棉铃虫N-乙酰氨基葡萄糖苷酶的分离纯化及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以棉铃虫的蛹为材料,通过硫酸铵沉淀分级分离、Sephadex G-200分子筛柱层析和DEAE-32离子交换柱层析纯化,获得聚丙烯酰胺凝胶电泳单一纯的N-乙酰-β-D-氨基葡萄糖苷酶酶(NAGase,EC3.2.1.52)制剂。纯酶的比活力为2678.79 U/mg。酶催化对-硝基苯-N-乙酰-β-D-氨基葡萄糖水解的最适pH为5.63,最适温度为55℃。该酶在pH 4~8区域较稳定,而在pH>8能迅速失活;酶促反应符合米氏方程,K_m为0.1629 mmol/L,V_m为10.73μmol/L/min,活化能为66.24 kJ/mol。酶分子的分子量为89.3 kD。
     研究金属离子对棉铃虫NAGase活力的影响。结果表明,Na~+、K~+和Li~+等金属离子对酶活力没有任何影响。Mg~(2+)、Ca~(2+)、Co~(2+)对酶活力影响不显著,Zn~(2+)、Cu~(2+)、Cd~(2+)、Al~(3+)、Hg~(2+)和Pb~(2+)对该酶有不同程度的抑制作用。研究Cu~(2+)、Al~(3+)、Zn~(2+)、Hg~(2+)和Pb~(2+)的抑制作用动力学,结果表明:这些金属离子对酶均表现为可逆抑制作用,Cu~(2+)的抑制类型为混合型,抑制常数K_1为0.23 mmol/L,K_(IS)为1.49 mmol/L。Al~(3+)为竞争性类型,抑制常数K_1为6.42mmol/L。Hg~(2+)为混合型,抑制常数K_1为28.43μmol/L,K_(IS)为2.25μmol/L mmol/L。Pb~(2+)为非竞争性抑制,抑制常数K_(IS)为0.3208mmol/L。Zn~(2+)为竞争性类型,抑制常数K_I为1.158 mmol/L。Zn~(2+)对酶的pH稳定性的影响不明显,而有Zn~(2+)存在时,在30-40℃范围内,酶是稳定的,温度高于50℃后,随着Zn~(2+)浓度的增加,酶的热失活程度可以缓解。
     用金属螯合剂(EDTA)处理棉铃虫NAGase后可使酶活力完全丧失,说明该酶活力的发挥与某些的金属离子有关。
     研究几种有机溶剂对棉铃虫NAGase的活力与构象的影响。结果表明:甲醇、乙醇和乙二醇对酶有先扬后抑作用,正丙醇和丙三醇对酶有失活作用。多元醇中的乙二醇对酶的效应是先扬后抑,丙三醇不同的浓度均可使酶活力下降,两者相比,丙三醇对酶的失活作用略比乙二醇的强。甲醛对酶的活性有抑制作用,是一种可逆混合型抑制作用。抑制常数K_I与K_(IS)分别为
A β-N-Acetyl-D-glucosaminidase (EC3.2.1.52) was purified from the pupae of Helicoverpa armigera by using ammonium sulfate precipitation, and column chromatography on Sephadex G-200 and DEAE-Cellulose. The purified enzyme was migrated as a single band on native and SDS-polyacrylamide gel electrophoresis. The molecular weight of the purified enzyme was estimated to be 89. 3 kDa. The Specific activity of the enzyme was 2678.79 U/mg. The kinetic behavior of this enzyme was performed using pNP-β-D-GlcNAc as substrate. The optimum pH was determined to be at pH 5.63 and the optimum temperature was at 55 ℃. The enzyme was stable in the range 4.0-8.0, and inactivated above 8.0 quickly under 37℃. The enzyme was heat-stable under 50℃ after 30min. The enzyme follows typical Michaelis-Menten kinetics for the hydrolysis of pNP-P-D-GlcNAc and the K_m and V_m values were determined to be 0.16 mmol/L and 10.73 μmol/L/min, respectively. The activation energy with pNP-P-D-GlcNAcwas 66.24 KJ/mol.Another β-N-Acetyl-D- glucosaminidase (EC3.2.1.30) were isolated from the larva and adult of Helicoverpa armigera (Hubner), and partially purified by ammonium sulfate fractionation and dialysis. The specific activity of the enzyme was 37.33 and 47.69 U/mg, 3.64 and 2.35 fold purification were achieved, respectively. Michaelis-Menten kinetics for P-N-Acetyl-D- glucosaminidase from the larva and adult, the K_m values were 0.126 and 0.2 mmol/L , the V_m values were 2.51 and 10.18 μmol/L'min, respectively.The effects of metal ions on β-N-acetyl-D-glucosaminidase (NAGase, EC3.2.1.52) from Helicoverpa armigera were studied. The results showed that Na+, K+ and Li+ ions had no any effects on the enzyme activity. Mg~(2+), Ca~(2+) and Co~(2+) ions had few effects on the enzyme activity, while Zn~(2+), Cu~(2+), Cd~(2+), Al~(3+), Hg~(2+) and Pb~(2+) inhibited the enzyme. The inhibitory kinetics of Cu~(2+), Al~(3+), Zn~(2+), Hg~(2+) and
    Pb2+ on the enzyme were further studied. The results showed that Cu2+ was a reversible competitive inhibitor of the enzyme and was determined to be a mixed type inhibitor. The inhibition constants of free enzyme (K\) and enzyme-substrate complex (Kis) with Cu2+ were determined to be 0.23 mmol/L and 1.49 mmol/L, respectively. Al + was a reversible competitive inhibitor of the enzyme, and the inhibition constants (K\) was determined to be 6.42 mmol/L. The inhibition of Hg + on the enzyme underwent a reversible reaction, and was a mixed-type inhibitor. The inhibition constants of free enzyme (Ki) and enzyme-substrate complex (Kis) with Hg2+ were determined to be 0.23 mmol/L and 1.49 mmol/L, respectively. Zn2+ was reversible competitive inhibitor. The inhibition constants of free enzyme (K\) with Zn2+ was 1.58 mmol/L. The enzyme was heat-stable in the range 30-40 °C in the present of Zn2+.After treatment with metal chelating agent-ethylenediaminetetraacetic acid disodium (EDTA), the enzyme activity was completely lost, which indicated that the activity of P-N-Acetyl-D-glucosaminidase was correlated with some metalions.Effects of different organic solvents on the enzyme activity and conformation of P-N-Acetyl-D-glucosaminidase were investigated. The results indicated that the methanol, alcohol and glycol activated the enzyme at low concentrations, but they inactivated it at high concentrations. Propanol and glycerol inactivated the enzyme. Formaldehyde can inhibited the activity of enzyme, and it was a mixed-type inhibitor. The inhibition constants of free enzyme (K{) and enzyme-substrate complex (K\s) with Hg2+ were determined to be 0.51 mmol/L and 0.24 mmol/L, respectively. Acetone can induced the enzyme to reversible inactivate in the present of the low concentration of acetone. The values of Vmax decreased gradually along with the increase of acetone concentration, however, the value of Km kept unchanged . At the same time, the conformational changes of the enzyme in acetone solutions of different concentrations were
    measured by fluorescence absorption spectra. The fluorescence emission peak in tensity of the enzyme gradually weakened with increasing acetone concentrations, accompanied by the peak being gradually blue-shifted. The result showed that acetone could effect the conformation of the enzyme. The emission peak of the native enzyme was at 339nm, and it decreased in intensity and blue shifted with the increasing concentrations of Cu2+. This showed that Cu2+ changed the conformation of enzyme. Dimethyl sulfoxide and dioxane inhibited p-N-Acetyl-D-glucosaminidase. Dimethyl sulfoxide was a reversible competitive inhibitor, and the inhibition constants of free enzyme (K{) was 3.46 mmol/L. Dioxane was a reversible competitive inhibitor, too. They both changed fluorescence emission spectra and UV absorption spectra. The emission peak at 339nm decreased in intensity with the increasing concentrations of dimethyl sulfoxide. When the concentration of dimethyl sulfoxide above 30%, the intensity of UV absorption increased.The emission peak at 339nm decreased in intensity with the increasing concentrations of guanidine solution. When the concentration of guanidine solution was 2 mol/L, The fluorescence emission peak at of the enzyme was red-shifted to 355 nm.When Try residue of the enzyme was modified by NBS, the connection between Try residue and activity of enzyme could be studied according to the fluorescence emission spectra and the ultraviolet spectra. The result showed that The fluorescence emission peak at 339nm and the ultraviolet absorbed peak at 278nm were disappeared with the loss of the activity of the enzyme after the enzyme was modified by NBS.The thermal stabilities of the enzyme was studied. The results showed that the enzyme was heat-stable below 50°C and starts thermal denaturation at 55 °C. The activity of the enzyme lost 50 percent by the treatment at 67°C for 30min. And, the enzyme was totally inactivated by the treatment above 80 °C. The kinetics of thermal inactivation of the enzyme at high temperature was further studied. The
引文
陈清西,颜思旭.果菠萝蛋白酶的分子构象与活力变化的研究.生物化学杂志,1991,7(3):301-307
    陈清西,颜思旭,力政军,等.果菠萝蛋白酶在有机溶剂中的变性与失活动力学的研究.厦门大学学报(自然科学版),1993,32(1):88-92
    陈清西,周兴旺,扬佩真,等.乙二醇对长毛对虾酸性磷酸酶活力与构象的影响.台湾海峡,1999,18(4):398-402
    Cooper T. G.著,徐晓利主译:《生物化学工具》人民卫生出版社,1980
    陈三凤,李季伦.黄杆菌(Flavobacterium sp.)几丁质酶的纯化和性质.微生物学报,1994,34(1):14-19
    陈三凤,李季伦.几丁质酶研究历史和发展前景.微生物学通报,1993,20(3):156-160
    高武军,孙毅,王景雪,等.植物几丁质酶及其基因工程研究进展.世界农业,1999,22-24.
    蒋挺大.甲壳素.北京:中国环境出版社,1996
    韩放,李景鹏.植物几丁质酶的研究进展.生物技术,2001,11(5):25-28
    何飚,严明,张彤,等.氨基酰化酶热变性时失活和去折叠的比较,科学通报,1994,39(7):656-660
    黄小红,陈清西,王君等.苏云金芽孢杆菌(Bacillus thuringiens)几丁质酶的分离纯化及性质的初步研究.应用与环境生物学报,2004,10(6):771-773
    黄小红,陈清西,王君等.有机溶剂对苏云金芽孢杆菌(Bacillus thuringiens)几丁质酶的影响.应用与环境生物学报,2005,11(1):71-73
    蒋红彬,张瀛,蒋千里,等.几丁质酶的研究概况.山东科学,2000,13(4):41-45
    李桂田.棉铃虫近年爆发及其原因浅析.防治技术,1999,(3):23
    李友宾.罗氏沼虾肝胰腺几丁质酶研究.重庆师范学院学报(自然科学版),2002,19(1):54-65
    蓝伟光,吴永沛.海水污染物对对虾毒性研究的进展Ⅰ对虾的重金属毒性研究.福建水产.1990,(1):41-45
    彭立风.有机溶剂对酶催化活性和选择性的影响.化学进展,2000,12(3):296-304
    彭仁旺,管考梅,黄秀梨.壳多糖酶研究的概况及最新进展.生物化学与生物物理进展,1996,23(2):102-107.
    彭仁旺,管考梅,黄秀梨.球孢白僵菌两种胞外几丁质酶的诱导和纯化.微生物学报,1996,36(2):103-108.
    邱立友.微生物几丁质酶与害虫防治.河南农业大学学报,1995,29(2):184-191
    秦玉金.棉铃虫生物学习性与发生为害关系.安徽农业科学,2001,29(4):486-487
    唐亚雄,赵建,丁诗华,等.产气肠杆茵几丁质酶的分离纯化及性质研究.微生物学报,2001,41(1):82-86.
    陶慰孙.蛋白质分子基础.北京:人民教育出版社,1982
    吴东儒.糖类的生物化学.北京:高等教育出版社,1987
    吴敏贤,查静娟,施教耐.植物磷酸烯醇式丙酮酸羧化酶的研究.生物化学与生物物理学报,1982,14(4):315-322
    吴青军,张文吉,张友军.昆虫几丁质酶及其在植物保护中的应用.昆虫知识,2000,37(5):314-317
    王守业,徐小龙,刘清亮,等.荧光光谱在蛋白质分子构象研究中的应用.化学进展,2001,13(4):257-260
    王荫长.昆虫生物化学.北京:中国农业出版社.2001,(3):301-307
    夏国庆,董志扬,苗雪霞,等.几丁质酶产生菌的筛选和酶的一般性质.农业生物技术学报,1997,5(1):79-82.
    徐九虹,俞纯山.尿液中N-乙酰-β-D-氨基葡萄糖苷酶的检测及临床应用.国外医学临床生物化学与检验学分册,1995,16(3):115-116
    肖炎农,王明祖,王道本,等.淡紫拟青霉几丁质酶的纯化和活性影响因子.植物病理学报,1998,28(3):275-280
    肖业臣,罗晓斌,冯佩富,等.昆虫几丁质酶的研究进展.生物技术,2003,13(1):38-39
    杨家惠,杨志荣,朱文,等.一株产生几丁质酶细菌的分离与鉴定.四川大学学报(自然科学版),1997.34(5):693-698
    扬家祥,张玉慧,许兴友,等.荧光光谱在蛋白质分子构象研究中的应用.淮海工学院学报,1999,18(4):28-31
    姚启智,邹承鲁.肌酸激酶在胍和脲变性石的快失活和慢构象变化.生物化学与生物物理学报,1986,18(5):53-61
    颜思旭,蔡红玉.酶催化动力学原理与方法.厦门:厦门大学出版社,1987
    杨文博,冯波,佟树敏.链霉菌S01菌株几丁质酶对植物病原真菌的拮抗作用.微生物学通报,1997,24(4):224-227
    扬益众,戴志一.生态控制棉铃虫的迫切性和可行性浅析.昆虫知识,1999,36(1)45-48
    邹承鲁.酶活性部位的柔性.科学通报,1989,34(5):321-325
    邹承鲁.活性部位的柔性为酶充分表现其催化活性所必需.生物化学与生物物理学报,1995,48:183-190
    邹承鲁.蛋白质功能基团的改变与其生物活力的关系。Ⅰ用图解法求必需基团数,并判断其性质.生物化学与生物物理学报,1962,2(3):203-217
    曾艳.几丁质酶与植物防卫反应.生物工程进展,1997,17:31-34
    张龙翔.生物化学实验方法和技术.北京:人民教育出版社,1983
    周跃钢.甘油对豇豆根瘤腺苷酸琥珀酸裂解酶活性的影响.西南农业大学学报,1997,19(3):252-254
    赵欣平,舒畅,扬芳,等.金属离子和脲对白蜡虫碱性磷酸酶的影响.昆虫学报,2002,45(3):318-322
    朱雪峰,陈崇顺,郁志芳.豇豆几丁质酶部分酶学特性的研究.生物技术,1999,9(6):15-19
    Adler A J. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods in Enzymology, 1973, 27: 675-793
    Austin P R. Chitin, Chitoson and Related Enzymes. Academic Press, 1984
    Bai J H, Wang H J, Liu D S, Zhou H M. Kinetics of thermal inactivation of lactate dehydrogenase from rabbit muscle. J. Protein chem.., 1997, 16 (8): 801-807
    Benedito P D Filho, Francisco J A Lemos, Nagila F C Secundino, Valeria Pascoa, Sheila T Pereira, Paulo F P Pimenta. Presence of chitinase and beta-N-acetylglucosaminidase in the Aedes aegypti A chitinolytic system involving peritrophic matrix formation and degradation. Insect Biochemistry and Molecular Biology, 2002, 32: 1723-1729
    Boller J, Gehri A, Mauch F et al. Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta, 1983, 157: 22-31
    Burke P A, Smith S O, Bachovchin W W, et al. Demonstration of structural integrity of an enzyme in organic solvents by solid-state NMR. J Am Chem Soc, 1989, 111: 8290-8291
    Correa JU, Elango N, Polacheck I, et aL Endochitinase, a mannan-associated enzyme from Saccharomyces cerevisiae. Biol Chem, 1982, 257(3): 1392-7
    Chen Q X, Zheng W Z, Lin J Y, et al. Effect of metal ions on the activity of green crab (Scylla serrata) alkaline phosphatase. Int J Biochem Cell Biol, 2000, 32(8): 879-885
    Chen Q X, Zhang W, Yan S X, Zhang T, Zhou H M. Kinetics of the thermal inactivation of alkaline phosphatase from green crab (Scylla serrata). J. Enzyme Inhib., 1997, 12 (2): 123-131
    Chen S L, Chert Q X, Zhou H M, et al. Comparison of conformational changes and inactivation of Penaeus penicillatus acid phosphatase during unfolding urea. Tsinghua Science and Technology Press, 1998,3(3): 1053-1058
    Dennis L, Y Dong, Gerald W H. Purification and Characterization of an O-GlcNAc Selective N-Acetyl-p-D-glucosaminidase from Rat Spleen Cytosol J.Biological Chemistry, 1994, 269(30): 19321-19330
    Dessens J T, Mendoza J, Claudianos C, et al. Knockout of the rodent Malaria parasite chitinase PbCHTl reduces infectivity to mosquitoes. Infection Immunity, 2001, 69(6): 4041-4047
    Donald Y K, Ralph M R, JulieAnn B, et al. Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Environ Microbiol, 2002, 68:1047-1054
    Downing K J, Leslie G, Thomson J. Biocontrol of sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1 Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Envir Microbiol, 2000, 66(7): 2804-2810
    El Moudni B, Rodier M H and Jacquemin J L. Purification and Characterization of N-Acetylglucosamindase from Trypanosoma cruzi. Experimental Parasitology, 1996, 83:167-173
    Eyring H and Stearn A E. The application of theory of absolute reaction rates to proteins. Chem. Rev., 1939,24: 253-262
    Espie P J, Ro J C. Characterization of chitobiase from Daphnia magna and its relation to chitin flux. Physiol. Zool., 1995, 68 : 727 - 748
    Fishman W H. Perspective on isoenzymes, Amer. J. Med., 1974, 56: 617-550
    Freisheim J H and Huennekens F M. Effect of N-Bromosuccinimide on Dinydrofolate Reductase. Biochemistry, 1969, 8: 2 271-2 276
    Fukamizo T. Chitinolytic enzymes: catalysis, substrate binding, and their application. Curr. Protein Pept Sci., 2000 (1): 105 - 124
    Gopalan V et al. The dual effects of alcohols on the kinetic properties of guinea pig liver cytosolic beta-glucosidase . J. Biol. Chem., 1989, 264 (26) : 15418 - 15421
    Hollenberg P. F.,et al., J. Biol. Chem., 1971, 246: 946-953
    Humphreys A M, Gooday G W. Properties of chitinase activities from Mucor mucedo: evidence for a membrane-bound zymogenic, General Microbiol., 1984, 130:1359-1366
    Inbar J, Chet I. Biomimics of fungal cell-cell recognition by use of lectin-coated nylon fibers. J Bacteriol, 1992, 174(3): 1055-1059
    Joshi S, Kozlowski M, Richens S. et al. Chitinase and chitobiase production during fermentation of genetically improved Serratia liquefaciens. Enzyme Microbiol Technol, 1989, 11:289-296
    Keyhani N O, Roseman S. The Chitin Catabolic Cascade in the Marine Bacterium Vibrio furnissii. J. Biol. Chem., 1996, 271(52): 33425-33432
    Kim K J, Yang Y J, Kim J G Purification and characterization of chitinase from Streptomyces sp. M-20. J Biochem Mol Biol, 2003, 36(2): 185-189
    Koga D, Hoshika H, Matsushita M, Tanaka A, Ide A, Kono M. Purification and characterization of beta-N-acetylhexosaminidase from the liver of a prawn, Penaeus japonicus. Biosci. Biotechnol. Biochem., 1996, 60 (2): 194 - 199
    Koga D, Nakashima M, Matsukura T, et al. Purifications and some properties of β-N-acetyl-D-glucosaminidase from alimentary canal of the silkworm Bombyx mori. Agric. Biol. Chem., 1986, 50 (9): 2357 - 2368
    Kondo K, Matsumoto M, Kojo A, Mauda R. Purification and characterization of chitinase from pupae Pieris rapae crucivora (Boiduval). J. Chem. Eng. Jap., 2002, 35 : 241 - 246
    Kramer K J, Muthukrishnan S. Insect chitinases: moleucular biology and potential use as biopesticides. Insect Biochem Molec Biol, 1997,27(11): 887- 900
    Leake J R, Read D J. Chitin as a nitrogen source for mycorrhizal fungi. Mycological. Res., 1990, 94: 993-995
    LIN J C, CHEN Q X, SHI Y, et al.,. The chemical modification of the essential groups of β-N-Acetyl-D-glucosaminidase from Turbo cornutus Solander. J. IUBMB Life, 2003, 55(9): 547-552
    LI Sheng, ZHAO Zhi-An, LI Ming, et al. Purification and Characterization of a Novel Chitinase from Bacillus brevis ACTA BIOCHIMICA et BIOPHYSICA SINICA, 2002, 34(6): 690-696
    Li X B, Roseman S. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. PNAS, 2004, 101 (2): 627-631
    Lowry O H, Rosebrough N J, Farr A L et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193: 265-2695
    Meibom K L, Li X B, Nielsen A T, Wu C Y, Roseman S, Schoolnik G K. The Vibrio cholerae chitin utilization program. PNAS, 2004, 101 (8): 2524-2529
    Mitsutomi M, Kidoh H, Tomita H, et al. The action of Bacillus circulans WL-12 chitinase on partially N-acetylated chitosan. Biosci Biotech Biochem, 1995, 59(3): 529-531
    Murugan R, Shyamalava Mazumdar. Role of substrate on the conformational stability of the heme active site of cytochrome P450cam: effect of temperature and low concentrations of denaturants. J. Biol. Inorg. Chem., 2004
    Nanjo F, Sakai K, Ishikawa M, et al. Properties and transglycosylation reaction of a chitinase rom Nocardia orientalis. Agric Biol Chem, 1989, 53(8): 2189-2195
    Ohtakara A., Mitsutomi M., Uchida Y., Purification and some properties of chitinase from Vibro sp.. J. Ferment., technol, 1979, 57(3): 169-177
    Oppenheim B, Chet I. Cloned chitinases in fungal plant-pathogen control strategies. TIBTECH, 1992, 10: 392-394
    Othmer G. Analytical diso gel electrophoresis., Methods in Enzymology. 1971, 22: 565-573
    Pera L M, Infante M, V Maria, Baigori M D. Purification and characterization of a thermostable and highly specific beta-N-acetyl- D-glucosaminidase from Aspergillus niger 419. Biotechnology and Applied Biochemistry, 1997, 26 (3): 183-187
    Peters G, Saborowski R, Mentlein R, Buchholz F. Isoforms of an N-acetyl-β- D-glucosaminidase from the Antarctic krill, Euphausia superba: purification and antibody production. Comp. Biochem. Physiol., 1998, 120B: 743-751
    Pirkko H, Aktuganov G, Korpela T, et al. Lytic enzyme complex of an antagonistic Bacillus sp. X-b: isolation and purification of components. J Chromatography B, 2001, 758: 197-205
    Pleban S, Chernin L, Chet I. Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol, 1997, 25(4): 284-288
    Pocsi I, Pusztahelyi T, Bogati MSz, Szentirmai A. The formation of N-acetyl-β-D-hexosaminidase is repressed by glucose in Penicillium chrysogenum. J. Basic. Microbiol., 1993, 33: 259-267
    Rast D M, Horsch M, Furter R, Gooday G. W. A complex chitinolytic system in exponentially growing mycelium of Mucor rouxi: Properties and function. J. Gen. Microbiol., 1991, 137(2): 792-810
    Rebecca C L, Vinetz J M. et al. Monoclonal antibody against the Plasmodium falciparum chitinase PfCHT1, recognizes a Malaria transmission-blocking epitope in Plasmodium gallinaceum ookinetes unrelated to the chitianse PgCHT1. Infection Immunity, 2002, 70(3): 1581-1590.
    Rebecca C L, Vinetz J M. Plasmodium ookinete-secreted chitinase and parasite penetration of the mosquito peritrophic matrix. Trends Parasitol, 2001, 17(6): 269-272
    Regev A, Keller M, Strizhov N, et al. Synergistic activity of a Bacillus thuringiensis δ-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Envir Microbiol, 1996, 62(10): 3581-3586
    Reid J D, Ogrydziak D M. Chitinase overproducing mutant of Serratia marcescens. Appl Environ Microbiol, 1981, 41 (3): 664-669
    Reiland J. Gel filtration. Methods in Enzymology, 1971, 22: 287-321
    Reynolds D M. Exocellular Chitinase from Streptomyces sp. J. Gen. Microbiol., 1954, (11): 150-159
    Saborowski R., Buchholz F. A laboratory study on digestive processes in the Antarctic krill, Euphausia superba, with special regard to chitinolytic enzymes. Polar Biol., 1999, 21: 295-304
    Sakai K, Narihara M, KasamaY, et al. Purification and characterization of thermostable β-N-acetylhexosaminidase of Bacillus stearothermophilus CH-4 isolated from chitin-containing compost. Appl Environ Microbiol, 1994, 60(8): 2911-2915
    Sakai K, Yokota A, Kurokawa H, et al. Purification and characterization of three thennostable endochitinases of a noble Bacillus strain, MH-1, isolated from chitin-containing compost. Appl Environ Microbiol, 1998, 64(9): 3397-3402
    Sampson M N. Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insect. Microbiol, 1998, 144: 2189-2194
    Shapiro M, Preisler H K, Robertson J L. Enhancement ofbaculovirus activity on gypsy moth (Lepidoptera: Lymantriidae) by chitinase. J Economic Entomol., 1987, 80(6): 1113-1116
    Spindler K D, Buchhoiz F. Partial characterization of chitin degrading enzymes from two euphausiids, Euphausia superba and Meganyctiphanes norvegica. Polar. Biol., 1988, (9): 115-122
    Spindler K D. Initial characterization of chitinase and chitobiase from the integument of Drosophila hydei. Insect Biochem., 1976, (6) : 663 - 667
    Smirnoff W A. Effect of chitinase on the action of Bacillus thuringiensis. Can Entomol, 1971, 103:1829-1831
    Takeshi Tanaka, Toshiaki Fukui, Haruyuki Atomi, Tadayuki Imanaka. Characterization of an Exo-β-D-Glucosaminidase Involved in a Novel Chitinolytic Pathway from the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1. Journal of Bacteriology, 2003, 185 (17): 5175-5181
    Tang J. Modification of an Arginyl Residue in Pepsin by 2.3-Butanedione. J. Biol Chem., 1972, 247(9): 2704-2710
    Tellam R L, Wijffels G, Willadsen P. Peritrophic matrix protein. Insect Biochem Molec Biol, 1999, 29:87-101
    Tsou C L. Kinetics of substrate reaction during irreversible modification of enzyme activity. Adv. Enzymol. Relat. Areas Mol. Biol., 1988, 61 : 381 - 436
    Tsou C.L., Trends Biochem. Sci., 1986,11:427-429
    Trachuk L A, Revina L P, Shemyakina T M. et al. Chitinases of Bacillus Licheniformis B-6839: Isolation and Properties. Canadian J. Microbiol.,1996, 42 (4): 307 - 315
    Usui T, Hayashi Y, Nanjo F, Sakai K, Ishido Y. Transglycosylation reaction of a chitinase purified from Nocardia orientalis. Biochim. Biophys. Acta, 1987, 923 : 302 - 309
    Vaidya R, Roy S, Macmil S, et al. Chhatpar HS Purification and characterization of chitinase from Alcaligenes xylosoxydans. Biotechnol Letter, 2003, 25(9):715-717
    Violet M, Meunier J C. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis alpha-amylase. Biochem. J., 1989, 263 (3): 665 - 670
    Viswanatha T. The Action of N-Bromosuccinimide on Trypsingen and Its Derivatives. Biochem. Biophys. Acta, 1960, 40:216-224
    Wang S, Moyne A, Thottappilly G, et al. Purification and characterization of a Bacillus cereus exochitinase. Enzyme Microbiol. Technol, 2001, 28(6):492-498
    Watanabe T, Oyanagi W, Suzuki K, et al. Chitinase systerm of Bacillus circculans WL-12 and importance of chitinase A1 in chitin degradation. Journal Bacteriol., 1990, 172(7):4017-4022
    Watanabe T, Yamada T, Oyanagi W, et al. Purification and some properties of chitinase B1 from Bacillus circculans WL-12. Biosci Biotech Biochem, 1992, 56(4):682-683
    Werries E, Neue I, Buddecke E. Evidence for different glycohydrolase and glycosyltransferase activities of beta-N-acetylglucosaminidases A and B. Hoppe Seylers Z Physiol Chem, 1975, 356(6): 953-960
    Wiwat C, Siwayaprahm P, Bhumiratana A. Purification and Characterization of Chitinase from Bacillus circulans No.4.1. Current Microbiology, 1999, 39(3): 134-140
    Wiwat C, Thaithanun S, Pantuwatana S, et al. Toxicity of chitinase-producing Bacillus thuringiensis ssp. kurstaki HD-1 (G) toward Plutella xylostella. J. Invert. Pathol., 2000, 76:270-277
    Wu J W, Wang Z X, Zhou J M. Inactivation kinetics of dihydrofolate reductase from Chinese hamster during urea denaturation. Biochem. J., 1997, 324 : 395 - 401
    Xie XL, Chen QX, Lin JC, Wang Y. Purification and some Properties of β-N-Acetyl-D-glucosaminidase from Prawn (Penaeus vannamei). Marine Biology, 2004, 146(1):143-148
    Yang P, Chen Q X, Xie Z, Chen S, Yang Y, Park Y, Zhou H M. Kinetics of thermal inactivation of penaeus penicillatus acid phosphatase. Biochemistry (Moscow), 1999, 64 (4) : 464-467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700