纳米强化传热导热油的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电热油汀由于无噪音、无污染,越来越受消费者青睐,但它存在热惯性大的缺点,如能提高其内导热油的导热系数,可望提高电热油汀的性能。
     在液体中添加固体粒子是提高液体导热系数的一种有效方式,但毫米或微米级的固体粒子在液体中易沉淀,于是人们探索利用纳米材料技术提高导热系数,研究结果表明,在液体中添加纳米粒子,可以显著提高液体的导热系数。
     本文选用纳米Fe3O4粒子,研究制备纳米粒子强化传热的导热油。围绕纳米粒子的制备、表面包覆改性、纳米导热油的制备、悬浮稳定性试验、导热系数测试和纳米导热油的初步放大试验等方面的内容,进行了相应的实验研究。
     研究制备得到纳米粒子强化传热的导热油,纳米粒子分散性好、悬浮稳定性高,存放两年后悬浮率仍为100%;当纳米粒子的体积份额达到0.8%时,导热油的导热系数室温下提高约15%,80℃时提高约26%;采用离心沉降-去离子水清洗、胶体磨分散,初步解决批量纳米导热油的制备难点,成功试制出按20倍放大的悬浮性良好的纳米导热油,为进一步应用纳米导热油研制出纳米强化传热的电热油汀打下科学基础。
Oil filled radiator for a lack of noise, pollution-free, more and more by consumers, but it is the existence of a shortcomings of large thermal inertia, such as to increase its thermal conductivity of heat conduction oil, is expected to improve the performance of the oil filled radiator.
     An effective way of improving the thermal conductivity of fluids is to suspend small solid particles in the carrier fluids in order to enhance transport properties, as the thermal conductivity of solid is much higher than liquid. Solid particles of micrometer or millimeter magnitudes deposit easily in the base liquid, so a new class of heat transfer fluids called "nanofluids" has been proposed. Nanofluids refer to a new kind of heat transport carriers by suspending nanoscaled metallic or nonmetallic particles in base fluids. Nanofluids are expected to exhibit heat transfer properties superior to those of conventional heat transfer fluids.
     The purpose of this paper is to enhance the thermal conductivity of heat conduction oil in oil filled radiator by suspending Fe3O4 nano particles. The research efforts for the preparation of Fe3O4 nanoparticles, modification process of Fe3O4 nanoparticles, preparation of heat conduction oil of enhanced heat transfer by nanoparticles, the stability of the suspension test, thermal conductivity test and nano-conducting oil preliminary enlarge Test, and so on.
     Research on nano-particles to be prepared to strengthen the heat conducting oil, the dispersion of nano-particles, high stability of the suspension, two years after the deposit rate remains at 100% of the suspension; nanoparticles when the share volume reached 0.8 percent, the thermal conductivity of conducting oil Room temperature increase of about 15%,80℃, when an increase of about 26%; using centrifugal settlement-deionized water, Colloidal Mill dispersed initial batch of Nano-conducting oil, solution to the difficult preparation, the success of a trial by a 20-fold magnification of the suspension of nano-good Conducting oil, the application of nanotechnology in order to further the development of nano-conducting oil heat transfer enhancement of the oil radiator lay a foundation for science.
引文
[1]牛金生.电热电动器具原理与维修[M].北京:电子工业出版社,2005.
    [2]李强.纳米流体强化传热机理研究[D].南京理工大学博士学位论文,2004.1.
    [3]Maxwell J C. A Treatise on Electricity and Magnetism[M].2"d ed. London:Clarendon Press,1881.
    [4]Liu KV. Choi S U S, Kasza K E. Measurements of Pressure Drop and Heat Transfer in Turbulent Pipe Flows of Particulate Slurries[R]. Argonne National Laboratory Report, ANL-88-15,1988.
    [5]Ahuja A S. Augmentation of Heat Transfer in Laminar Flow of Polystyrene Suspensions[J]. J of Applied Physics,1975,46:3408-3425.
    [6]Sohn C W, Chen M M. Microconvective Thermal Conductivity in Disperse Two-Phase Mixture as Observed in a Low Velocity Couette Flow Experiment[J]. J. of Heat Transfer,1981,103:47-51.
    [7]H.Gleiter,Proc,2nd.Riso Inter.Symp.on Metallurgy and Materials Science[M]. eds.by N.Hansen etal., Roskilde, P.15,1981.
    [8]Choi S U S. Enhancing Thermal Conductivity of Fluids with Nanoparticles, in:Siginer D A, Wang H P,eds.Developments and Applications of Non-Newtonian Flows[M]. New York:ASME, FED-Vol.231/MD-Vol.66,1995,99-103.
    [9]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [10]Eastman J A, Choi S U S, Li S, Thompson L J, Lee S. Enhanced Thermal Conductivity Through the Development of Nanofluids[C]. in:Komarneni S, Parker J C, Wollenberger H J, eds., Nanophase and Nanocomposite Materials Ⅱ, Pittsburgh:MRS, 1997,3-11.
    [11]刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社,2002.
    [12]李洪亮.纺织领域用纳米工质热管加热器的研究[D].青岛大学硕士学位论文,2005.5.
    [13]李延盛,尹其光,等.超声化学[M].北京:科学出版社,1995.
    [14]梁中丽.纳米流体强化传热实验研究[D].青岛科技大学硕士研究生论文,2005.1.
    [15]Lee S, Choi S U S, Li S, Eastman J A. Measuring Thermal Conductivity of FluidsContaining Oxide Nanoparticles[J]. J. of Heat Transfer,1999,121:280-289.
    [16]Masuda H, Ebata A, Teramae K, Hishinuma N. Alternation of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-fine Particles (Dispersion of y-A1203, SiO2 and TiOZ Ultra-Fine Particles) [J]. Netsu Bussei (Japan),1993,4:227-233.
    [17]Eastman J A, Choi S U S, Li S, Yu W, Thompson L J. Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles[J]. Applied Physics Letters,2001,78(6):718-720.
    [18]Wang X W, Xu X F, Choi S U S.Thermal Conductivity of Nanoparticle-Fluid Mixture[J]. Journal of Thermophysics and Heat Transfer,1999,13(4):474-480.
    [19]戴闻亭,李俊明,王补宣,等.细圆管内氧化铜颗粒悬浮液流动与对流换热的实验研究[J].工业加热,2002,(5):1-4.
    [20]王补宣,李宏,彭晓峰.吸附作用在纳米颗粒悬浮液换热强化中的试验与机理研究[J].工程热物理学报,2003,24(4):664-666.
    [21]Wang B X, Zhou L P, Peng X F. A Fractal model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles[J]. Int J Heat Mass Transfer, 2003,46:2665-2672.
    [22]周乐平,王补宣.颗粒尺寸与表面吸附对低浓度非金属纳米颗粒悬浮液有效导热系数的影响[J].自然科学进展,2003,13(4):426-429.
    [23]王补宣,李春辉,彭晓峰.纳米颗粒悬浮液稳定性分析[J].应用基础与工程科学学报,2003,Vol.11,No.2:167-173.
    [24]宣益民,李强.纳米流体高效传热冷却工质及其制备方法[P].中国发明专利,00112344.0.
    [25]Xuan Y,Li Q.Heat Transfer Enhancement of Nanofluids [J]. International Journal of Heat and Fluid Flow,2000,21(1):58-64.
    [26]Li Q, Xuan Y. Experimental Investigation on Transport Properties of Nanofluids[C]. In: Wang Buxuan, eds., Heat Transfer Science and Technology 2000. Beijing:Higher Education Press,2000.757-762.
    [27]宣益民,李强.纳米流体强化传热研究[J].工程热物理学报,2000,21(4):466-470.
    [28]Li Q, Xuan Y. Connective Heat Transfer and Flow Characteristics of Cu-Water Nanofluid[J]. Science in China (Series E),2002,45(4):408-416.
    [29]Li Q, Xuan Y. Connective Heat Transfer Performances of Fluids with Nano-Particles[C]. In: Jean Taine, eds., Heat Transfer 2002. Paris:Elsevier Science Inc.,2002.483-488.
    [30]李强,宣益民.铜一水纳米流体流动与对流换热特性[J].中国科学((E辑),2002,32(3):331-337.
    [31]李强,宣益民.纳米流体对流换热的实验研究[J].工程热物理学报,2002,23(6):721-723.
    [32]李强,宣益民.航天用传热强化工质导热系数和粘度的实验研究[J].宇航学报, 2002,23(6):71-74.
    [33]李强,宣益民.纳米流体强化导热系数机理初步分析[J].热能动力工程,2002,17(6):568-571,584.
    [34]胡卫峰,宣益民,李强.纳米流体的聚集结构和分形结构研究[J].南京理工大学学报(自然科学版),2002,23(3):229-234.
    [35]宣益民,胡卫峰,李强.纳米流体的聚集结构和导热系数模拟[J].工程热物理学报,2002,23(2):206-208.
    [36]Xuan Y, Li Q.Investigation on Connective Heat Transfer and Flow Features of Nanofluids[J]. Journal of Heat Transfer,2003,125(1):151-155.
    [37]Xuan Y, Li Q, Hu W. Aggregation Structure and Thermal Conductivity of Nanofluids[J]. AIChE Journal,2003,49(4):1038-1043.
    [38]李强,宣益民.纳米流体热导率的测量[J].化工学报,2003,54(1):42-46.
    [39]Xuan Y, Li. A New Heat Carrier for Thermal Management of Spacecrafts[C]. The 33rd International Conference on Environmental Systems, Vancouver BC, Canada,2003.
    [40]李强,宣益民.小通道扁管内纳米流体流动与传热特性[J].工程热物理学报,2004,25(2):305-307.
    [41]谢华清,王锦昌,奚同庚,刘岩.SiC纳米粉体悬浮液导热系数研究[J].硅酸盐学报,2001,29(4):361—364.
    [42]谢华清,吴清仁,王锦昌,奚同庚,刘岩.氧化铝纳米粉体悬浮液强化导热研究[J].硅酸盐学报,2002,30(3):272-276.
    [43]谢华清,奚同庚,王锦昌.纳米流体介质导热机理初探[J].物理学报,2003,52(6):1444-1449.
    [44]董丽娜,纳米粒子热力学性质及纳米流体强化传热研究[D].大连海事大学硕士论文,2005.3.
    [45]李泽梁,李俊明,胡海滔,王补宣.CuO纳米颗粒悬浮液中各组分对悬浮液稳定性及黏度的影响[J].热科学与技术,2005,4(2):157-163.
    [46]王补宣,李春辉,彭晓峰.黏度对纳米颗粒悬浮液稳定性的影响[J].上海理工大学学报,2003,25(3):209-212.
    [47]胡卫峰.纳米流体结构与能量输送机理研究[D].南京理工大学硕士学位论文,2002.1.
    [48]侯万国.应用胶体化学[M].北京:科学出版社,1998.
    [49]姚正平.基于格子Boltzmann方法的纳米流体流动与能量传递机理研究[D].南京理工大学硕士学位论文,2003.1.
    [50]戴闻亭.细圆管内纳米颗粒悬浮液流动和对流换热的实验研究[D].清华大学硕士 学位论文,2002.5.
    [51]李强.纳米润滑油添加剂的制备及摩擦学性能研究[D].青岛科技大学硕士学位论文,2005.4.
    [52]李强.纳米流体制备方法与输运参数的研究[D].南京理工大学硕士学位论文,2001.10.
    [53]霍伟荣.纳米ZrO2在Ni基电镀液中悬浮稳定性的研究[D].天津大学硕士学位论文,2003.12.
    [54]郝龙云.分散剂对超细有机颜料水性分散体系稳定性的影响[D].青岛大学硕士学位论文,2003.5.
    [55]Choi S.U.S,Zhang Z.QYu W. Lockwood RE, et al,Anomalous thermal conductivity enhancement in nanotube suspensions[J]. Appl.Phys.Lett.,2001:79(14) 2252-54.
    [56]Xie H, Lee H,Youn W, et. al,Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities[J]. Appl.Phys.Lett.2003:95(8) 4967-71.
    [57]王涛,骆仲泱,郭顺松,等.可控纳米流体的制备及热导率研究[J].浙江大学学报,2007,41(3):514—518.
    [58]Zhang J. S, Yin Y. S, Lu Y. N, Zhang Y. Y, Ma L. P, Zhang S. Q. Incrusting structure of nanosized Fe3O4 particles in magnetic fluids[J]. Science in China (Series E),2003:46(4) 401-406.
    [59]张银燕,尹衍升,张金升等.纳米Fe30;磁性液体稳定性的研究[J].化学物理学报,2004,17(1):83-86.
    [60]Kim D. K, Zhang Y, Voit W. Synthesis and characterization of surfactant coatedsuperparamagetic monodispersed iron oxide nanopartcles[J]. J. Magnet.Mater., 2001,225:30-36.
    [61]Lifen S, Paul E. L, Hatton T. A. Bilayer surfactant stabilized magnrtic fluids:synthesis and interaction at interface[J].Langmuir,1999,15(2):447-453
    [62]陈晓青,张俊山,杨娟玉,等.双层表面活性剂分散制备水基磁流体[J].无机化学学报,2003,19(5):547-551.
    [63]蒋秉植,杨健美.磁性流体的制备、应用及稳定性解析[J].化学进展,1997,9(1):69-78.
    [64]刘辉,钟伟,都有为.新型磁性液体的制备及其旋转轴动态封油技术[J].磁性材料及器件,2001,2:45-49.
    [65]杨华,黄可龙,李卫.水基Fe304磁流体的制备和磁光特性[J].中南工业大学学报,2003,34(3):258-260.
    [66]赖欣,毕剑,高道江,等Fe3O4磁性流体的制备[J].磁性材料及器件,2000, 15-18.
    [67]张金升,尹衍升,张银燕.均匀超细Fe304磁流体的研究[J].化工进展,2003(22):494-498.
    [68]章永化,陈守明,陈建华,等.纳米Fe304聚苯乙烯均匀分散体系的制备及结构[J].高等学校化学学报,2003,24:1717-1720.
    [69]张茂润,陶昭才,李广学.硅油基Fe304磁流体的制备与性能[J].磁性材料及器件,2003,7-9.
    [70]Wang C. Y, Zhu G. M, Chen Z. Y. The preparation of magnetite Fe3O4 andits morphology control by a novel arcelectrodeposition method[J]. Mater.Res. Bull.,2002,1885:1-5.
    [71]Vi jayakumar R, Koltypin Y, Felner Z, Sonochemical synthesis and characterization of pure nanometersized Fe3O4 particles[J]. Mater. Sci. and Engineering,2000,286 (A):101-105.
    [72]Liu Z. L, Wang X, Yao K. L. Synthesis of magnetite nanoparticles W/O microemulsion] [J]. J. Mater. Sci.,2004,39(7):2633-2636.
    [73]Huang J,Guan J. G, Chen W. Y. Preparation and magnetorheological properties of aqueous suspension based on emulsion droplets containing Fe3O4 nanoparticles[J]. J. Wuhan Univ. Technol. Mat. Sci.,1998,13 (3):1-6.
    [74]Arturo M, Lopez Q, Jose R. Magnetic iron oxide nanoparticles synthesized via microemulsions[J]. J. Colloid Interface Sci.,1993,158:446-451.
    [75]Lee K. M, Sorensen C. M, Klabunde K. J. Synthesis and characterization of stable colloidal Fe3O4 particles in water in-oil microemulsions[J]. IEEE Trans. Magn.,1992, 28(5):3180-3182.
    [76]Zhou Z. H, Wang J, Liu X. Synthesis of Fe3O4 nanoparticles from emulsions[J]. J.Mater Chem.,2001, 1Ⅰ:1704-1709.
    [77]Fan R, Chen X. H, Gui Z. A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4[J]. Mater. Res. Bull.,2001,36 (3-4):497-502.
    [78]杨华,黄可龙,刘素琴.水热法制备的Fe304磁流体[J].磁性材料及器件,2003,4-6.
    [79]Wang S. Z, Xin H. W, Qian Y. T. Preparation of nanocrystalline Fe3O4 by gamma-ray radiation[J]. Mater. Lett.,1997,33:113-116.
    [80]任欢鱼,庄虹,刘勇健.Fe304纳米颗粒的表面改性[J].化学研究,2003,(14):11-13.
    [81]王伟,沈辉.纳米Fe304颗粒改性详析[J].材料科学与工艺,2001,(9):431-433.
    [82]林景,方利国.纳米流体强化传热技术及其应用新进展[J].化工进展,2008,27(4):488-494.
    [83]张灿英,王继鑫,朱海涛.纳米流体传热研究最新进展[J].中国材料研究科技与装 备,2006,4:5-8.
    [84]S.P.Jang, S.U.S Choi. Role of Brownian motion in the enhangced thermal conductivity of nanofliuds[J]. Applied physics lett.,2004,84(21):4316-18.
    [85]林本兰,沈晓冬,崔升.纳米Fe3O4磁流体的制备及其影响因素研究[J].润滑与密封,2006,10:137-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700