纳米流体的稳定性及其对流传热特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着MEMS技术的发展,纳米流体因其独特的热物理性质而成为当今研究的热点。纳米流体是指将一定量的纳米级(<100nm)固体颗粒均匀分散在传统流体(水、酒精、乙二醇等)中制得的稳定的悬浮液。论文以纳米流体为研究对象,对其制备方法、稳定性及其粘度、微管道中的流动特性、及其对流传热特性进行了研究。
     首先,本文采用“两步法”制备了含有不同质量分数的Cu-水纳米流体。研究了分散剂(SDBS)的用量对纳米流体稳定性的影响。实验结果表明在基液中添加与Cu纳米颗粒质量分数相当的SDBS而制得的纳米流体较稳定。同时,并对Cu-水纳米流体的粘度进行研究。研究发现纳米流体的粘度随着颗粒质量分数的增加而增加。
     其次,采用实验与数值模拟相结合的方法对微管道中压力驱动下质量分数为1%的Cu-水纳米流体的流动特性进行了研究。研究发现纳米流体的流量-压力特性基本呈线性关系,其流动特性符合单相流体的假设,并且随着驱动压力的增大流量增大。但模拟结果与实验结果之间存在一定的差异,主要是由于基液中颗粒的团聚结构、纳米流体粘度的变化、尺度效应、分散剂的使用和边界滑移等因素所致。
     最后,通过数值模拟的方法研究了层流状态下雷诺数、体积分数、颗粒和基液种类以及颗粒粒径对纳米流体对流传热特性的影响。研究结果表明纳米流体的对流传热系数明显高于基液,并且与基液和颗粒的性质、颗粒的体积分数及颗粒粒径密切相关。纳米流体的对流传热系数随着颗粒和基液热导率的增加、颗粒体积分数的增加以及颗粒粒径的减小而增大。研究发现对于一定体积分数的Cu-水纳米流体,在层流状态下对流传热系数的提高程度基本保持一致,与雷诺数大小无关。
With the rapid development of MEMS, Nanofluids have become today's research focus for the predominant thermophysical properties. Nanofluids are the stable suspensions prepared by dispersing nanometer-sized particles (<100nm) in the conventional fluid such as water, alcohol or glycol. In the present study, the preparation methods、stability、viscosity、flow characteristics in micro-channels and convective heat transfer characteristics have been studied.
     Firstly, the two-step method was adopted to prepare the Cu-Water nano-fluid with different mass faction of particles. In this article, the effect of SDBS dispersant concentrations on the stability of nanofluids has been investigated. The result shows that nanofluid has better stability when the mass faction of Cu particles is the same as SDBS dispersant concentrations. At the same time, the viscosity of Cu-Water nano-fluid has been studied. We found that the viscosity of nanofluids increases with an increase in the mass faction of Cu particles.
     Secondly, both numerical simulations and experimental study have been performed on the flow characteristics of Cu-water nanofluids including 1% mass faction of Cu nanoparticles. The results show that the mass flow of nanofluids is in line with the driven pressure, and the mass flow of nanofluids increases with increasing the driven pressure, and we found that single-phase hypothesis can be successfully applied to nanofluids. However, the numerical results are different from the experimental date, which is due to the cluster of nanoparticles in based fluids、changes in viscosity of nanofluids、the size effect、the concentrations of SDBS and the boundary slip.
     Finally, the effects of the Reynolds number、volume fraction and type of based fluid and nanoparticles on the convective heat transfer characteristics of nanofluids under the laminar flow conditions have been numerical studied by using single phase model. The computed results show that the convective heat transfer coefficient of nanofluids is higher than that of the based liquid, however, which is closely related to properties of the based liquid, nanoparticles, and its volume fraction. The heat transfer coefficient of nanofluids increases with increasing the thermal conductivity of nanoparticles and base fluid, and increases with an increase in the volume fraction of nanoparticles. The heat transfer coefficient of nanofluids almost keeps constant for Cu-water nanofluids with a fixed volume fraction, which has nothing to do with the Reynolds number.
引文
[1]Masuda H,Ebata A,Teramae K,Hishinuma N.Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles(dispersion of γ-Al2O3,SiO2 and TiO2ultra-fine particles)[J].Netsu Bussei(Japan),1993,4(4):227-233
    [2]Nemat-Nasser S,Hori M.Micromechanics:Overall properties of heterogeneous materials.The Netherlands:Eisevier.1993
    [3]Choi S U S.Enhancing Thermal Conductivity of Fluids with Nanoparticles[C].American Society of Mechanical Engineers,1995,231:99-105.
    [4]蔡艳华,马冬梅,王金刚等.纳米流体的制备及传热性能研究的现状[J].材料研究与应用,2007,1(4):274-276
    [5]Choi S U S,Eastman J A.Enhanced heat transfer using nanofluids[P].United stated patent,2001,6221275
    [6]朱海涛.纳米流体的制备、稳定及导热性能研究[D].山东:山东大学,2005
    [7]李强.纳米流体制备方法与输运参数的研究[D].南京:南京理工大学动力工程学院,2001
    [8]Eastman J A,Ch of S U S,Li S,Yu W,Thompson L J.Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles[J].Applied Physics Letters,2001,78(6):718-720
    [9]Xuan Y M,Li Q.Heat transfer enhancement of nanofluids[J].International Journal of Heat Fluid Flow,2000,21:58-64
    [10]Liu M Sh,Lin M Ch Ch,Tsai C Y,et al.Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method[J].International Journal of Heat and Mass Transfer,2006,49:3028-3033
    [11]Liu M Sh,Lin M Ch,Huang I Te,et al.Enhancement of thermal conductivity with CuO for nanofluids[J].Chem.Eng.Technol.,2006,29:1
    [12]Wang B X,Zhou L P,Peng X F,et al.15th Symposium on Thermophysical Properties[C].Boulder,Colorado,USA,2003
    [13]Lee S,Choi S U S,Li S,Eastman J A.Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticls[J].Heat TRANSFER,1999,121:280-289
    [14]Hu Z S,Dong J X.Study on antiwear and reducing friction additive of nanometer titanium oxide[J].Wear,1998,216(1):92-96
    [15]Eastman J A,Choi S U S,Li S,Thompson L J,Lee S.Enhanced Thermal Conductivity Through the Development of Nanofluids[J].Materials Research Society Symposium Proceedings,1997,457:3-11
    [16]X F Xi,D S Zhu,et al.Thermal Conductivity Enhancement Dependent pH and Chemical Surfactant for Cu-H2O Nanofluids[J].Thermochimica Acta,2008,469:98-103
    [17]Xuan Yimin,Roetzed W.Conceptions for Heat Transfer Correlation of Nanofluids[J].International Journal of Heat and Mass Transfer,2000,43(19):3701-3707
    [18]李强,宣益民.铜-水纳米流体流动与对流换热特性[J].中国科学(E辑),2002,32(3):331-337
    [19]李强,宣益民.纳米流体对流换热的实验研究[J].工程热物理学报,2002,23(6):721-723
    [20]He Yurong,Men Yubin,Zhao Yunhua,et al.Numerical Investigation into the Convective Heat Transfer of TiO2 Nanofluids Flowing through A Straight Tube under the Laminar Flow Conditions[J].Applied Thermal Engineering,2009,29(10):1965-1972
    [21]Y Hwang,J Lee,et al.Production and Dispersion Stability of Nanoparticles in Nanofluids[J].Powder Technology,2008,186(2):145-153
    [22]Y Xuan,Q Li.Investigation on convective heat transfer and flow features of nanofluids[J],International Jouranl of Heat Transfer,2003,125(1):151-155
    [23]S P Jiang,S U S Choi.Cooling Performance of A Microchannel Heat Sink with Nanofluids[J].Applied Thermal Engineering,2006,26:2457-2463
    [24]L Li,Y Zhang,H Ma,et al.An Investigation of Molecular Layering at the Liquid-Solid Interface in Nanofluids by Molecular Dynamics Simulation[J].Physics Letters A,2008,372:4541-4544
    [25]H Xie.Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture[J].International Journal of Heat and Mass Transfer,2005,48(14):2926-2932
    [26]J Koo,C Kleinstreuer.Impact Analysis of Nanoparticle Motion Mechanisms on the Thermal Conductivity of Nanofluids[J].International Communications in Heat and Mass Transfer,2005,32(9):1111-1118
    [27]Ding Yulong,Wen Dongsheng.Particle Migration in a Flow of Nanoparticle Suspensions[J].Powder Technology,2005,(149):84-92
    [28]Wang X W,Xu X F,Choi S U S.Thermal Conductivity of Nanoparticle-Fluid Mixture[J].Journal of Thermophysics and Heat Transfer,1999,13(4):474-480
    [29]Keblinski P,Phillpot S R,Choi S U S,Eastman J A.Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles(Nanofluids)[J].International Journal of Heat and Mass Transfer,2002,45(4):855-863
    [30]刘静,周一欣.中国发明专利[P].02131419.5,2002
    [31]马坤全,刘静.纳米流体研究的新动向[J].物理,2007,4(36):295-300
    [32]李新芳,朱冬生.纳米流体传热性能研究进展与存在问题[J].化工进展,2006,25(8):875-879
    [33]郭顺松.纳米流体热物理特性的研究[D].浙江:浙江大学,2006
    [34]王补宣,李春辉,彭晓峰.纳米颗粒悬浮液稳定性分析[J].应用基础与工程科学学报,2003,11(2):167-173
    [35]饶坚,陈沙鸥,戚凭等.分散剂(PMAA-NH4)质量分数和pH值对纳米氧化锆悬浮液分散效果的影响[J].青岛大学学报,2003,16(3):37-39
    [36]王补宣,李春辉,彭晓峰.黏度对纳米颗粒悬浮液稳定性的影响[J].上海理工大学学报,2003,25(3):209-212
    [37]J H Lee,K S Hwang,S P Jang,B H Lee,et al.Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3nanoparticles[J].International Journal of Heat and Mass Transfer,2008,51:2651-2656
    [38]S M S Murshed,K C Leong,C Yang.Investigations of thermal conductivity and viscosity of nanofluids[J].International Journal of Thermal Sciences,2008,47(5):560-568
    [39]彭小飞,俞小莉,夏立峰等.低浓度纳米流体粘度变化规律试验[J].农业机械学报,2007,38(4):138-141
    [40]李新芳,朱冬生.Cu-H_2O纳米流体的粘度研究[J].湖南工程学院学报,2009,2(19):21-24
    [41]韩占忠,王敬,兰小平.Fluent流体工程仿真计算实例与应用[M].第一版.北京:北京理工大学出版社,2008
    [42]王福军.计算流体动力学分析--CFD软件原理与应用[M].北京:清华大学出版社,2004
    [43]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].第一版.北京:清华大学出版社,2007
    [44]凌智勇,刘勇,丁建宁等.亲水性和疏水性微管道中流动滑移特性的实验研究[J].中国机械工程,2006,17(22):2326-2329
    [45]Jamel Mohammed Saleh编,邓郭夏译.流体流动手册[M].北京:中国石化出版社,2004
    [46]蒋仁杰.液体在微管中流动特性的研究[D].浙江:浙江师范大学,2006
    [47]Namburu P K,Das D K,Tanguturi K M,et al.Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties[J].International Journal of ThermalSciences,2009,48(2):290-302
    [48]Hwang K S,Jang S P,Choi S U S.Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime[J].International Journal of Heat and Mass Transfer,2009,52:193-199
    [49]He Yurong,Men Yubin,Zhao Yunhua,et al.Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions[J].Applied Thermal Engineering,2009,29(10):1965-1972
    [50]Cui Haihan,Silber-Li Zhanhua,Zhu Shannong.Flow characteristics of liquids in microtubes driven by a high pressure[J].Physics of Fluids,2004,16(5):1803-1810
    [51]Karthikeyan N R,Philip J,Raj B.Effect of clustering on the thermal conductivity of nanofluids[J].Meterials Chemistry and Physics,2008,109(1):50-55
    [52]李强.纳米流体强化传热机理研究[D].南京:南京理工大学,2004
    [53]杨画春.纳米流体强化传热特性的研究[D].山东:青岛科技大学,2007
    [54]Jiang Fangming,Sousa A C M.Effective thermal conductivity of heterogeneous multi-component materials:An SPH implementation[J].Heat and Mass Transfer/Waermeund Stoffuebertragung,2007,43(5):479-491
    [55]Zhang Xing,Gu Hua,Fujii Motoo.Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticales[J].Journal of Applied Physics,2006,100(4):1-5
    [56]《实用化学手册》编写组.实用化学手册[M].北京:科学出版社,2001.1
    [57]李梦龙.化学数据速查手册[M].北京:化学固液出版社,2003.2
    [58]无锡真等.物理手册[M].北京:北京大学出版社,2004
    [59]周一平,唐英等.实用大学物理手册[M].长沙:湖南科学技术出版社,2005
    [60]Ulzie Rea,Tom McKrell,et al.Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia nanofluids[J].International Journal of Heat transfer,2009,52:2042-2048
    [61]林红.纳米流体强化传热特性的理论及实验研究[D].山东:青岛科技大学,2008
    [62]A L Godson,V Nandigana,G S Kumar,L D Mohan.Experimental study on forced convective heat transfer with low volume fraction of CuO/Water nanofluid[J].Energies,2009,2(1):97-119
    [63]Anoop K B,Sundararajan T,Das Sarit K.Effect of particle size on the convective heat transfer in nanofluid in the developing region[J].International Journal of Heat and Mass Transfer,2009,52(9-10):2189-2195
    [64]Kim,Doohyun,et al.Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions[J].Current Applied Physics,2009,9(2):119-123
    [65]Wen Dongsheng,Lin Guiping,Vafaei Saeid,Zhang Kai.Review of nanofluids for heat transfer applications[J].Particuology,2009,7(2):141-150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700