranean Conference on Control and Automation, Athens. Jun.27-29,2007. New York:IEEE, pp.920-925
    [86]付杨,邱义芬,任兆生.相变降温服热分析[J].北京航空航天大学学报,2007,33(3):278-281.
    [87]R.L. Barker and Y.M. Lee. Analyzing the Transient Thermophysical Properties of Heat-Resistant Fabrics in TPP Exposures [J]. Textile Research Journal,1987,57(6): 331-338.
    [88]潘莺,倪挺.机织物防热辐射性能的研究[J].上海纺织科技,1998,26(1):54-56.
    [89]R.L. Barker, C. GuerthSchacher, R.V. Grimes and H. Hamouda. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures [J]. Textile Research Journal,2006,76(1):27-31.
    [90]P. Chitrphiromsri. Modeling of thermal performance of firefighter protective clothing during the intense heat exposure [D]. Raleigh:North Carolina State University,2004.
    [91]P. Chitrphiromsri and Andrev V. Kuznetsov. Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure [J]. Heat and Mass Transfer, 2005,41(3):206-216.
    [92]叶宏,张云鹏,葛新石.相变防护服的数值研究[J].中国科学技术大学学报,2005,35(4):538-543.
    [93]B. Farnworth. Mechanisms of Heat Flow Through Clothing Insulation [J]. Textile Research Journal,1983,53(12):717-725.
    [94]B.V. Holcombe and B.N. Hoschke. Dry Heat Transfer Characteristics of Underwear Fabrics [J]. Textile Research Journal,1983,53(6):368-374.
    [95]W.A. Lotens and A.M.J. Pieters. Transfer of Radiative Heat Through Clothing Ensembles [J]. Ergonomics,1995,38(6):1132-1155.
    [96]范坚,倪波.织物单元结构传热的数值模拟研究[J].东华大学学报,2002,28(4):5-10.
    [97]David A. Torvi and J. Douglas Dale. Heat Transfer in Thin Fibrous Materials Under High Heat Flux [J]. Fire Technology,1999,35(3):210-231.
    [98]David A. Torvi. Heat Transfer in Thin Fibrous Materials Under High Heat Flux Conditions [D]. Ph.D. Thesis, University of Alberta,1997.
    [99]P. Gibson. Governing Equations for Multiphase Heat and Mass Transfer in Hygroscopic Porous Media with Applications to Clothing Materials [R]. Technical Report Natick/TR-95/004,1994.
    [100]W.E. Mell and J.R. Lawson. A heat transfer model for firefighters' protective clothing [J]. Fire Technology,2000,36(1):39-68.
    [101]J.R. Lawson, W.E. Mell and K. Prasad. A Heat Transfer Model for Firefighters' Protective Clothing, Continued Developments in Protective Clothing Modeling [J]. Fire Technology, 2010,46(4):833-841.
    [102]Harry H. Pennes. Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm [J]. Journal of Applied Physiology,1948,1(2):93-122
    [103]J. Liu, X. Chen and L.X. Xu. New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating [J]. IEEE Transactions on Biomedical Engineering, 1999,46(4):420-428.
    [104]C. Cattaneo. A form of heat conduction equation which eliminates the paradox of instantaneous propagation [J]. Compute Rendus,1958,247:431-433.
    [105]S. Ozen, S. Helhel and O. Cerezci. Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT) [J]. Burns,2008, 34(1):45-49.
    [106]W.Z. Dai, H J. Wang, P.M. Jordan, R.E. Mickens and A. Bejan. A mathematical model for skin burn injury induced by radiation heating [J]. International Journal of Heat and Mass Transfer,2008,51(23-24):5497-5510.
    [107]P. Chitrphiromsri and Andrev V. Kuznetsov. Porous medium model for investigating transient heat and moisture transport in firefighter protective clothing under high-intensity thermal exposure [J]. Journal of Porous Media,2005,8 (5):511-528.
    [108]G. Song, P. Chitrphiromsri and D. Ding. Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions [J]. International Journal of Occupational Safety and Ergonomics,2008,14(1):89-106.
    [109]朱方龙,王秀娟,张启泽,张渭源.火灾环境下应急救援防护服传热数值模拟[J].纺织学报,2009,30(4):106-110.
    [110]Fanglong Zhu, Weiyuan Zhang and Guowen Song. Heat transfer in a cylinder sheathed by flame-resistant fabrics exposed to convective and radiant heat flux [J]. Fire Safety Journal, 2008,43(6):401-409.
    [111]朱方龙,张渭源.基于人体皮肤热模型的热防护评价方法研究[J].中国安全科学报,2007,17(11):134-140.
    [112]Fanglong Zhu and Weiyuan Zhang. A new approach for evaluating the thermal performance of flame-resistant fabrics [J]. Measurement Science and Technology,2008, 19(10),105704.
    [113]FangLong Zhu and WeiYuan Zhang. Modeling Heat Transfer for Heat-resistant Fabrics Considering Pyrolysis Effect under an External Heat Flux [J]. Journal of Fire Sciences, 2009,27(1):81-96.
    [114]F.L. Zhu, W.Y. Zhang and X.F. Sun. An Improved Heat Transfer Model for Flame Resistant Fabric Used in Thermal Protective Clothing [J]. Journal of Donghua University (Eng. Ed.),2008,25(6):664-669.
    [115]G.N. Mercer and H.S. Sidhu. A theoretical investigation into phase change clothing benefits for firefighters under extreme conditions [J]. Chemical Product and Process Modeling,2009,4(3):art. no.8.
    [116]于伟东主编.纺织材料学[M].北京:中国围纺织出版社.2006,371.
    [117]曹玉璋,韩振兴编.热工基础[M].北京:航空工业出版社.1993.
    [118]Jinyu Zhu, Andrea Irrera, Mun Young Choi, et al. Measurement of light extinction constant of JP-8 soot in the visible and near-infrared spectrum [J]. International Journal of Heat and Mass Transfer,2004,47:3643-3648.
    [119]于伟东.国防115基础科研项目(A1420060202)申请报告,2005年10月.
    [120]田民波,刘德令译.薄膜科学与技术手册[M].北京:机械工业出版社,1991.
    [121]K. Daryabeigi. Design of high temperature multi-layer insulation for reusable launch vehicles [D]. PhD. dissertation, University of Virginia,2000, pp.56,39-40.
    [122]汪晓峰,张玉华.芳砜纶的性能及其应用[J].纺织导报,2005,1:18-23.
    [123]李刚,刘婷,陈彦模,张瑜.聚苯硫醚纤维的研究及发展.合成技术及应用,2005,20(3):30-33.
    [124]吴惠英,段亚峰.耐高温纤维的研究进展与应用[J].针织工业,2006,2:24-27.
    [125]胡显奇,申屠年.连续玄武岩纤维在军工及民用领域的应用[J].高科技纤维与应用2005,13(6):7-13.
    [126]Chen Jinjing and Yu Weidong. Study on the Insulating Performance and Flexibility Properties of Flexible Multilayer Composite Fabric [C]. In:International Symposium of Textile Bioengineering and Informatics, Hong Kong, Jul.26-29,2009. pp.171-175.
    [127]S.M. Hasnain. Review on sustainable thermal energy storage technologies, Part I:Heat storage materials and techniques [J]. Energy Conversion and Management,1998,39(11): 1127-1138.
    [128]王胜林,王华,祁先进,李洪宇.高温相变蓄热的研究进展[J].能源工程,2004,6:6-11.
    [129]B. Zalba, J.M. Marin, L.F. Cabeza and H. Mehling. Review on thermal energy storage with phase change:materials, heat transfer analysis and applications [J]. Applied Thermal Engineering,2003,23(3):251-283.
    [130]B. Lewis, and G. Von Elbe. Combustion, Flames and Explosions of Gases [M]. Third Edition, Academic Press, Inc., Orlando,1987.
    [131]Z.M. Zhang, C.J. Fu and Q.Z. Zhu. Optical and Thermal Radiative Properties of Semiconductors Related to Micro/nanotechnology [J]. Advances in Heat Transfer,2003, 37:179-296.
    [132]C.K. Krishnaprakas and K. Badari Narayana. Combined conduction and radiation heat transfer in a gray anisotropically scattering medium with diffuse-specular boundaries [J]. International Communications in Heat and Mass Transfer,2001,28(1):77-86.
    [133]C.K. Krishnaprakas. Radiation heat transfer in a participating medium bounded by specular reflectors [J]. International Communications in Heat and Mass Transfer,1998, 25(8):1181-1188.
    [134]Jiri Militky. Rock into yarn [J]. Textile Asia,1995,26(9):100-101.
    [135]B. Wei, H. Cao and S. Song. Environmental resistance and mechanical performance of basalt and glass fibers [J]. Materials Science and Engineering A,2010,527(18-19): 4708-4715.
    [136]GB/T 5455-1997,纺织品燃烧性能试验 垂直法[S].
    [137]GA10-2002,消防员灭火防护服[S].中华人民共和国公安部.
    [138]李健芳.新型耐高温多层隔热结构研究[D].哈尔滨:哈尔滨工业大学,2007.
    [139]M.M. Finckenor, D. Dooling. Multilayer Insulation Material Guidelines. NASA/TP-1999-209263:9-17.
    [140]D.A.Stewart, D.B. Leiser, P. Kolodziej and M. Smith. Thermal Response of Integral, Multicomponent Composite Thermal Protection Systems [J]. Journal of Spacecraft & Rockets.1986,23(4):420-427.
    [141]S.Y. Zhao, B.M. Zhang and X.D. He. Temperature and Pressure Dependent Effective Thermal Conductivity of Fibrous Insulation [J]. International Journal of Thermal Sciences,2009,48(2):440-448.
    [142]于伟东,储才元.纺织物理[M].上海:中国纺织大学出版社,2001,404-408.
    [143]黄亮.瞬态表面温度传感器动态校准技术研究[D].太原:中北大学,2007:24-25.
    [144]与导师手谈记录所确立的表达指标.2011年5月.
    [145]倪文,王寅生,王国清.基于辐射传热理论对提高纤维质绝热材料绝热效果的探讨[J].保温材料与节能技术.2003,(1):9-15.
    [146]李新娥.玄武岩纤维和织物的研究进展[J].纺织学报,2010,31(1):145-152.
    [147]I.Y. Kim, C. Lee, P. Li et al. Investigation of Air Gaps Entrapped in Protective Clothing Systems [J]. Fire and Materials,26(3):121-126.
    [148]G. Song. Clothing Air Gap Layers and Thermal Protective Performance in Single Layer Garment [J]. Journal of Industrial Textiles,2007,36(3):193-205.
    [149]David A. Torvi, J. Douglas Dale and Bernie Faulkner. Influence of Air Gaps On Bench-Top Test Results of Flame Resistant Fabrics [J]. Journal of Fire Protection Engineering,1999,10(1):1-12.
    [150]Chen Jinjing and Yu Weidong. Concept for High-Low Temperature Resistance Arrangement within Multilayer Flexible Composite Materials [J]. Journal of Composite Materials,2010,44(18):2191-2203.
    [151]东华大学TMT团队.高温差环境下的复合织物传热机制.内部报告,2008年10月.
    [152]Moran Wang, Ning Pan. Predictions of effective physical properties of complex multiphase materials [J]. Materials Science and Engineering R:Reports,2008,63(1): 1-30.
    [153]刘静编.微米/纳米尺度传热学[M].北京:科学出版社.2001.
    [154]M.I. Ismail, A.S.A Ammar, and M. El-Okeily. Heat transfer through textile fabrics: mathematical model [J]. Applied Mathematical Modelling,1988,12(4):434-440.
    [155]M. Bomberg and S. Klarsferd. Semi-empirical Model of Heat Transfer in Dry Mineral Fiber Insulations [J]. Journal of Thermal Insulation,1983, (6):156-173.
    [156]P.J. Burns and C.L. Tien. Natural Convection in Porous Media Bounded by Concentric Spheres and Horizontal Cylinders [J]. International Journal of Heat and Mass Transfer, 1979,22(6):929-939.
    [157]C. Stark and J. Fricke. Improved Heat-transfer Models for Fibrous Insulations [J]. International Journal of Heat and Mass Transfer.1993,36(3):617-625.
    [158]Jing Gao, Ning Pan and Weidong Yu. A Fractal Approach to Goose Down Structure [J]. International Journal of Nonlinear Sciences and Numerical Simulation,2006, 7(1):113-116.
    [159]Q. Y. Zhu, M.H. Xie and Y. Li. A fractal model for the coupled heat and mass transfer in porous fibrous media[J]. International Journal of Heat and Mass Transfer,2011,54(7-8): 1400-1409.
    [160]Kamran Daryabeigi. Heat transfer in high-temperature fibrous insulation [J]. Journal of Thermophysics and Heat Transfer,2003,17(1):10-20.
    [161]A. Ghazy and D.J. Bergstrom. Numerical simulation of transient heat transfer in a protective clothing system during a flash fire exposure [J]. Numerical Heat Transfer, Part A:Applications,2010,58(9):702-724.
    [162]高东岳.匕行器金属热防护系统隔热毡受热分析[D].哈尔滨:哈尔滨工程大学,2009:38-39.
    [163]N.V. Bol' shakova and O.M. Kostenok. Thermal conductivity of basalt fiber materials [J]. Refractories,1995,36(10):331-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700