SiC薄膜光栅制作及极紫外探测器光学元件热力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅(SiC)被誉为下一代半导体材料,因为其具有众多优异的物理化学特性,被广泛应用于光电器件、高频大功率、高温电子器件。本文着眼其优异的机械力学特性及良好的光学特性,将用PECVD方法制备SiC薄膜应用在制作极紫外探测器上的核心色散元件(透射光栅)上。因为它具有热导率大、抗辐射能力强、热容高、良好的化学稳定性、热膨胀系数与硅基十分接近等等优点,所以成为制作在极端恶劣的近地空间环境下的极紫外探测器上核心元件的首选材料。
     在本研究工作中,采用等离子体增强化学气象沉积(PECVD)制备方法,针对实际应用需要,在单晶Si(100)衬底上,通过工艺参数的改变,在高温衬底上沉积得到了的SiC薄膜,然后进行表征测试,并通过表征结果来进一步优化工艺参数和退火参数,最终成功制作出高质量的5mm X 5mm的自支撑薄膜和最大面积35mm×35mm的自支撑薄膜。最后讨论了其制作的工艺流程以及用它制作极紫外透射光栅的工艺步骤。
     由于实际应用的迫切需要,然而SiC自支撑薄膜制作透射光栅的工艺尚不成熟,所以接下来用目前工艺成熟的PI膜代替SiC薄膜制作出来的2000线/毫米极紫外透射光栅,为了实现极紫外透射光栅光谱仪在近地空间的应用,采用有限元方法建立了机械模型并对其热学性能和耦合特性进行计算机模拟计算,通过模拟热膨胀系数不同的材料构成的薄膜光栅在近地空间受到太阳辐照后的温度场,得到该光栅表面的热形变分布。结果表明,在高真空热环境下,该透射光栅表面形变量平均可达0.56μm,而影响光栅周期的纵向形变平均值则为71.5nm。由于热形变会对光栅衍射效率产生重要影响并导致光谱仪精度和性能的下降,利用有限元分析模拟的结果,进一步优化光栅的封装和设计制作,使其栅线处纵向热形变趋近于零,为2000线/毫米×/EUV透射光栅在太阳极紫外辐射探测器上得到应用提供了科学依据和有效支持。
As well known, Silicon carbide (SiC) has been considered as one of the next generation of semiconductor materials, due to its excellent physical and chemical properties, which make it wide applications in high-frequency, high-power, and high temperature optoelectronic devices. Based on their excellent mechanical and optical properties, this dissertation was mainly focused on applying SiC films as one of the important dispersion elements in the extreme ultraviolet detectors, i.e. transmission grating. Moreover, SiC should be one of the preferred materials that can be used as the key component of extreme ultraviolet (EUV) detectors, which can work under the extremely hard environment of Near-Earth space, owing to their high thermal conductivity, strong radiation resistance, high thermal capacitance, and excellent chemical inertness.
     In this dissertation, SiC films were prepared by using plasma enhanced chemical vapor deposition (PECVD). According as the requirements of the practical applications, SiC films were prepared under high temperatures on the single crystal Si (100) substrates. The films prepared under different process parameters were characterized by various techniques. Based on the results of the characterization of the samples, the CVD and annealing parameters have been further optimized. Finally, the high-quality self-supporting films with area of 5×5 cm2 were successfully prepared. Additionally, the technical processes of the preparation of this type self-supporting films and further applications in extreme ultraviolet transmission grating were discussed in details.
     Because the technical processes of the preparation of the extreme ultraviolet transmission grating using self-supporting SiC films are still under research, commercial PI films were used instead of SiC ones to prepare 2000 1/mm X/EUV transmission grating in the latter work. In order to meet the requirements of the EUV transmission grating spectrometer in Near-Earth space, a mechanical model based on the finite element method was used to simulate the thermal and coupling properties of the transmission grating. Based on the simulation under the influence of the temperature field from the Sun in Near-Earth space, the thermal distortion distribution was obtained for the transmission grating with different coefficient of thermal expansion. The results indicate that the average surface distortion of the transmission grating can reach up to 0.56μm under high-vacuum thermal environments, while the average longitudinal distortion, which often shows a significant impact on the period of the gratings, is 71.5nm. Generally, the thermal distortion will show a huge influence on the diffraction efficiency of the transmission grating, further lead to the reduced behaviors and accuracies of the spectroscopic instruments. Thus, based on the results by the finite element simulation, the techniques of the package and designs were further optimized to prepare the transmission gratings with longitudinal distortion of zero at the grating lines. Our research may provide some effective scientific basis and effective support for the application of 2000 1/mm X/EUV transmission gratings in the solar EUV radiation spectroscopy.
引文
[1]Sha ZD, Wu XM,Zhu ge LJ.Structure and photoluminescence properties of SiC films synthesized by the RF-magnetron sputtering technique [J]. Vacuum,2005, 79:250
    [2]G.Dhanaraj,M.Dudley,et al.Epitaxial growth and characterization of silicon carbide films [J].J. Crystal Growth,2006,287:344
    [3]简红彬,康建波,于威,等,SiC薄膜的化学气相沉积及其研究进展[J].纳米材料与结构,2006,1:11
    [4]张进程,郝跃,赵天绪,等.SiC新型半导体器件及其应用[J].西安电子科技大学学报,2002,29(2):157
    [5]刘喆,徐现刚.SiC单晶生长[J].材料科学与工程学报,2003,21(2):274
    [6]鲁励.引入注目的SiC材料、器件和市场[J].世界产品与技术,2003,12:22
    [7]R. Szweda. Damond and SiC elect ronic [J].Mater. Res.,2006,19:40
    [8]Fissel A. Relationship between grwoth conditions thermodynamic properties and crystal structure of SiC[J].Int. J. Inorg. Mater,2001,3:1273
    [9]Yakimova R, Syvajarvi M, Iakimov T,etal. Polytye sta2bility in seeded sublimation growth of 4H2SiC boubles[J].J Crystal Growth,200,217:25510
    [10]Rajab S M,Oliveira I C,Massi M,et al. Effect of the ther2mal annealing on the electrical and hysical proerties of SiC thin films produced by RF magnet ron sputtering [J].Thin Solid films,2006,515:170
    [11]李亚平,安霞,薛成山.碳化硅薄膜生长技术的研究进展[J].山东师范大学学报(自然科学版),2004,19(2):37
    [12]Nishiguchi T, Nakamura M, Nishio K, et al. Heteroepitaxial growth of (111) 3C-SiC on well-lattive-matched (110) Si substrates by chemical vapor deposition [J]. Appl. Phys. Lett.,2004,84(16):3082
    [13]Hurtos E, Rodeiguez-Viejo J, Sassas J, et al. Low temperature SiC growth by metalorganic LPCVD on MBE carbonding Si (001) substrates [J]Mater Sci Eng,1999,61262:549
    [14]张昊翔,叶志镇.SiC材料及其在功率器件方面应用研究进展[J].材料科学与工程,1998,16(3):37
    [15]Hoon Joo Na,Jeong Hyun Moon,Jeong Hyuk Yim, et al. Fabrication and characterization of 4H-SiC planar MESFETs[J].Microelectronic Eng,2006, 83:160
    [16]W.von Muench,I.Pfaffender,[J].Appl.Phys.48(1977)4831.
    [17]E.A. Bergemeister, W.von Muchen,E.Pettenpaul,[J].J. Appl. Phys.50(1979) 5790.
    [18]W.E. Nelson, F.A. Halden, A. Rosengreen, [J]. J. Appl. Phys.37 (1966)333.
    [19]Y.M. Tairov, V.F. Tsvetkov, [J].J. Cryst. Growth 52 (1981) 146.
    [20]P. Liaw, R.F. Davis, [J]. J. Electrochem. Soc.132 (1985) 642.
    [21]H.J. Kim, R.F. Davis, [J]. J. Appl. Phys.60 (1986) 2897.
    [22]S. Nishino, H. Suhara, H. Ono, H. Matsunami, [J]. J. Appl. Phys.61(1987) 4889.
    [23]K. Ikoma, M. Yamanaka, H. Yamaguchi, Y. Shichi, [J]. J. Electrochem.Soc.138 (1991)3028.
    [24]A.J. Steckl, J.P. Li, Thin Solid Films 216 (1992) 149.
    [25]I. Golecki, F. Reidinger, J. Marti, Appl. Phys. Lett.60 (1992) 1703.
    [26]C. A. Zorman, A.J. Fleischman, A.S. Dewa, M. Mehregany, C. Jacob,S. Nishino, P. Pirouz, J. Appl. Phys.78 (1995) 5136.
    [27]H. Shimizu, K. Naito, S. Ishio, in:C.Y. Yang, M.M. Rahman, G.L.Harris (Eds.), Amorphous and Crystalline Silicon Carbide Ⅳ,Springer-Verlag, Berlin,1992, pp. 119.
    [28]K.E. Spear, J.P. Dismukes, Synthetic Diamond:Emerging CVD Science and Technology, Wiley, New York,1994 p.163.
    [29]M. Kamo, Y. Sato, S. Matsumoto, N. Setaka, J. Cryst. Growth 62(1983) 642.
    [30]A. Leycuras, Appl. Phys. Lett.70 (1997) 1533.
    [31]C.J. Mogab, H.J. Leamy, J. Appl. Phys.45 (1974) 1075.
    [32]T. Saito, S. Tsuruga, H. Maeda, K. Kusakabe, S. Morooka, Diamond Relat. Mater.6 (1997) 668.
    [33]A. van der Drift, Philips Res. Rep.22 (1967) 267.
    [34]D. Song, E. Cho, Y. Cho, G. Conibeer, Y. Huang, S. Huang, M.A. Green, Thin Solid Films 516 (2008) 3824-3830.
    [35]D.S. Kim, Y.H. Lee, Thin Solid Films 261 (1995) 192-201.
    [36]H. Yoshihara, H. Mori, M. Kiuchi, Thin Solid Films 76 (1981)1-10.
    [37]S. Janz, S. Riepe, M. Hofmann, S. Reber, S. Glunz, Appl. Phys. Lett.88 (2006)133516.
    [38]S. Janz, S. Reber, F. Lutz, C. Schetter, Thin Solid Films 511-512 (2006) 271-274.
    [39]S. Janz, M. Kiinle, M. Peters, S. Lindekugel, E.J. Mitchell, S. Reber, Proceedings of the 22nd European Photovoltaic Solar Energy Conference,2007, pp.1979-1982.
    [40]Y. Kurokawa, S. Miyajima, A. Yamada, M. Konagai, Jpn. J. Appl. Phys.45 (2006)L1064-L1066.
    [41]D. Song, E.-C. Cho, G. Conibeer, C. Fynn, Y. Huang, M.A. Green, Sol. Energy Mater.Sol. Cells 92 (2008) 474-481.
    [42]A. Jean, M. Chaker,Y. Diawara, P.K. Leung, E. Gat, P.P.Mercier,H. PePin, S. Gujrathi,G.G. Ross, J.C. Kieffer, J. Appl. Phys.72 (1992) 3110-3115.
    [43]M.A. El Khakani, M. Chaker, A. Jean, S. Boily, H. PePin, J.C. Kieffer, S.C. Gujrathi,J. Appl. Phys.74 (1993) 2834-2840.
    [44]S. Janz, Amorphous Silicon Carbide for Photovoltaic Applications, Verlag Dr. Hut,Munchen,2007.
    [45]H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, Inc., New York,1974.
    [46]H. Schmidt, E.R. Fotsing, G. Borchardt, Appl. Surf. Sci.252 (2005) 1460-1470.
    [47]S. Hasegawa, S. Watanabe, T. Inokuma, Y. Kurata, J. Appl. Phys.77 (1995)1938-1947.
    [48]P. Hewat, Inorganic Crystal Structure Database, http://icsdweb.fizkarlsruhe.de/index.php,2003-2007.
    [49]T. Hahn, International Tables for Crystallography, vol. A,Space-groupSymmetry,fifth ed., Springer, Dordrecht,2005.
    [50]K. Zekentes, V. Papaiannou, B. Pecz, J. Stoemnos, J. Cryst. Growth 157 (1995)392-399.
    [51]J.P. Li, A.J. Steckl, G. Golecki, F. Reidinger, L.Wang, X.J. Ning, P. Pirouz, Appl. Phys.Lett.24 (1993) 3135-3137.
    [52]W.Wegschneider, K. Eberl, G. Abstreiter, H. Cerva, H. Oppolzer, Appl. Phys. Lett.57 (1990) 1496-1498.
    [53]A. Bardal, M. Zwerger, O. Eibl, J.Wecker, T. Matthee, Appl. Phys. Lett.61 (1992)1243-1245.
    [54]F. Demichelis, F. Giorgis, C.F. Pirri, E. Tresso, Philos. Mag. B 71 (1995) 1015-1033.
    [55]H. Wieder, M. Cardona, C.R. Guarieri, Phys. State Solids 92 (1979) 99-112.
    [56]Y. Tawada, K. Tsuge, M.Kondo, H.Okamoto,Y.Hamakawa, J. Appl. Phys.53 (1982)5273-5281.
    [57]R.O. Dillon, J.A.Woollam, V. Katkanant, Phys. Ref. B 29 (1984) 3482-3489.
    [58]F. Tuinstra, J.L. Koenig, J. Chem. Phys.53 (1970) 1126-1130.
    [59]L. Calcagno, P. Musumeci, F. Roccaforte, C. Bongiorno, G. Foti, Thin Solid Films 411(2002)298-302.
    [60]J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, S.R.P. Silva, J. Appl. Phys.80 (1996)440-447.
    [61]A.C. Ferrari, J. Robertson, Phys. Rev. B 61 (2000) 14095-14107.
    [62]M. Lattemann, E. Nold, S. Ulrich, H. Leiste, H. Holleck, Surf. Coat. Technol.174-175 (2003) 365-369.
    [63]S. Nakashima, H. Harima, Phys. State Solids 162 (1997) 39-64.
    [64]G. Faraci, S. Gibilisco, P. Russo, A.R. Pennisi, S. La Rosa, Phys. Rev. B 73 (2006) 033307-1-033307-4.
    [65]C. Ossadnik, S.Veprek, I.Gregora,Thin Solid Films 337 (1999) 148-151.
    [66]L.L. Snead, T. Nozawa, Y. Katoh, T. Byun, S. Kondo, D. Petti, J. Nucl. Mater. 371 (2007)329-377.
    [67]Y Okada, Y Tokumaru, J. Appl. Phys.56 (1984) 314-320.
    [68]A. C. Brinkman, C. J. T. Gunsing, J. S. Kaastraet al..First light measurements of Capella with the low energy transmission grating spectrometer aboard the Chandra X-ray observatory[J].Astrophysical Journal Letters,2000,530(02): L111-L114
    [69]T. H. Markert, D. Dewey, J. E. Daviset al..Modeling the diffraction efficiencies of the AXAF high-energy transmission gratings [C]. SPIE,1995,2518:424-427
    [70]K. A. Flanagan, T. T. Fang, C. Balutaet al..Modeling the diffraction efficiencies of the AXAF high-energy transmission gratings:Ⅱ [C]. SPIE,1995,2808: 650-676
    [71]D. A. Fedin, V. Kantsyrev, B. Baueret al.."Polychromator"five channelX-ray/EUV spectrometer with imaging transmission grating for plasma diagnostics[C].SPIE,1999,3764:80-84
    [72]Xu Xiangdong, Hong Yilin, Tian Yangchaoet al..Fabrication of self-supporting transmission gratings for plasma diagnostics [C]. SPIE,1999,3766:380-385
    [73]王德强,博士论文,x射线聚焦光学元件制作及应用研究,Chapter 3,51-52
    [74]朱效立,博士论文,高线密度X射线透射光栅的设计、制作及测试,Chapter2,20-28
    [75]王劫,李红红,王峰等.软X射线磁性圆二色光束线的调试和实验[J].核技术,2005,28(07):489-495
    [76]邓健,钟方川,覃 岭等.高效高分辨率大面积透射光栅谱仪镂空透射光栅的制备研究特性的理论分析[J].光学学报,2000,20(5):647-653
    [77]C. R. Canizares, J. E. Davis, D. Deweyet al..The Chandra high energy transmission grating:design, fabrication, ground calibration and five years in flight [J].Publications of the Astronomical Society of the Pacific,2005,117(07):1144-1171
    [78]徐向东,洪义麟,霍同林等.软X射线透射光栅制作技术[J].光学技术,2001,27(04):294-296
    [79]朱伟忠,吴衍青,陈敏等.13.4nm软X射线干涉光刻透射光栅的优化设计[J].光学学报,2008,28(07):1225-1230
    [80]邱克强,徐向东,刘颖等.软X射线位相型金透射光栅的设计与制作[J].物理 学报,2008,57(10):6239-6244
    [81]朱效立,马杰,谢常青等.3333lp/mmX射线透射光栅的研制[J].光学学报,2008,28(06):1026.1030
    [82]M. L. Schattenburg, R. J. Aucoin, R. C. Fleminget al..Fabrication of high energyX-ray transmission gratings for AXAF[C].SPIE,1994,2280:181-190
    [83]徐向东,洪义麟,霍同林等.同步辐射Laminar光栅的研制[J].光学技术,2001,27(05):459-461
    [84]H. W. Schnopper, L. P. van Speybroeck, J. P. Delvaille et al..Diffraction grating transmission efficiencies for XUV and soft X-ray[J].Appl. Opt.,1977,16(04): 1088-1091
    [85]杨家敏,易荣清,陈正林等.透射光栅对软X射线衍射效率的研究[J].物理学报,1998,47(4):0613-0618 2655
    [86]F.G. Eparvier, T.N. Woods, G. Ucker et al. TIMED Solar EUV Experiment: pre-flight calibration results for the EUV Grating Spectrograph[J]. Proc. SPIE, 1999, Vol.3756:255-264.
    [87]Thomas N. Woods, Scott Bailey, Frank Eparvier,etal.TIMED Solar EUV Experiment[J].Physics and Chemistry of the Earth,Part C:Solar,terrestrial& Planetary Science,2000,Vol.25(5-6):393-396
    [88]Claude R. Canizares,John E. Davis,Daniel Dewey,et al.,The chandra high energy transmission grating:design,fabrication, ground calibration and five years in flight[J].Publications of the Astronomical Society of the Pacific,2005,117: 1144~1171
    [89]石莎莉,陈大鹏,殴毅.非制冷红外FPA结构设计及物理特性有限元模拟[J].光电工程,2005,32(12):25-29.
    [90]SHI Sha-li, CHEN Da-peng, OU Yi. Finite element simulation of the structure and physical characteristics for an uncooled infrared focal plane array[J]. Opto-Electronic Engineering,2005,32 (12):25-29.
    [91]ZHANG Li hua. Application of finite element method in the thermal analysis of spacecraft antenna reflector [J]. Chinese Space Science and Technology,1999, 1:32-37.
    [92]Li X F. Finite element analysis of mirror thermal distortion within the sun shadow in space-to-ground laser communication links [J]. Journal of Optoelectronics·Laser,2006,17 (2):183-186. (in Chinese)
    [93]CHENG Gang, CHEN Fang-bin, YUAN Xiao-min, etal. Simulation and analysis of thermal deformation for optical elements based on Ansys[J]. Journal of Applied Optics,2008,29(5):697-700. (in Chinese)
    [94]GUZHANG Jun-wei, FENG Bin, ZHOU Yi, etal.Finite element analysis on ambient thermal stability of large aperture optical element[J].High Power Laser and Particle Beams,2007,19 (8):1295-1298.(in Chinese)
    [95]DING Yan-wei,YOU Zheng,Lu Eh.In fluences of temperature change on dimension stability of sensor opto-structural system[J]. Journal of Optoelectronics-Laser,2004,15 (10):1170-1173. (in Chinese)
    [96]ZHANG Jing-zhou.Advanced Heat Transfer[M], Beijing:Science Press,2009.
    [97]LIU Xiang-xin,MENG Xian-yi. Ansys Basic and Applied Course [M].Beijing: Science Press,2006.
    [98]Saeed Moaveni. Finite Element Analysis-Ansys Theory and Application [M]. OU Yang-yu. Beijing:Publishing House of Electronics Industry,2004.
    [99]D.皮茨,L.西索姆.传热学[M].北京:科学出版社,2002.11-18.
    [100]Donald Pitts,Leighton Sissom. Heat Transfer Theory[M].Beijing:Scince Press,2002.11-18.
    [101]刘相新,孟宪颐..ANSYS基础与应用教程[M].北京:科学出版社,2006.433-476.
    [102]Liu-Xiangxin,Meng-Xianyi. ANSYS Fundamentals and Applications Tutorial[M].Beijing:Science Press,2006,433-476.
    [103]Saeed Moaveni. Finite Element Analysis-Ansys Theory and Application [M].3 edition.London:Prentice Hall,2007.262-275
    [104]王玮冰,陈大鹏,叶甜春,伍小平,张青川,潘亮,段志辉.应用光力学效应的非制冷红外成像系统[J].激光与红外,2004,第34卷,第2期:83-86
    [105]Weibing Wang,Dapeng Chen,Tianchun Ye,XiaoPing Wu, QingchuanZhang, Liang Pan.An Uncooled Infrared Imaging System Based on NovelStencil Bi-material Cantilever Structure [C]. Proc. Asia-Pacific Conference of Transducers and Micro-Nano Technology,Sapporo,Japan,2004, Vol.3-2:794-798.
    [106]Zhao Y.Optomechanical uncooled infrared imaging system[D]. Dissertation of UC,Berkeley,2002.
    [107]Zhao Y,Mao M,Horowitz R,Majumdar A, Varesi J,Norton P,Kitching J.Optomechanical uncooled infrared imaging system:design,microfabrication, and performance [J]. J.of MEMS,2002,11(2):136-146.
    [108]Biao Li.Design and simulation of an uncooled double-cantilever microbolometer with the potential for~mK NETD [J].Sensors and Actuators A,2004,112:351-359.
    [109]邵蕴秋编著.ANSYS 8.0有限元分析实例导航[M].北京,中国铁道出版社,2004.
    [110]Saeed Moaveni著,欧阳宇等译.有限元分析—ANSYS理论与应用[M].北京,电子工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700