分解炉内燃烧与分解的CFD技术应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
窑外分解技术是国际公认的代表当代最高技术水平的水泥生产方法,该技术
    的关键设备之一是分解炉。分解炉种类很多,它既是一个燃烧炉,同时也是一个
    化工反应装置,具有气固输送、燃料燃烧、气固换热和碳酸盐分解等多种功能。
    由于分解炉内燃料燃烧和生料分解这两个反应是悬浮于气流中进行的,且各过程
    相互制约,这就使得分解炉的研究开发工作具有很大的难度。分解炉研究手段的
    先进性往往决定了研究所能达到的水平。就分解炉研究的数值方法而言,国内的
    许多研究者已经作了大量的工作,取得了一定的成就,但离工程实际应用还有很
    大的差距。
    CFD(Computational Fluid Dynamics)技术发展到今天,已逐渐作为一种新
    手段而日益受到重视并得以广泛地应用和发展,已能成功地解决如气固两相流
    动、高温传热、煤粉燃烧等分解炉所涉及到的部分物理、化学过程。但是,分解
    炉有其自身的特点,煤粉和生料混合悬浮于气流中形成无焰燃烧,放热和吸热同
    时进行,这是其他任何行业少有的,现有的CFD通用软件不能直接应用于分解
    炉热工状态的数值模拟。为此,本文在已有的CFD软件的基础上,参考了AEA
    的部分源程序,针对分解炉内燃烧和分解的特点开发了适用于分解炉热工状态分
    析的数值计算软件,为CFD技术在分解炉中的应用研究提供了必要的基础。
    本文按照分解炉内各参量的比例关系设计了一个结构相对简单的矩形管道,
    并以此为研究对象进行燃烧和分解的数值计算软件的开发和调试。结果表明,管
    道内及管道出口温度分布均匀,并与分解炉内的温度分布规律非常接近,气相组
    分变化合理,进而证明了本文开发的数值计算软件的正确性及合理性。
    在分解炉的数值模拟研究中,煤粉和碳酸盐反应动力学参数的正确给定是非
    常重要的,参数的合理性直接影响到计算结果的正确性。本文采用高温反应炉分
    别对这两个过程的反应动力学参数进行实验研究,获得了碳酸钙以及煤粉的活化
    能和频率因子,为分解炉的数值模拟提供了反应动力学参数。
    在以上研究成果的基础上,本文以南京水泥工业设计研究院开发的喷旋管道
    炉为实例进行数值模拟研究,获得了流场、颗粒运动轨迹、压力场、温度场、组
    分浓度场、生料分解率以及煤粉燃烬率等多项参数,全面、精细、直观地反映了
    
    喷旋管道炉内的热工状态。计算结果与南京水泥设计研究院的设计参数及热工标
    定结果吻合良好,说明该数值模拟的理论及结果是可靠的,证明本文开发的软件
    有能力预测分解炉的热态工况,可用于优化分解炉的结构和指导分解炉的操作。
It has been publicly acknowledged that the Technology of Precalcination is the most advanced cement manufacturing method. Precalciner, the most important machine in the System of Precalcination, is a combustion furnace and a chemical reaction equipment. Multi-phase flow, combustion of fuel, heat transfer and decomposition of carbonate co-exist in it. The main chemical reactions in a precalciner, namely the combustion of pulverized coal and the decomposition of carbonate, occur in a suspending state and interact with each other, which makes the researching jobs extremely tough. The researching methods always decide the level of researching jobs on precalciners. Native researchers have struggled a lot to study precalciners numerically, but they still have a long way to go to put their achievements into factual use.
    Since CFD (Computational Fluid Dynamics) Technology was invented, it has been attached great importance as a new technique and has been greatly developed. By now, it can be used to solve some problems involved in a precalciner, such as multi-phase flow, heat transfer and combustion of pulverized coal, etc. But precalciner is characterized by its own traits, for example, pulverized coal combusts without flame because of the existence of raw meal, which is a particular phenomenon that could not be found in other industries. As a result of this, the existing CFD softwares could not been directly adopted in the numeric simulation for a precalciner. In order to resolve the problem, a new method was put forward by combining a piece of routine compiled in the dissertation with the existing CFD softwares. The routine is designed to deal with the combustion of pulverized coal and the decomposition of carbonate.
    A long and thin cubic pipe geometrically is built to debug the routine. Parameters in the debugging are set according to those of a typical precalciner. Results of the debugging showed that the temperature in the pipe was equally distributed and the temperature on the outlet was almost equal to that of a normal precalciner. In addition, the mass fractions reasonably varied alone the pipe. Carbonate almost decomposed
    
    
    
    completely. All of the above means that the routine designed in the dissertation is able to describe the process of combustion and decomposition.
    In the particular numeric simulation for a certain precalciner, it is very important to properly set the kinetic parameters of char and carbonate, because improper parameters always lead to useless results. In order that correct parameters were given in the simulation, kinetic experiments were carried out on a high-temperature furnace and corresponding parameters were got.
    With the routine and parameters, we carried out a numeric simulation by taking the ejecting-revolving pipe precalciner designed by NCDRI (Nanjing Cement Design and Research Institute) as a geometric model. Parameters such as flow field, particles' tracks, pressure field, temperature field, decomposition proportion of raw meal and combustion proportion of pulverized coal, etc. are got. The result inosculated with the reports from NCDRI, which means the routine is capable of forecasting the properties of a newly designed precalciner and is capable of providing information to improve its structure and operation.
引文
[1] 陈全德.新型干法水泥生产技术.北京:中国建筑工业出版社,1987.56—61
    [2] 张浩楠,姜小川.中国现代水泥技术及装备.天津:天津科学技术出版社,1991.2
    [3] 国家建材局科学技术委员会.悬浮预热和预分解窑技术经验交流会论文集.北京:中国建材工业出版社,1994.78—79
    [4] 余立毅,刘述祖.水泥窑外分解技术.北京:中国建筑工业出版社,1983.189—189
    [5] 《国外水泥机械进展》编写组.国外水泥机械进展.北京:中国建筑工业出版社,1982.99—105
    [6] [美]沃尔特·H·杜达.国际先进水泥工艺与装备手册.武汉:武汉工业大学出版社,1989.132—141
    [7] 谢泽.水泥工业技术进步动态简析.中国建材装备.2002,(1):8—10
    [8] 胡宏泰等.水泥的制造和应用.济南:山东科学技术出版社,1993.6.252—256
    [9] 南京化工学院,西安冶金建筑学院等.硅酸盐工业热工过程及设备(下册).北京:中国建筑工业出版社,1980.98—100
    [10] [英]菲尔德.煤粉燃烧.北京:水利电力出版社,1989
    [11] 山东建筑材料工业学院.水泥工业热工过程及设备.北京:中国建筑工业出版社,1981.42—48
    [12] 周明凯等.四种预分解窑的比较和讨论.水泥技术.1996,(18)4:123—126
    [13] 王德厚.新型水泥生产新技术.云南建材.2000,(1):33—37
    [14] 苑金生.当代水泥烧成技术发展动向.中国建材装备.1996,(11):10—12
    [15] 陈全德.全国第四届悬浮预热和预分解窑技术经验交流会论文集.北京:中国建材工业出版社,2000.5—11
    [16] 李昌勇,彭新战.2000t/dDD型分解炉气固运动规律及性能研究.武汉工业大学学报.1999,21(6):6—8
    [17] 王志荣.分解炉数学模型在设计和生产中的应用.水泥技术.1995,6:3—13
    
    
    [18] 赵蔚临,吴波.分解炉内湍流流场数学模型的建立.山东建材学院学报.2002.3,15(1):26—29
    [19] 缪明烽,叶旭初等.RSP分解炉内燃烧分解的数学模拟研究.水泥石灰.1995,(4):16~20
    [20] 吴飞等.分解炉科学计算可视化研究.武汉理工大学学报.2001,(12):109—113
    [21] Giddings D., Eastwick C. N., Pickering S.J., Simmons K. Computational fluid dynamics applied to a cement precalciner. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2000, 214(3): 269—280
    [22] Conroy, Geoffrey H. Industrial application and results of low NO//x precalciner systems. IEEE Cement Industry Technical Conference (Paper) 1997. IEEE, Piscataway. NJ. USA. 97CH36076:297—318
    [23] Mullinger, Peter J. Jenkins, Barrie G. Optimising precaleiner design and performance. World Cement 1996, 27(4):4—9
    [24] Hu S.-G., Liu H.-C., Li J.-X., Technological characters and improvements on type SLC-S precalciner kiln. Journal Wuhan University of Technology, Materials Science Edition. 2001, 16(2):69—72
    [25] Giddings D., Eastwick C.N., Pickering S. J. Computational fluid dynamics applied to a cement precalciner. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2000, 214(3): 269-280
    [26] 全国计算流体力学会议组委会.计算流体力学的的理论、方法和应用.北京:科学出版社.1992.7—10
    [27] 吴江航等.计算流体力学的理论、方法及应用.北京:科学出版社.1988.3—6
    [28] 尹晔东等.计算流体力学(CFD)在化学工程中的应用.石化技术.2000,7(3):166~169
    [29] 刘辉.化工过程与研究的新手段.天津化工.1997,01:7—11
    [30] 陶文铨.计算传热学的近代进展.北京:科学出版社.2000:383~401
    [31] [美]S.V.帕坦卡.传热与流体流动的数值计算.北京:科学出版社.1984.12—
    
    25
    [32] 盛东源.冶金过程流体流动、燃烧、传热分析中CFD技术的应用:[博士论文].沈阳:东北大学.1996
    [33] AEA Technology. CFX User Guide: CFX-4.3 Basic Functions. U.K. 168
    [34] AEA Technology. CFX User Guide: CFX-4.3 Solver Volume 3. U.K.368—412
    [35] L.D.斯穆特,P.J.史密斯.煤的燃烧与气化.北京:科学出版社.1992.56—88
    [36] Johnson, James Lee. Kinetics of coal gasification. New York: Wiley. C1979
    [37] 范维澄等.流动及燃烧的模型与计算,合肥:中国科学技术大学出版社.1992.122-146
    [38] 周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1991.123-135
    [39] [英]M.A.菲尔德等.煤粉燃烧.北京:水利电力出版社.1989.53—61
    [40] L. Gibb., David T. Pratt. Pulverized-coal combustion and gasification: New York: Plenum Press, c1979
    [41] 李祥东,叶旭初.多风道煤粉燃烧器拢焰罩的长度对窑内煤粉燃烧状况影响的研究.水泥技术.2002,4:21—24
    [42] 丁苏东.220t/h燃煤锅炉燃烧及炉内喷钙的数值模拟研究:[硕士论文].南京:南京化工大学.2001
    [43] 魏鸿思,徐德龙.碳酸盐分解反应的分析.西安:西安建筑科技大学出版社,1996.86—92
    [44] Gallagher Johnson, Kinetics of thermal decomposition of CaCO_3 in CO_2 and some observations of the kinetics compensation effect. Therlochim Acta. 1976, (14): 255~261
    [45] Y. H. KHRAISHA, D. R. DUGWELL. Thermal Decomposition of Limestone in A Suspension Reactor. Chem Eng Res Des, 1989 (67): January:52—57
    [46] Meier A. Predictive CFD model for a falling particle receiver/reactor exposed to concentrated sunlight. Chemical Engineering Science. 1999, 54(13):2899-2905
    [47] 陶文铨.计算传热学的近代进展.北京:科学出版社.2000:383~401
    [48] 沈慧贤 胡道和.硅酸盐热工工程.武汉:武汉工业大学出版社.1991.280—
    
    280
    [49] B.Vosteen et al. Decomposition of limestone: the influence of CO_2 and particle size on the reaction rate. Chem. Eng. Sci., 1996, (151): 623~634
    [50] 缪明烽.钙基脱硫剂非线性孔结构及其硫化活性的研究:[博士论文].南京:东南大学.2001
    [51] 杨学权.高温反应装置及CaCO_3分解动力学的实验研究:[硕士论文].南京:南京工业大学.2002
    [52] 李成之,郭伯伟.无烟煤粉燃烧动力学参数的实验研究.燃烧论文集.1989:116—120
    [53] 中材国际工程股份有限公司南京水泥工业设计研究院.广西鱼峰水泥股份有限公司2000t/d湿改干水泥熟料生产线技改工程窑系统热工标定报告.南京:南京水泥设计研究院.2002.7
    [54] 中材国际工程股份有限公司南京水泥工业设计研究院.宁夏赛马水泥(集团)有限责任公司节能技改工程窑系统热工标定报告.南京:南京水泥设计研究院.2002.11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700