纳米流体强化倾斜微槽道热管换热特性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对使用纳米流体为传热工质的倾斜轴向微槽道热管的传热特性进行了实验研究,考察纳米流体对此类热管的强化效果。分析了纳米流体的浓度、热管工作压力、热管倾斜角度、纳米颗粒种类、冷却条件等因素对热管蒸发、冷凝换热系数、总热阻及最大传热量的影响。此外,还研究了使用纳米流体后热管内壁的表面特性。
     实验结果表明:
     (1)使用Cu纳米流体为工质的强化微槽道热管比传统的使用去离子水为工质的热管具有更均匀的壁面温度分布,蒸发、冷凝换热系数均大幅增加,总热阻降低,且最大热流密度大幅升高。
     (2)纳米流体浓度对微槽道热管的换热性能和最大热流密度均有明显的影响。Cu纳米流体强化微槽道热管存在最佳浓度,本实验中Cu纳米流体的最佳质量浓度为1 wt%。
     (3)纳米流体的强化作用在低压工况下更显著。当热管的工作压力为7.45 kPa,纳米流体在最佳浓度1 wt%时,纳米流体强化微槽道热管的蒸发、冷凝换热系数相比去离子水为工质的热管平均增加了60%,热管的总热阻平均减小25%,最大热流密度平均增加了55%。
     (4)微槽道热管的倾斜角度对热管性能强化作用明显。在热管倾斜时,不仅蒸发、冷凝换热系数相较于水平热管大幅增加,平均增加了70%,总热阻大幅减小,平均减小了33%,最大热流密度也平均增加了一倍。并且,微槽道热管的换热性能在接近竖直时达到最佳,本实验的最佳倾斜角度是75°。
     (5)不同的颗粒种类对倾斜微槽道热管的强化作用是不同的,由于本身的导热系数等原因,Cu纳米流体比CuO纳米流体对微槽道热管的换热性能的强化作用更显著。
     (6)定冷却条件下,随着加热功率的增加,热管的稳定温度逐渐升高。冷却水流量一定的情况下,冷却水温度越低,相同加热功率下,热管的稳定工作温度越低。
     (7)纳米流体强化微槽道热管的动态启动时间比使用去离子水为工质的微槽道热管启动时间优化,最大启动功率也提高。热管的动态启动最大启动功率小于稳态启动工况的最大启动功率。
     (8)实验后实验段内壁表面会形成一层均匀的沉积层。此沉积层能使热管的换热得到强化
     因此,纳米流体为工质的强化倾斜微槽道热管在低压下运行可以显著提高换热特性。纳米流体是一种能强化微槽道热管换热性能的新型工质。
An experimental investigation was carried out to study the heat transfer enhancement of an inclined axial miniature grooved heat pipe using Cu nanofluid as the working fluid. The effects of mass concentration of Cu nanoparticles, operating pressure, inclined angle of heat pipe, nanoparticle sort and cooling condition were discussed. The results showed in terms of axial temperature distribution, heat transfer coefficients of evaporator and condenser sections, critical heat flux and total heat resistance of the heat pipe. Besides, the characteristics of heat pipe inner surface after experiment was analyzed.
     The experimental results indicate that:
     (1) The temperature distribution along heat pipe appears to be more uniform owing to the reduction of temperature for using nanofluid compared with water. The coefficients of heat transfer and critical heat flux increase obviously while total heat resistant decrease remarkably when substituting Cu nanofluid for water as the working fluid of miniature heat pipe.
     (2) The mass concentration of nanoparticles has apparent influences on both heat transfer coefficients and critical heat flux. The mass concentration of 1.0 wt% corresponds to the optimum heat transfer.
     (3) The minimum operating pressure of 7.45 kPa corresponds to the maximum heat transfer enhancement and the maximum critical heat flux enhancement. At that working pressure, the heat transfer coefficients of evaporator section averagely enhance by 60%, total heat flux decrease by 25% and the critical flux can be enhance by 55% when substituting the 1.0 wt% Cu nanofluids for water.
     (4) The influence of gravitation is obvious in the axially direction. Therefore the effect of inclination angle on the performance of miniature grooved heat pipe is obvious. There exist a optimize angle 75°corresponds to the maximum heat transfer coefficient and critical heat flux. The heat transfer coefficients of evaporator section averagely enhance by 70%, total heat flux decrease by 33% and the critical flux nearly can be double when the heat pipe was inclined.
     (5) The enhancement ratio is different when using different nanoparticles. Cu nanofluid has better enhancement effect than CuO nanofluid because its thermal conductivity is much higher.
     (6) With certain cooling condition, heat pipe operating temperature increase with the input power. When heat flux is definite, the lower cooling water temperature is, the lower heat pipe operating temperature. The average temperature of evaporator section decrease and critical heat flux increase when using Cu nanofluid as working fluid of the heat pipe.
     (7) The startup time is shorter when deionized water is substituted by 1 wt% Cu nanofluid, and the critical heat flux of startup unsteadily is lower than startup steadily.
     (8) An extremely thin porous layer forms on the inner surface of the heat pipe after the experiment. The existence of the porous layer can reduce the solid-liquid contact angle hence increase critical heat flux.
     Experimental results show that nanofluid can greatly increase the heat transfer characteristics of the inclined miniature grooved heat pipe at low operating pressure. Nanofluid is a potential new kind of working fluid of heat pipe to enhance the heat transfer efficiency.
引文
[1]徐维新电子设备可靠性热设计指南北京:电子工业出版社1995
    [2]庄骏,张红热管技术及其工程用[M]化学工业出版社2000
    [3]邱海平电子元器件及仪器的热控制技术[M]北京:电子工业出版社1991
    [4] C.W. Sohn, M.M. Chen. Microconvective thermal conductivity in disperse two-phase mixture as observed in a low velocity couette flow experiment [J]. Journal of Heat Transfer, 1981(103): 47-51
    [5] S.U.S. Choi. Enhancing thermal conductivity of fluids with nanoparticles, in: Siginer D A, Wang H P, eds., Developments and Applications of Non-Newtonian Flows, New York, ASME, FED-Vol.231/MD-Vol.66, 1995: 99-103
    [6] S. Iijima. Helical microtubules of graphitic carbon, Nature 1991, 354 (6348): 56–57
    [7] K.S. Choi. Breakdown of the Reynolds analogy over drag reducing reblets surface, Appl. Sci. Res., 1993(51): 149-155
    [8] S. W. Chi. Heat pipe theory and practice. McGraw-Hill. 1976
    [9] Levy E. K. Theoretical investigation of heat pipes operating at low vapor pressure [J]. J. Eng. Ind., 1968(90): 547-552
    [10] Kemme J. E. Ultimate heat pipe performance [J]. IEEE Transaction on Electron Devices, 1969, ED-16: 717-723
    [11] Deverall J. E., Kemme J. E., Florschuetz, L. W. Sonic limitations and startup problems of heat pipe. Los Alamos Scientific Laboratory Rept. LA-4518, Sep. 1970
    [12] H. Howard, W. Markctein. Cooling techniques for today’s electronics [J]. EP&P, 1997(5): 78-82
    [13] Cotter T. P. Theory of heat pipes. Los Alamos Scientific Laboratory, Rept. LA-3246-MS, Feb. 1965
    [14] Staio Y., Mochizuki M., Goto K. et al. The application for personal computer using heat pipe technology [C]. 10”IHPCV Preprints of Session e6 Stuttgart Ape, 1997: 21-25
    [15]庄骏,徐通明,石寿椿热管与热管换热器[M]上海交通大学出版社1989
    [16] D. K. Khrustalev, A. Faghri. Thermal characteristics of conventional and flat miniature axially grooved heat pipes [J]. Journal of heat transfer, 1995(117): 1048-1054
    [17] Cao Y., Gao M., Beam JE. et al. Experiments and analyses of flat miniature heat pipes [J]. AIAA. J. Thermo-physics and Heat Transfer, 1997(11): 158-164
    [18] A.J. Jiao et al. Evaporation heat transfer characteristic of a grooved heat pipe with micro-trapezoidal grooves [J]. Heat Mass Transfer, 2007(10): 1016
    [19] S. J. Kim, J. K. Seo, K. H. Do. Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure. Int. J. Heat Mass Transfer. 2003(46): 2051-2063
    [20] C. Goffaux, S. Pierret, S. Rossomme, V. Kelner, S. Van Oost and L. Barremaecker. Geometric optimization of grooved heat pipes by a genetic algorithm technique. Proceedings of the 6th International Conference on Heat Pipes, Heat Pumps and Refrigerators, Minsk, 2005
    [21] Itoh, F. Polask. Micro Heat Pipes and Their Application in Industry, Proc. Czechoslovak-Japanese Symposium on Heat Pipes, 1990b. Ricany, Czechoslovakia.
    [22] D. K. Khrustalev, A .Faghri. Heat Transfer during Evaporation and Condensation on Capillary-Grooved Structures of Heat Pipes, Proc. ASME Winter Annual Meeting, Nov.13-18, Chicago, 1994
    [23] M. Oomi, T. Fukumoto, T. Sotani. A heat pipe system for cooling a desktop computer, Adv. Electron. Packaging 2, 1999: 1951-1955
    [24]栾涛,曹洪振,程林,曲燕热源位置对轴向槽道热管传热的影响[J]化工学报2007, 58(4)
    [25]曹洪振,程林,栾涛,柏超梯形轴向槽道热管传热特性的实验研究中国工程热物理学会传热传质学学术会议论文集2006(1100): 1472-1476
    [26]德军,辛明道,廖全三维内微肋水热管强化传热实验能源研究与信息2002, 18(4)
    [27]张利红,梁惊涛液氮温区小型轴向槽道热管的实验研究[J]真空与低温2003, 9(3): 163-166
    [28]华诚生氮槽道低温热管的性能研究及低温氖热管的应用工程热物理学报1981, 114 (2)
    [29]靳明聪,辛明道,郭美华,阐明辉小型热管传热性能实验,第四届全国热管会议论文1984: 71-750
    [30]张丽春,马同泽,张正芳等微槽平板热管传热性能的实验研究[J]工程热物理学报2003, 24(3): 493-495
    [31]张丽春,马同泽,葛新石微小型多槽平板热管的流动和传热分析及实验研究[J]中国科学技术大学学报2003(33): 450-459
    [32]舒水明,林春花,桑兰芬内螺纹重力热管的特性分析华中科技大学学报(自然科学版) 2003.6 , 31(6)
    [33] Salem A. Said, Bilal A. Aksah. Experimental performance of a heat pipe. Int. Comm. Heat Mass Transfer, 1999, 26(5): 679-684
    [34] S. H. Moon et al. Experimental study on the thermal performance of micro-heat pipe with cross-section of polygon, Microelectronics Reliability, 2004(44): 315-321
    [35]范春丽,曲伟,孙丰瑞,马同泽重力对微槽道平板热管传热性能的影响热能动力工程2004. 01, 19(1)
    [36]唐经文,吴双应,彭岚,李友荣倾斜热管内加固体粉末强化沸腾换热的研究[J]石油化工设备2005(04-0003-03): 1000-7466
    [37]曲燕,栾涛,程林放置倾角对轴向槽道热管传热特性影响的实验研究[J]宇航学报2006, 27(3)
    [38] Maxwell J. C. A treatise on electricity and magnetism [M]. 2”ded UK: Clarendon Press.1981
    [39] Jeffry D. J. Conduction through a random suspension of spheres [J]. Pro.R Soc London, Ser. A 1973: 335, 355-367
    [40] Hamiltion R. L., Grosser O. K. Thermal conductivity of heterogeneous two-component systems [J]. Industrial and Engineering Chemistry Fundamentals, 1962, 1(3): 187-191
    [41] Davis R H. The effective thermal conductivity of a composite material with spherical inclusions [J]. International Journal of Thereto-physics, 1986, 7(3): 609-620
    [42] Xuan Y. M., Wilfried R. Conceptions for heat transfer correlation of nanofluids [J]. International Journal of Heat and Mass Transfer, 2000(43): 3701-3707
    [43] Lu S., Lin H. Effective conductivity of composites containing aligned spherical physics inclusions of finite conductivity [J]. Journal of Applied, 1996, 79(9): 6761-6769
    [44] Leal L. G. On the effective conductivity of a dilute suspension of spherical drops in the limit of low particle Peclet number [J]. Chemical Engineering Communications, 1973, 1(1): 21-23
    [45] Gupte S. K., Advani S. Q., Hu Q. P. Role of micro-convection due to on-affine motion of particles in a mono-dispense suspension [J]. International Journal of Heat and Mass Transfer, 1995, 38(16): 2945-2958
    [46] Bruggeman D. A. G. Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I.Dielektrizitaskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen. Annalen der Physic Leipzig, 1935 (24): 636
    [47] Xue Q. Z. Model for effective thermal conductivity of nanofluids [J]. Phys. Lett AZO-03307313.17-39
    [48] Keblinski P., Phillpot S. R., Choi S. U. S., Eastman J.A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) [J]. Int. J. Heat Mass Trans, 2002, 45(8): 55-63.
    [49] Yu W., Choi S. U. S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model [J]. J. Nanopart. Res., 2003, 5(1): 67-71
    [50]胡卫峰,宣益民,李强纳米流体聚集结构的模拟及其分维数分析南京理工大学学报2002, 26(3): 229-234
    [51]宣益民,胡卫峰,李强纳米流体的聚集结构和导热系数模拟工程热物理学报2002, 23(2): 206-208
    [52]王补宣,周乐平等纳米颗粒悬浮液有效导热系数的分型模型自然科学进展2003, 13(9): 838-842
    [53] H. Akoh, Y. Tsukasaki, S. Yatsuya et al. Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate. Journal of Crystal Growth, 1978(45): 495-500
    [54] M. Wagener, B. S. Murty, B. Gunther. Preparation of metal nanosuspensions by high-pressure DC-sputtering on running liquids, in: S. Komarnenl, J.C. Parker, H.J. Wollenberger (Eds.), Nanocrystalline and Nanocomposite Materials II, vol. 457, Materials Research Society, Pittsburgh, PA, 1997: 149-154
    [55] J. A. Eastman, S. U. S. Choi, S. Li et al. Enhanced thermal conductivity through the development of nanofluids. Materials Research Society Symposium- Proceedings, v 457, Nanophase and Nanocomposite Materials II, 1997: 3-11
    [56] C. H. Lo, T. T. Tsung, L. C. Chen. Shape-controlled synthesis of Cu based nanofluid using submerged arc nanoparticle synthesis system (SANSS). Journal of Crystal Growth 2005, 277 (1–4): 636-642
    [57] S. Lee, S. U. S. Choi, S. Li et al. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, Transactions ASME. 1999, 121(2): 280-289
    [58] X. W. Wang, X. F. Xu, S. U. S. Choi. Thermal conductivity of nanoparticle-fluid mixture. Journal of Thermophysics and Heat Transfer. 1999, 13(4): 474-480
    [59]王补宣,李春辉,彭晓峰纳米颗粒悬浮液稳定性分析应用基础与工程科学学报2003, 11(2): 167-173
    [60]李泽梁,李俊明,王补宣,胡海滔SDBS对氧化铜纳米颗粒悬浮液粘度的影响工程热物理学报2003, 24(5): 849-851
    [61] J. M. Li, Z. L. Li, B. X. Wang. Experimental viscosity measurements for copper oxide nanoparticle suspensions. Tsinghua Sci. Tech. 2002, 7(2): 198-201
    [62] T. Saito, K. Matsushige, K. Tanaka. Chemical treatment and modification of multi-walled carbon nanotubes. Physical B: Condensed Matter. 2002, 323(1-4): 280-283
    [63] Y. Wang, J. Wu, F. Wei. A treatment method to give separated multi-walled carbon nanotubes with high purity、high crystallization and a large aspect ratio. Carbon. 2003, 41(15): 2939-2948
    [64] C. C. Li, J. L. Lin, S. J. Huang et al. A new and acid-exclusive method for dispersing carbon multi-walled nanotubes in aqueous suspensions. Colloids and surfaces. 2007, 297(1-3): 275-281
    [65] S. K. Das, N. Putra, W. Roetzel. Pool boiling characteristics of nano-fluids. International Journal of Heat and Mass Transfer. 2003, 46(5): 851-862
    [66] Y. L. Ding, H. Alias, D. S. Wen et al. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer. 2006, 49(1-2): 240-250
    [67] J. Kestin, W.A. Wakeham. A contribution to the theory of the transient hot-wires technique for thermal conductivity measurements. Physica A. 1978(92): 102–116
    [68] Y. Nagasaka, A. Nagashima. Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wires method. Journal of Physics E: Scientific Instruments. 1981(14): 1435–1440
    [69] H. Masuda, A. Ebata, K. Teramae et al. Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion ofγ-Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussi (Japan). 1993(4): 227-233
    [70]周乐平,王补宣准稳态法测量纳米颗粒悬浮液的热物性工程热物理学报2003, 24(6): 1037-1039
    [71] W. Roetzel, S. Prinzen, Y. Xuan. Measurement of thermal diffusivity using temperature oscillations, in: C. Cremers, H. Fine (Eds.). Thermal Conductivity. vol. 21, Plenum Press, New York and London, 1990: 201–207
    [72] W. Czarnetzki, W. Roetzel. Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity. International Journal of Thermophysics. 1995, 16 (2): 413–422
    [73] S. K. Das, N. Putra, W. Roetzel. Temperature dependence of thermal conductivity enhancement for nanofluids. Transactions of ASME, Journal of Heat Transfer. 2003(125): 567-574
    [74] H. E. Patel, S. K. Das, T. Sundararajan. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and achemical effects. Applied physics letters. 2003, 83(14): 2931-2933
    [75] J. A. Eastman, S. U. S. Choi, S. Li et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters. 2001, 78(6): 718-720
    [76] S. M. S. Murshed, K. C. Leong, C. Yang. Enhanced thermal conductivity of TiO2-water based nanofluids. International Journal of Thermal Sciences. 2005, 44 (4): 367-373
    [77] T. K. Hong, H. S. Yang, C. J. Choi. Study of the enhanced thermal conductivity of Fe nanofluids. Journal of Applied Physics. 2005, 97(6): 1-4
    [78] K. Hong, T. K. Hong, H. S. Yang. Thermal conductivity of fe nanofluids depending on the cluster size of nanoparticles. Applied Physics Letters. 2006, 88 (3): 31901
    [79] W. H. Yu, S. U. S. Choi. Analysis of thermal conductivity and convective heat transfer in nanotube suspensions. American Society of Mechanical Engineers. Heat Transfer Division (Publication) HTD. 2002, 372(2): 205-206
    [80] Y. M. Xuan, Q. Li. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow. 2000(21): 58-64
    [81]李强,宣益民纳米流体热导率的测量化工学报2003, 54(1): 42-46
    [82]宣益民,李强纳米流体强化传热研究工程热物理学报2000, 21(4): 466-470
    [83]李强,宣益民纳米流体强化导热系数机理初步分析热能动力工程2002(17): 568-571, 584
    [84]李强纳米流体强化传热机理研究[博士学位论文]南京理工大学2004
    [85]蔡岸,刘震炎,奚同庚等无机纳米流体的热物性及其测试新方法的研究无机材料学报2004, 19(5): 1151-1157
    [86] H. Xie, J. Wang, T. Xi et al. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics. 2002, 91(7): 4568-4572
    [87] H. Xie, J. Wang, T. Xi et al. Thermal conductivity of suspensions containing nanosized SiC particles. International Journal of Thermophysics. 2002, 23(2): 571-580
    [88]谢华清,王锦昌,奚同庚等SiC纳米粉体悬浮液导热系数研究硅酸盐学报2001, 29(4): 361-364
    [89]谢华清,吴清仁,王锦昌等氧化铝纳米粉体悬浮液强化导热研究硅酸盐学报2002, 30(3): 272-276
    [90] H. Q. Xie, H. Lee, W. Youn et al. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. Journal of Applied Physics. 2003, 94(8): 4967-4971
    [91] G. Roy, C. T. Nguyen, D. Doucet et al. Temperature dependent thermal conductivity evaluation of alumina based nanofluids, In: G. de Vahl Davis and E. Leonardi, Editors. Proceedings of the 13th International Heat Transfer Conference. Begell House Inc. 2006
    [92] C. H. Chon, K. D. Kihm, S. P. Lee et al. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3). Thermal Conductivity Enhancement, Applied Physics Letters. 2005, 87(15): 153107-1-3
    [93] B. X. Wang, L. P. Zhou, X. P. Peng. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transfer. 2003(46): 2665-2672
    [94] B. H. Kim, G. P. Peterson. Effect of morphology of carbon nanotubes on thermal conductivity enhancement of nanofluids. Journal of Thermophysics and Heat Transfer. 2007, 21(3): 451-459
    [95] C. H. Li, G. P. Peterson. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics. 2006, 99(8): 084314
    [96] H. E. Patel, S. K. Das, T. Sundararagan et al. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. Applied Physics Letters. 2003(83): 2931-2933
    [97] S. A. Putnam, D. G. Cahill, P.V. Braun et al. Thermal conductivity of nanoparticle suspensions. Journal of Applied Physics. 2006, 99(8): 084308
    [98] S. U. S Choi, Z. G. Zhang, W. Yu et al. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters. 2001, 79(14): 2252-2254
    [99] D. S. Wen, Y. L. Ding. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (nanofluids). Journal of Thermophysics and Heat Transfer. 2004(18): 481-485
    [100] Y. J. Hwang, Y. C. Ahn, H. S. Shin et al. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Current Applied Physics. 2006, 6(6) SPEC. ISS: 1068-1071
    [101] M. J. Assael, C. F. Chen, I. N. Metaxa et al. Thermal conductivity of suspensions of carbon nanotubes in water, in: 15th Symposium on Thermophysical Properties. National Institute of Standards. University of Colorado, Boulder, USA, 2003
    [102] M. J. Assael, C. F. Chen, I. N. Metaxa et al. Thermal conductivity of suspensions of carbon nanotubes in water. International Journal of Thermophysics, 25(4). Proceedings of the Fifteenth Symposium on Thermophysical Properties, Part II. 2004: 971-985
    [103] M. J. Assael, I. N. Metaxa, J. Arvanitidis et al. Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. International Journal of Thermophysics. 2005, 26(3): 647-664
    [104] M. Biercuk, M. Llaguno, M. Radosavljevic et al. Carbon nanotube composites for thermal management. Applied Physics Letters. 2002, 80(15): 2767–2769
    [105] M. Llaguno, J. Hone, A. Johnson et al. Thermal conductivity of single-wall carbon nanotubes: diameter and annealing dependence, in: H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.). AIP Conference Proceedings, vol. 591, Woodbury, New York, 2001: 384-387
    [106] E. S. Choi, J. S. Brooks, D. L. Eaton et al. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. Journal of Applied Physics. 2003, 94(9): 6034-6039
    [107] M. S. Liu, Ching-Cheng Lin M, I. Huang et al. Enhancement of thermal conductivity with carbon nanotube for nanofluids. International Communications in Heat and Mass Transfer. 2005, 32(9): 1202-1210
    [108] S. Kabelac, J. F. Kuhnke. Heat transfer Mechanisms in nanofluids. Annals of the Assembly for International Heat transfer conference 13, 2006
    [109] S. K. Das, S. U. S. Choi, H. E. Patel. Heat transfer in nanofluids - a review. Heat Transfer Engineering. 2006, 27(10): 3-19
    [110] X. Q. Wang, A. S. Mujumdar. Heat transfer characteristics of nanofluids: a review. Internaitonal Journal of Thermal Sciences. 2007(46): 1-19
    [111]吴轩,宣益民基于晶格-Boltzmann方法的纳米流体流动和传热模型工程热物理学报2003, 24(1): 121-123
    [112] Y. M. Xuan, Z. P. Yao. Lattice boltzmann model for nanofluids. Heat and Mass Transfer /Waerme- und Stoffuebertragung. 2005, 41(3): 199-205
    [113]谢华清,奚同庚,王锦昌纳米流体介质导热机理初探物理学报2003,52(6): 1444-1449
    [114] S. Lee, S. U. S. Choi. Application of metallic nanoparticle suspensions in advanced cooling systems. American Society of Mechanical Engineers. Pressure Vessels and Piping Division (Publication) PVP, v 342. Recent Advances in Solids/Structures and Application of Metallic Materials. 1996: 227-234
    [115]戴闻亭,李俊明,王补宣,陈骁细圆管内氧化铜颗粒悬浮液流动与对流换热的实验研究工业加热2002, (5): 1-4
    [116]戴闻亭,李俊明,陈骁,王补宣细圆管内纳米颗粒悬浮液流动特性的实验研究上海理工大学学报2003, 25(2): 121-124
    [117]戴闻亭,李俊明,陈骁,王补宣细圆管内纳米悬浮液对流换热的实验研究工程热物理学报2003, 24(4): 633-636
    [118]陈骁,李俊明,戴闻亭,王补宣细圆管内纳米颗粒悬浮液强化对流换热的探讨工程热物理学报2004, 25(4): 643-645
    [119]李强,宣益民铜-水纳米流体流动与对流换热特性中国科学(E辑) 2002, 32(3): 331-337
    [120]李强,宣益民纳米流体对流换热的实验研究工程热物理学报2002, 23(6): 721-723
    [121]李强,宣益民小通道扁管内纳米流体流动与传热特性工程热物理学报2004, 25(2): 305-307
    [122] Y. M. Xuan, Q. Li. Investigation on convective heat transfer and flow features of nanofluids. ASME J. Heat Transfer. 2003, 125(1): 151-155
    [123] B. C. Pak, Y. I. Cho. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer. 1998, 11(2): 151-170
    [124] S. Heris, S. G. Etemad, M. Esfahany. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer. 2006, 33(4): 529-535
    [125] D. S. Wen, Y. L. Ding. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Transfer. 2004, 47: 5181-5188
    [126] Y. Ying, Z. George, A. Eric et al. Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. International Journal of Heat and Mass Transfer. 2005, 48(6): 1107-1116
    [127] W. Williams, J. Buongiorno, L. W. Hu. Experimental investigation of turbulent convection heat transfer and pressure loss of alumina-water and zirconia-water nanoparticle collids (nanofluids). J. Heat Transfer. 2008(130): 042412
    [128] Peter Vassallo, Ranganathan Kumar, Stephen D. Amico. Pool boiling heat transfer experiments in silica-water nanofluids. International Journal of Heat and Mass Transfer. 2004(47): 407-411
    [129] Bang In Cheol (Korea Adv. Inst. Sci. and Technol.), Heung Chang Soon. Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool. International Journal of Heat and Mass Transfer. June 2005, 48(12): 2407-2419
    [130] Sarit K. Das, Nandy Putra, Wilfried Roetzel. Pool boiling characteristic of nano-fluids. International Journal of Heat and Mass Transfer. 2003(46): 851-862
    [131] S.M. You, J. H. Kin. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Applied Physics Letters, Vol. 83, No.16, Oct. 2003
    [132] Park Hyun Sun (Department of Energy Technology, Royal Institute of Technology), Shiferaw Dereje, Sehgal Bal Raj, Kim Do Kyung, Muhammed Mamoun. Film boiling heat transfer on a high temperature sphere in nanofluid. Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference 2004. HT/FED, 2004(4): 469-476
    [133] Wang Buxuan, Peng Xiaofeng. Effect of bubble dynamics subcooled pool boiling of nano-particle suspensions on a horizontal tube. Journal of Mechanical Engineering. September, 2005, 41(9): 12-18
    [134] Tsai C. Y. (Thermal MEMS Laboratory, Mechanical Engineering Department, National Taiwan University), Chien H. T., Ding P. P. etc. Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Materials Letters. 2004,58 (9): 1461-1465
    [135] Israeli T., Agami Reddy T., Cho Y. I. Investigation on the use of nanofluids to enhance heat pipe performance. International Solar Energy Conference: 243-25
    [136] Kang S. W., Wei W. C. Experimental investigation of silver nano-fluid on heat pipe thermal performance. Applied Thermal Engineering. 2006, 26 (17-18): 2377-2382
    [137] H. S. Xue, J. R. Fan et al. The interface effect of carbon nanotube suspension on the thermal performance of a two-phase closed thermosyphon. Journal of applied physics. 2006(100): 104909
    [138]彭玉辉,黄素逸,黄锟剑热管中添加纳米颗粒化工学报2004(11): 1768-1772
    [139]彭玉辉,黄素逸,黄锟剑纳米颗粒强化热虹吸管传热特性的实验研究热能动力工程2005(2): 138-142
    [140]刘俊红,顾建明,刘辉,董东甫纳米级固体颗粒应用于热管的实验研究核动力工程2005(03): 268-271
    [141] Yang XF, Liu ZH, Zhao J. Heat transfer performance of a horizontal micro grooved heat pipe using CuO nanofluid [J]. Journal of Micromechanics and Microengineering. 2008, 18(3): 35-37
    [142] Jeffry D. J. Conduction through a random suspension of spheres [J]. Pro. R Soc London. Ser. A 1973: 335,355-367
    [143] Kim H., Kim J., Kim M. Effect of nanoparticles on CHF enhancement in pool boiling of nano-fluids. International Journal of Heat and Mass Transfer. 2006, 49(25-26): 5070-5074
    [144] Kim H., Kim J., Kim M. Experimental study on CHF characteristics of water-TiO2 nano-fluids. Nuclear engineering and technology. 2006, 38(1): 61-68
    [145]张红星,林贵平,曹剑峰,侯增祺回路热管性能的地面实验研究[J]宇航学报2003, 24(5): 468-472,483
    [146] Kanji Negishi. Thermo-fluiddynamics of two-phase thermosyphons. 5th Int. Heat Pipe Conf. IV(1984), 2
    [147]宣益民,文东升,彭晓峰流体湿润性能对干斑扩展引起沸腾危机的影响自然科学进展2009, 10(9): 842-847

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700