机械活化氧化锌、氧化铜、氧化镍储能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以微量热法为实验手段,以搅拌式球磨和行星式球磨为活化方式,以氧化锌,氧化铜,氧化镍为研究对象,进行了机械活化储能的定量研究,以探讨两种球磨方法、球磨活化时间、球磨活化转速与活化储能之间的关系,为机械活化过程的理论研究提供基础数据。主要研究工作如下:
     (1)对Calvet HT-1000型量热仪进行了标定及可靠性检验。电标定面积法测定仪器热量常数K为0.4105J·V~(-1)·s~(-1)。在T=298.15K下,1molKCl溶于200mol去离子水中溶解热平均值Q为17.61kJ·mol~(-10,与文献值17.56推算相对误差为0.34%,在误差允许范围之内,仪器是准确可靠的。
     (2)精确测定了机械活化氧化锌、氧化铜、氧化镍的全部机械活化储能,发现其机械活化储能随活化时间增加而增加,但增加的趋势随活化时间增加而减缓,最终达到该条件下的机械活化储能极限。298.15K下,行星式球磨氧化锌最大活化储能约为26.7kJ·mol~(-1),搅拌式球磨氧化锌最大活化储能约为27.2kJ·mol~(-1)。行星式球磨氧化铜最大活化储能约为23.5kJ·mol~(-1),搅拌式球磨氧化铜最大活化储能约为24.2kJ·mol~(-1)。行星式球磨氧化镍最大活化储能约为30.4kJ·mol~(-1),搅拌式球磨氧化镍最大活化储能约为32.2kJ·mol~(-1)。
     (3)比表面积增加导致其机械活化储能增加,但不是氧化锌、氧化铜、氧化镍机械活化储能的主要原因。活化储能以晶格畸变为主。
     (4)搅拌式球磨较行星式球磨效率高,较短的时间获得了较高的活化储能。
The energy changes of mechanically activated Zinc oxide, cupric oxide, nickel monoxide were studied in order to investigate the relation between mechanically activated storage energy and the way of activation, and to provide a fundamental basis for the mechanical activation . The main conclusions made are as follows:
     (1) The parameters of the Calvet HT-1000 microcalorimeter were calibrated systematically with a new electric caliboration device redesigned. The parameter of the instrument K is 0.4105J·V~(-1)·s~(-1). The reliability of the microcalorimeter was verified. At 298.15K, the heat of 1mol KC1 in 200mol pure wate is 17.61 kJ·mol~(-1).The result is close to that of the literature which is 17.56 kJ·mol~(-1), with a relative error 0.34%.
     (2) The mechanically activated stored energy of Zinc oxide, cupric oxide, and nickel monoxide increases with the increased grinding time. The mechanically activated stored energy of Zinc oxide by planetary ball mill is about 26.7kJ·mol~(-1), by attritor ball mill is about 27.2 kJ·mol~(-1). The mechanically activated stored energy of cupric oxide by planetary ball mill is about 23.5kJ·mol~(-1), by attritor ball mill is about 24.2kJ·mol~(-1). The mechanically activated stored energy of nickel monoxide by planetary ball mill is about 30.4kJ·mol~(-1), by attritor ball mill is about 32.2kJ·mol~(-1).
     (3) The increase of the specific surface energy of mechanically activated Zinc oxide, cupric oxide and nickel monoxide is not the main reason. The mechanically activated stored energy is closely related to the lattice distortions.
     (4) The efficiency of attritor ball mill is higher than which of planetary ball mill, got higher activated storage energy in a shorter time.
引文
[1] M. Abdellaoui and E. Gaffet. The physics of mechanical alloying in a planetary ball mill: mathematical treatment. Acta.Metall.Mater,1995,43(3) :108-114
    
    [2]陈津文,吴年强,李志章.描述机械合金化过程的理论模型.材料科学与工程,1 998,16(1):19-23
    
    [3] D. R. Maurice and T. H. Courtney. Modelling of mechanical alloying : part Ⅱ. Applications of computational programs. Metall. Trans. 1990; 26A : 2437-2455
    
    [4] K. Brianumurthy, G. B. Kale, S. K. Khera, et al.. Solid-state diffusion reaction and formation of intermetallic compounds in the Nickel-Zirconium system. Metall.Trans. A, 1994; 25A : 2897-2903
    
    [5] R. B. Schwartz and C. C. Koch. Formation of amorphous aloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics. Appl.Phys. Lett. 1986 ; 49(3): 146-151
    
    [6] R.M. Davis, B. MC. Dermott and C. C. Koch. Mechanical alloying of brittle materials. Metall.Trans.A,1988, 19A : 2867-2884
    
    [7] Takehiko Kikuchi, Setsuo Kajiwara and Yo Tomota. Microscopic studies on sress-induced martensite transformation and its reversion. Mater. Trans. JIM, 1995, 36(6): 719-728
    
    [8] B.A. Bilby, A. H. Cottrell, and K.H. Swinden, The spread of plastic yield from a notch, Proc. Roy. Soc, 1963, A272, pp. 304-314
    
    [9] W. Ostwald, Handbuck der allgemeinen Chemie, Akad Verlagsanstalt, LeiPzig, 1919:71
    
    [10] Magini ,Colella C , Iasonna A ,et al. Power measurements during mechanical milling II. The case of "single path cumulative" solid state reaction 1 Acta Metall Mater ,1998 ,46 (8): 2841 - 2850
    
    [11] Murty B S , Mothan Rao M , Ranganathan S1 Milling maps and amorphization during mechanical alloyingl Acta Metall Mater ,1995 ,43 (6) : 2443 -2450
    
    [12]梁国宪,机械合金化形成二元非晶态合金过程的研究:[工学博士论文].哈尔滨:哈尔滨工业大学,1992
    
    [13] F. Kh. Urakaev and V. V. Boldyrev. Mechanism and kinetics of mechanochemical processes in comminuting devices. 1. Theory. Powder Technology, 2000,107 :93-107
    [14] F. Kh. Urakaev and V. V. Boldyrev. Mechanism and kinetics of mechanochemical processes in comminuting devices. 2. Applications of the theory and the experiment. Powder Technology, 2000, 107 : 197-206
    [15] R. F. Strickland-Constable. Kinetics and mechanism of crystallization from the fluid phase and of the condensation and evaporation of liquids. New York: Academic Press, 1968. 241-244
    [16] V. V. Boldyrev, E. G. Avvakumov, L.I.Strugova, I.V. Shmidt. Izv. Sib. Otd. Akad. Nauk SSSR. Ser. Knim. Nauk, 1972, 9 : 122 (in Russian)
    [17] V. V. Boldyrev. Reactivity of solids (For Thermal decomposition as an example). SO RAN, Novosibirsk, 1997. 25-27 (in Russian)
    [18] E.G. Awakumov. Mechanical methods of the activation of chemical processes. Nauka, Novosibirsk, 1986. 45-47 (in Russian)
    [19] F. Kh. Urakaev. Desintegratornaya Tekhnologiya (UDA Technology). KTIPP, Kiev, 1991. 49-51 (in Russian)
    [20] E.G. Awakumov and F. Kh. Urakaev. Kinetics and mechanism of solid-phase reactions. Kemerovo, 1983. 57-59 (in Russian)
    [21] F. Kh. Urakaev and E.G. Awakumov. H. Jost. Isv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1979, 9: 8( in Russian)
    [22] F. Kh. Urakaev, E.L. Goldberg, A.F. Yeremin and S.V. Pavlov. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1985,17 : 22 (in Russian)
    [23] K. Sasaki, H. Konno and M. Inagaki. Structure strain in pyrites evaluated by X-ray powder diffraction. Jouma lof Materials Science, 1994,29 : 1666-1669
    [24] K. A. Natarajan .Ball wear and its control in the grinding of a lead-zinc sulphide ore. International Joumal of Mineral Proeessing, 1992, 34 : 161-175
    [25] M.N. Lehmann, S. O'Leary, J. G. Dunn. An evaluation of pretreatments to increase gold recovery from a refractory ore containing arsenopyrite and pyrrhotite. Minerals Engineering, 2000, 13(1): 1-18
    [26] D. Maurice and J. A. Hawk. Ferric chloride leaching of mechanically activated chalcopyrite. Hydrometallurgy, 1998, 49:10
    [27] Hc. J.Warris and P.G. McCormick. Mechanochemical processing of refractory pyrite, Minerals Engineering. 1997, 10( 10): 1119-1125
    [28] Jose F. Fernandez-Bertran. Mechanochemistry : an overview. Pure Appl.Chem., 1999, 71(4): 581-586
    
    [29] A. Z. Juhasz, K. Peters. Meehanieal Aetivation of Minerals by grinding : Pulverizing and Morphology of Partieles, Chiehester : Ellis Horwood Limitted, 1990:11.
    
    [30] K. Peters. Mechanoehemisehe Peaktionen. H.RumPf(Ed.), FirstEuro.SymP. Zerkleinern, Frankfurt, 1962, 78-98.
    
    [31] N.Nikolic, T. Srecovic and M. M. Ristic. The influence of mechanical Aetivation on zine stallnate spinel formation. Journal of the European Ceramic Society, 2001, 21 (10-11): 2071 -2074
    
    [32]K. Sasaki, T. Masuda, H. Ishida, et al. Synihesis of cacium silicate hydrate With Ca/Si2 by mechanoehemical treatment. J. Am. Ceram. Soc, 1997, 80(2): 472-476
    
    [33] P. Druska, U. Steinike. Surface Structure of Mechanically Activated and of Mechanosynthesized Zinc Ferrite[J]. Journal of Solid State Chemistry 1999, 146 : 13-21
    
    [34] W. Mulak, P. Balaz,M. Chojnack. Chemical and morphological changes of millerite by mechanical activation [J]. Int. J. Miner. Process. 2002 , 66 : 233-240
    
    [35] A.Gajovic,K. Furic, N.Tomasic. Mechanochemical preparation of nanocrystalline TiO_2 powders and their behavior at high temperatures [J]. Journal of Alloys and Compounds 2005, 398:188-199
    
    [36] V.Berbenni,A.Marini, N.J. Welham. The effect of mechanical milling on the solid state reactions in the barium oxalate-iron(III) oxide system[J]. Journal of the European Ceramic Society 2003, 23 : 179-187
    
    [37]胡惠萍,陈启元,尹周澜,等.机械活化黄铁矿的热分解动力学[J].中国有色金属学报,2002,12(3):611-615
    
    [38] Forssberg E. Surface and structural changes in wet ground minerals[J]. Powder Technology, 1991,68 : 23-29
    
    [39] V.V. Boldyrev, S.V. Pavlov, E.L. Goldberg. Interrelation between fine grinding and mechanical activation [J]. Int. J. Miner. Process. 1996, 44-45 : 181-185
    
    [40] Lin I J. Alteration of mineral properties during grinding through mechanical reactions[A]. XVI International Mineral Processing Congress[C],1998, 231-244
    
    [41] Shall H E, Somasundaran P. Physico-chemistry aspects of grinding : a revies of use of additives [J]. Powder Technology, 1984,(3 8) : 257-293
    
    [42] Lin I J. Changes in the state of solids and mechano-chemical reactions in prolonged comminution processes[J]. Minerals Sci. Engng, 1975,7(4) : 313-336
    
    [43] E.Godocikova, P. Balaz, J.M. Criado. Thermal behaviour of mechanochemically synthesized nanocrystalline CuS. Thermochimica Acta . 2006, 440: 10-22
    
    [44] Tadej Rojac, Marija Kosec, Barbara Malic. Mechanochemical synthesis of NaNbO_3[J]. Materials Research Bulletin ,2005, 40 : 341-345
    
    [45] B. D. Stojanovic, A. Z. Simoes, C. O. Paiva-Santos. Mechanochemical synthesis of barium titanate [J]. Journal of the European Ceramic Society , 2005, 25 : 1985-1989
    
    [46] P. P. Chin, J. Ding, J. B. Yi. Synthesis of FeS_2 and FeS nanoparticles by high-energy mechanical milling and mechanochemical processing[J]. Journal of Alloys and Compounds 2005, 390 : 255-260
    
    [47] V. Berbenni, A. Marini, P. Matteazzi. Solid-state formation of lithium ferrites from mechanically activated Li_2CO_3-Fe_2O_3 mixtures[J]. Journal of the European Ceramic Society , 2003, 23 : 527-536
    
    [48] P.Balaz, E. Godocikova, L.Kril'ova. Preparation of nanocrystalline materials by high-energy milling. Materials Science and Engineering A , 2004, 386 : 442-446
    
    [49]林元华,翟俊宜,王海峰,等.机械化学合成纳米ZnO粉体[J].无机材料学报,2003,3:673-676
    
    [50]吴年强.机械合金化中的固态反应[J].材料导报,1999,13(6):12-14
    
    [51]李运姣,李洪桂,赵中伟,等.机械活化-湿化学合成LiMn_2O_4的组成、结构与表征[J].中国有色金属学报,2004,14(S1):112-118
    
    [52] Vladimir V.Volkov, Klavdi G. Myakishev. Mechanochemical reactions in the chemistry of boranes. Inorganica Chimica Acta. 1999, 289 : 51-57
    
    [53] Katharina Brodka-Pfeiffer, Peter Langguth. Influence of mechanical activation on the physical stability of salbutamol sulphate. European Journal of Pharmaceutics and Biopharmaceutics. 2003, 56 : 393-400
    
    [54] R.A.Varin, Ch. Chiu. Synthesis of nanocrystalline magnesium diboride (MgB2) metallic superconductor by mechano-chemical reaction and post-annealing. Journal of Alloys and Compounds. 2006, 407 : 268-273
    
    [55]杨华明,邱冠周,王淀佐.特殊功能粉体的机械化学合成[J].金属矿山,2001, (1):21-23
    
    [56] P. Balaz and I.Ebert. Oxidative leaching of mechanically activated sphalerite[J]. Hydrometallurgy, 1991, 27 : 141-150
    
    [57]黎铉海,粟海锋,黄祖强,等.机械活化强化浸出过程的理论分析及其应用[J].有色金属,2000,52(4):136-139
    
    [58] P. Balaz, E. Post and Z. Bastl. Thermoanalytical study of mechanically activated cinnabar[J]. Thermochimimica Acta, 1992, 200 : 371-377
    
    [59] P. Balaz,F. Sekula, S. Jakabsky. Application of attrition grinding in alkaling leaching of tetrahedrite[J]. Minerals Engineering, 1995, 8(11): 1299-1308
    
    [60]张雪轻,李春,梁斌.钛铁矿机械活化强化浸出的研究[J].钢铁钒钛.2005,26(2):11-15
    
    [61]赵秦生.机械活化在俄罗斯钨精矿分解中的应用[J].稀有金属与硬质合金,2005,33(2):31-35
    
    [62]郑雅杰,彭春丽,肖忠良,等.机械活化硫铁矿还原Fe~(3+)反应动力学[J].中南大学学报(自然版),2004,35(3):376-380
    
    [63]陈启元,胡惠萍,尹周澜.硫化矿机械活化机理研究现状与展望[J].中国稀土学报,2004,22(专集):117-127
    
    [64] K. Tkacova. Mechanical activation of minerals. Printed in Czechoslovakia, 1989:64-65
    
    [65] Hans-Joachim Huhu. Thermoanalytical investigation of the oxidative decomposition of mechanically activated chalcopyrite[J]. Thermochimimica Acta. 1985,93 : 709-712
    
    [66]李洪桂,赵中伟,赵天从.机械活化黄铜矿的物理化学性质[J].中南工业大学学报,1995,26(3):349-352
    
    [67] Dao-Zhi Sun, Li-Zhi Cheng, Yu-Mei Zhang. Calorimetry study ball milled powders.Journal of Alloys and Compounds[J]. 1992,186(1): 33-35
    
    [68] V. Berbenni, A. Marini, N. J. Welham. The effect of mechanical milling on the solid state reactions in the barium oxalate-iron(Ⅲ) oxide system[J]. Journal of the European Ceramic Society 2003,23 : 179-187
    
    [69] E. Godocikova,P. Balaz, J.M. Criado. Thermal behaviour of mechanochemically synthesized nanocrystalline CuS[J]. Thermochimica Acta . 2006, 440 : 19-22
    
    [70] Nivoix, Virginie, Bernard, Frederic, Gaffet, Eric. Mechanical activation conditions of the Fe_2O_3 and V_2O_3 mixture powders in order to obtain a nanometric vanadium spinel ferrite[J]. Powder Technology. 1999,105(1-3): 155-161
    
    [71]肖忠良.机械活化硫化矿能量学研究(中南大学博士论文)[D].长沙:中南大学,2003
    
    [72]胡惠萍,陈启元,尹周澜,等.未活化与机械活化闪锌矿的氧化行为[J].中国有色金属学报,2003,(2):517-521
    
    [73] V. Berbenni, A. Marini. Oxidation behaviour of mechanically activated Mn_3O_4 by TGA/DSC/XRPD[J]. Mater Res Bull. 2003, 38(14): 1859-1866
    
    [74]肖忠良,陈启元,尹周澜,等.机械活化闪锌矿的量热研究[J].中国有色金属学报,2003,(5):1288-1291
    
    [75] Zhongliang Xiao, Qiyuan Chen, Zhounan Yin. Calorimetric study of the me(?)hemically activated sphalerite[J]. Thermochimica Acta, 2003, 404 : 265-270
    
    [76] Zhongliang Xiao, Qiyuan Chena, Zhoulan Yin. Calorimetric studies on leaching of mechanically activated sphalerite in FeCl_3 solution[J]. Thermochimica Acta. 2004,416: 5-9
    
    [77] Zhongliang Xiao, Qiyuan Chena, Zhoulan Yin. Calorimetric investigation on mechanically activated storage energy mechanism of sphalerite and pyrite[J]. Thermochimica Acta.2005,436 : 10-14
    
    [78] SETARAM, Calvet microcalorimeter high temperature model, ambient up to1000℃. SETARAM. 1980
    
    [79]王常珍.冶金物理化学研究方法.北京:冶金工业出版社.1982:145-153
    
    [80]刘劲松,曾宪诚,热动力学对比进度法:热导式热量计的单参数理论模型与热谱重建.化学学报.2994,52(7),639-645
    
    [81]邓郁,热动力学的研究(I).高等学校化学学报.1985,6(7),621-626
    
    [82]田安民,秦自明,曾宪诚等,RD-I型热导式自动量热计的研制.高等学学报.1981,2(2),244-250
    
    [83] Nevrceiva, M., Sedmidubsky, D., Leitner, J.. Calibration of the SetaramHigh-temperature calorimeter for determination of heat capacity of phases in the Sr-Cu-O system.Thermochimica Acta 2000, 347 : 123-128
    
    [84] K. Ballerat-Busserollesl, M. L. Origlia, E. M. Woolley Calibration of a fixed-cell temperature- scanning calorimeter to measure precise solution heat capacities from 275 to 398 K at 0.35 MPa, Thermochimica Acta, 2000, 347 : 3-7
    
    [85] U. Chaturvedia, A. Favarab, M.Gataullina, et al.Calibration of the L3 BGO Calorimeter using an RFQ accelerator. Nuclear Instruments and Methods in Physics Research A 2001, 461 : 376-377
    [86] G. De Domenico, D. G . Lister, G. Maschio and A. Stassi. On-line Calibration and determination of the heat of reaction for lavoratory acale heat transfer calorimeters. Journal of Thermal Analysis and Calorimetry, 2001, 66 : 815-826.
    [87] Donald D. Wagman, William H. Evans, Vivian B. Parker, et al. The NBS Tables of Chemical Thermodynamic Properties. Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units. Journal of Physical and Chemical Reference Data, 1982, 11(suppl.2): 2-330
    [88] Samad Ahadian, Siamak Moradian, Farhad Sharif et al. Application of artificial neural network (ANN) in order to predict the surface free energy of powders using the capillary rise method. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007,302 : 280-285
    [89] Bronistaw Jaficzuk, Wiestaw Wojcik, Anna Zdziennicka. Determination of surface-flee energy components of syntheticchalcocite from contact angle measurements. Powder Technology, 1993, 76 : 233-239

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700