炭素煅烧回转窑热工过程及优化结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭素煅烧回转窑是对炭素材料(主要是石油焦)进行煅烧的回转窑圆筒设备,其产品用以满足铝电解槽用阳极成型前的要求。炭素回转窑的应用,在我国起步较晚,距今仅有近30年的生产历史,与国外同类设备相比,无论在产能、能耗指标,还是煅烧焦质量及设备使用寿命等方面都存在一定的差距。因此,加快其生产工艺的研究和技术改造步伐,改善煅后焦质量,提高回转窑产能成为科技工作者急需解决的问题。本文即以该主题为中心展开研究。
     以河南某生产回转窑的热工测试结果和煅烧原料石油焦的物性参数测试结果为依据,本文编制了物料平衡表和热平衡表,了解了该窑的物料烧损和能量利用状况。同时利用模拟软件Fluent和Matlab分别对回转窑内气体空间和料层进行了数值模拟,详细阐述了回转窑内流场、温度场和组分浓度场的分布,着重研究了二、三次风管供风口位置与风量和窑内衬增设的翻料装置结构对窑内热工状况的影响。
     本文运用力矩守恒原理和物料运动学规律推导出适于炭素回转窑工业生产优先选择的物料运动形式——滚落发生的条件。由导出条件可知,通过改变物料与窑内壁的摩擦系数和回转窑转速的方法可以实现物料的滚落运动。对生产回转窑和自行设计制造的实验回转窑而言,当窑内壁摩擦系数满足滚落发生条件时,回转窑转速分别在1.1~3.7rpm和1.0~8.0 rpm范围内,可以实现并维持物料的滚落运动。以此运动形式为基础,借助前人建立的直筒窑料层厚度的数学模型,导出了直筒窑内物料停留时间的计算式。改变直筒窑料层厚度数学模型形式,导出了变径窑内物料停留时间的计算式。计算式中综合考虑了窑内径、窑长、窑头挡料圈高度、窑倾角、窑转速、物料体积流率、物料安息角、物料颗粒粒径等多种因素,具有一定的实用性。
     本文对自行设计建立的回转窑实验装置进行了热态实验,研究了回转窑在干燥期、烘烤期和煅烧期中,窑内的温度分布,及其与加热时间之间的关系。实验结果表明:窑内温度随着加热时间的延长而增加,窑头、窑尾两端附近温度变化剧烈,窑体中部区域温度变化平缓。文中还对实验装置进行了冷态实验,研究了回转窑转速、倾角、内径、内衬结构、窑尾挡料圈等参数对窑产能和物料停留时间的影响。实验结果表明:物料在窑内的停留时间分布近似正态分布。随着窑转速、窑倾角的增加,回转窑的产能增加,物料停留时间缩短。窑尾安装挡料圈可以有效提高窑产能,但其对物料停留时间的影响较为复杂,当转速低于2.0 rpm时,物料停留时间随着窑尾挡料圈高度的增加而延长;当转速超过2.0rpm时,物料停留时间随着窑尾挡料圈高度的增加反而缩短。当回转窑倾角固定时,物料停留时间与物料质量流率(即窑产能)的乘积与单位转速内物料质量流率近似成线性关系。将导出的直筒窑和变径窑内物料停留时间的计算值与实验窑的测试值分别进行了比较。结果表明,两者计算值与实验值比较吻合,而且计算中不需要引入修正系数。
     本文最后综合实验测试与数值模拟结果,提出了建议与大家商讨,以达到稳定窑况、改善煅后焦质量、增产节能降耗的目的。
The carbon rotary kiln is a kind of rotary cylindrical equipment for aluminum industrial calcination of carbon product such as petroleum coke. It has been used to calcinate petroleum coke only for nearly 30 years in China. As a result, there are wide differences between home and abroad in kiln output, energy consumption, calcining quality and kiln working life. Therefore, how to improve calcining quality and increase kiln output are becoming more urgent questions for the researchers. Then the paper is around these questions to study.
     In the paper, thermal measurements are carried out on a carbon rotary kiln in Henan province and physical parameters about petroleum coke are tested. Then, we calculate the material balance and the thermal balance. From the calculated results, we can know the carbon burning loss and utilization of energy. Meanwhile, the numerical simulations are conducted on gas and solid areas of the kiln using Fluent and Matlab softwares. It illustrates explicitly the flow field, temperature filed and compositional concentration field. And then the paper focuses on the impacts of the supply rate and positions of the secondary air and tertiary air and the kiln lining with turn-down rig structure on the kiln working condition.
     In the paper, solids movements are further researched. For practical engineering, the rolling motion is often chosen as an ideal design work condition. Here, characteristics of rolling motion are made simple analysis and its necessary conditions to occur are deduced. From the induced conditions, rolling motion happens by adjusting the kiln inner wall friction and the rotation speed. As the rotation speed ranges from 1.1 to 3.7 rpm for practical kiln and from 1.0 to 8.0 rpm for our experimental kiln, the solids mode of motion is rolling. According to the previous numerical model for predicting the depth of the solid bed, formula about the particle mean residence time of the straight kiln is deduced. Changing the numerical model for the solid bed depth of the straight kiln, formula about the particle mean residence time of the variable diameter kiln is got.The formulae calculate the residence time as a function of the kiln radius, kiln length, discharge dam height, kiln inclination, rotation speed, material volumetric flow rate, angle of repose of the solids and particle mean diameter.
     A laboratory rotary kiln is set up and hot experiments are carried on it in this work. The experimental results show that, kiln temperature increases with the calcination time. Kiln temperature changes significantly at around the kiln inlet and outlet and gently at the middle part of the kiln. The influences of operational and structural parameters on the mean residence time of solids (MRT) and the kiln output are also presented on the experimental rotary kiln. Experimental results show that the increase of rotation speed and kiln slope reduces MRT and increases kiln output. Also, kiln output increases with increasing charge dam height. MRT increases when the rotation speed is lower than 2.0 rpm but decreases when the rotation speed is higher than 2.0 rpm with increasing dam height. The product of MRT and mass flow rate (i.e. kiln output) increases approximately linearly with the mass flow rate per kiln rotation at the same kiln slope. Results of formulae about MRT calculation are compared with measurements. The comparison shows that, calculated results of the residence time of solids agree well with measurements. No fitting parameter is necessary.
     Finally, the paper summarizes the experiment results and simulated results and makes some recommendations so as to accomplish the aim of calcining quality improvement, kiln output increment and energy reduction.
引文
[1]崔东生.我国铝用炭素的发展方向及提高其质量的措施[J],中国有色金属学会第五届学术年会论文集,2003,56-59.
    [2]陈国强.“十五”我国冶金炭素工业发展回顾与“十一五”发展展望[J],冶金信息导刊,2007,(1):1-4.
    [3]罗英涛,胡振华,李旺兴,王平甫.中国铝用炭素50年的技术创新模式分析[J],炭素技术,2007,26(2):29-33.
    [4]罗英涛,李旺兴,刘风琴,王平甫.中国铝用炭素50年技术创新的回顾与展望[J],轻金属,2007,(7):37-45.
    [5]王平甫,罗英涛,宫振,李庆义,贾鲁宁.中国铝用炭阳极市场供需状况的回顾与展望[J],炭素技术,2005,24(2):27-30.
    [6]穆二军,陈杰.美国METSO炭素回转窑在国内的应用[J],炭素技术,2008,27(5):59-63.
    [7]田建华.回转窑煅烧石油焦操作参数最优化与传热数学模型的研究[D],沈阳东北大学,1999.
    [8]樊文国,刘志山,赵天荣,张世荣,张君武.Φ3.43×67.06 m回转窑在国内的应用[J],轻金属,2006,(12):59-61.
    [9]钱湛芬.炭素工艺学[M],北京:冶金工业出版社,2004:33-35.
    [10]张玉珠.石油焦煅烧质量的控制与提高[J],炭素技术,2003(2):40-43.
    [11]刘志山.回转窑煅烧石油焦工艺分析及技术改造[D],长沙中南大学,2005.
    [12]《炭素材料》编委会编.炭素材料[M],北京:冶金工业出版社,2004:64-64.
    [13]许斌,王金铎.炭材料生产技术600问[M],北京:冶金工业出版社,2006:57-60.
    [14]王平甫,宫振等.铝电解炭阳极生产与应用[M],北京:冶金工业出版社,2005:34-40,59-60,250-252.
    [15]姚广春.冶金炭素材料性能及生产工艺[M],北京:冶金工业出版社,1992:79-80,107-108.
    [16]杨国华.炭素材料[M],北京:中国物资出版社,1999,10-12.
    [17]于国友.炭素煅烧回转窑热工参数的调整[J],轻金属,2005(6):45-47.
    [18]周新林,赵红征.影响回转窑煅烧实收率原因分析及改进措施[J],轻金属,2005,(12):53-58.
    [19]曹广和.新型炭素煅烧回转窑的研制——热工过程及耐火内衬的设计[J],轻金属,2005,(7):52-56.
    [20]雷亚军.石油焦煅烧过程计算机控制系统[D],长沙中南大学,2004.
    [21]王莉.炭素煅烧回转窑恒料恒压控制系统[D],长沙中南大学,2004.
    [22]Henein H, Brimacombe J K, Watkinson A P. Experimental study of transverse bed motion in rotary kilns[J], Metallurgical and Materials Transactions B,1983,14B (2):191-205.
    [23]Perron J, Bui R T. Rotary cylinders:transverse bed motion prediction by rheological analysis [J], Canadian Journal of Chemical Engineering,1992,70(2):223-231.
    [24]Woodle G R, Munro J M. Particle motion and mixing in a rotary kiln [J], Powder Technology,1993, 76(3):241-245.
    [25]Boateng A A, Barr P V. Modeling of particle mixing and segregation in the transverse plane of rotary kiln[J], Chemical Engineering Science,1996,51(17):4167-4181.
    [26]Henein H, Brimacombe J K, Watkinson A P. The modeling of transverse solids motion in rotary kilns [J], Metallurgical and Materials Transactions B,1983,14B (2):207-220.
    [27]Mellmann J. The transverse motion of solids in rotating cylinders—forms of motion and transition behavior [J], Powder Technology,2001,118(3):251-270.
    [28]Ding Y L, Forster R N, Seville J P K, Parker D J. Granular motion in rotating drums:bed turnover time and slumping-rolling transition[J], Powder Technology,2002,124(1-2):18-27.
    [29]Ding Y L, Seville J P K, K,Forster R, Parker D J. Solids motion in rolling mode rotating drums operated at low to medium rotational speeds [J], Chemical Engineering Science,2001,56(5):1769-1780.
    [30]Lim S Y, Davidson J F, Forster R N, Parker D J, Scott D M, Seville J P K. Avalanching of granular material in a horizontal slowly rotating cylinder:PEPT studies[J], Powder Technology,2003,138(1) 25-30.
    [31]Rajchenbach J. Dynamics of grain avalanches [J], Physical Review Letters,2002,88(1):014301-1-4.
    [32]Liu X Y, Specht E, Mellmann J. Slumping-rolling transition of granular solids in rotary kilns [J], Chemical Engineering Science,2005,60(13):3629-3636.
    [33]Spurling R.J, Davidson J F, Scott D M. The no-flow problem for granular material in rotating kilns and dish granulators [J], Chemical Engineering Science,2000,55(12):2303-2313.
    [34]Liu X Y, Specht E. Mean residence time and hold-up of solids in rotary kilns[J], Chemical Engineering Science,2006,61 (15):5176-5181.
    [35]Li S Q, Yan J H, Li R D, Chi Y, Cen K F. Axial transport and residence time of MSW in rotary kilns: Part Ⅰ. Experimental [J], Power Technology,2002,126(3):217-227.
    [36]刘刚,池涌,蒋旭光,朱江,严建华,岑可法.模拟危险物颗粒回转窑内运动特性试验研究[J],工程热物理学报,2005,26(2):343-346.
    [37]楼波,罗玉和,马晓茜.基于多层BP神经网络的回转窑内物料传输模型研究[J],热能动力工程,2006,21(4):409-413,439.
    [38]Heydenrych M D, Greeff P, Heesink A B M, Versteeg G F. Mass transfer in rolling rotary kilns:a novel approach[J], Chemical Engineering Science,2002,57(18):3851-3859.
    [39]严建华,李水清,黄景涛,李润东,池涌,岑可法.回转窑内MSW轴向传输和扩散的数学模型和仿真[J],工程热物理学报,2002,23(3):380-383.
    [40]Li S Q, Chi Y, Li R D, Yan J H, Cen K F. Axial transport and residence time of MSW in rotary kilns: Part Ⅱ. Theoretical and optimal analyses [J], Power Technology,2002,126(3):228-240.
    [41]王汇,刘训良,温治.回转窑内颗粒表面滚落过程数学模型及仿真分析[J],烧结球团,2008,33(6):1-6.
    [42]刘刚,池涌,蒋旭光,刘炳池,岑可法.颗粒物料在回转窑内的运动特性模型[J],浙江大学学报(工学版),2007,41(7):1195-1200.
    [43]罗玉和,楼波.风速条件下回转窑内物料传输模型研究[J],山西建筑,2008,34(17):3-4.
    [44]雷先明,肖友刚.回转窑力学机理的研究进展及展望[J],水泥工程,2005(6):10-16.
    [45]王汇,罗中,温治.回转窑内流动传热和燃烧过程数学模型的研究现状及其发展趋势[J].矿冶,2006,15(2):28-34.
    [46]彭思众,马晓茜,赵绪新.回转窑内物料流动模型研究[J],工业炉,2002,24(11):6-9.
    [47]Tscheng S H, Watkinson A P. Convective heat transfer in a rotary kiln [J], Canadian Journal of Chemical Engineering,1979,57(4):433-443.
    [48]Barr P V, Brimacombe J K. Heat-transfer model for the rotary kiln:Part Ⅱ. Development of the cross-section model [J], Metallurgical Transactions B (Process Metallurgy),1989,20(3):403-419.
    [49]Gorog J P, Adams T N, Brimacombe J K. Heat transfer from flames in a rotary kiln [J], Metallurgical Transactions B (Process Metallurgy),1983,14(3):411-424.
    [50]Schulunder E U. Particle heat transfer [C]. Proceedings of the 7th International Heat Transfer Conference Munchen:Hemisphere Publishing Corporation,1982,195-211.
    [51]张志霄,池涌,李水清,严建华,岑可法.回转窑传热模型与数值模拟[J],化学工程,2003,31(4):27-31.
    [52]马爱纯,周孑民,孙志强,李旺兴.氧化铝熟料窑内一维传热模型[J],冶金能源,2004,23(1):23-26.
    [53]Boateng A A., Barr P V. A thermal model for the rotary kiln including heat transfer within the bed [J], International Journal of Heat and Mass Transfer,1996,39(10):2131-2147.
    [54]Dhanjal S K, Barr P V, Watkinson A P. The rotary kiln:An investigation of bed heat transfer in the transverse plane [J], Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,2004,35(6):1059-1070.
    [55]Gorog J P, Brimacombe J K, Adams T N. Radiative heat transfer in rotary kilns [J], Metallurgical and Materials Transactions B,1981,12(1):55-70.
    [56]邱夏陶,韩小良.回转窑传热数学模型及其优化[J],钢铁,1994,29(6):66-70.
    [57]Bui R T, Simard G, Charette A, et al. Mathematical modeling of the rotary coke calcining kiln [J], Canadian journal of chemical engineering,1995,73:534-544.
    [58]Marcio A. M, Leandro S. O, Adriana S. F. Modeling and simulation of petroleum coke calcinations in rotary kilns[J], Fuel,2001,80(11):1161-1622.
    [59]肖国俊,丁学俊,陈汉平,程尚清,骆名文,熊用.石油焦煅烧回转窑综合传热过程数值模拟[J],过程工程学报,2007,7(5):883-888.
    [60]柏登成,刘艳梅.对炭素回转窑燃烧室内部结构设计的改进[J],炭素技术,2004,23(1):49-53.
    [61]张宝珊.对引进碳素煅烧回转窑设计的改进[J],轻金属,1997,(2):44-47,51.
    [62]吴家凤.焦炭煅烧回转窑技术参数的讨论和锥形回转窑的设计构思[J],炭素技术,2002,(1):42-44.
    [63]徐卫忠.炭素回转窑结构改进和传动机构调整探索[J],炭素技术,2005,24(3):46-49.
    [64]宋莉媛,李国岫.关于回转窑节能技术的探讨[J],工业炉,2006,28(6):20-23.
    [65]李玉海.采用空心耐火砖隔热的回转窑筒体[J],太原科技,2000,(3):30-33.
    [66]朱献,郭殿波,刘新红.刘华锋.回转窑烧成带耐火砖的保护[J],四川水泥,2006,(1):8-9.
    [67]王洪宇.浇注料在炭素回转窑内衬施工中的应用及提高内衬使用寿命的途径[J],轻金属,2006,(3):48-52.
    [68]韩勇.影响回转窑寿命的主要因素分析[J],宁夏机械,2005,(2):19-21.
    [69]杨振荣.碳素煅烧回转窑窑尾返料问题的处置[J],有色设备,1998,(5):34-35.
    [70]商丹,高永清.回转窑锻烧带温度控制器的设计与仿真[J],工矿自动化,2009,(1):30-32.
    [71]郝杰,代霖.石油焦锻烧回转窑风压平衡控制技术改进[J],轻金属,2009,(2):34-37.
    [72]李铁军,阳春华,朱红求.炭素锻烧回转窑自动监控系统开发与应用[J],工业控制计算机,2008,21(3):91-92.
    [73]王莉,周新东.基于Siemens PLC和自校正控制算法的炭素回转窑系统的控制[J],工程设计学报,2008,15(1):50-53.
    [74]王英.模糊控制与PID控制在回转窑控制系统中的结合应用[J],炭素技术,2007,26(4):52-55.
    [75]赵永金,王洪宇.回转窑恒定给料控制技术[J],轻金属,2005,(5):51-53.
    [76]中华人民共和国有色金属行业标准YS/T124-1.1-94回转窑热平衡测定与计算方法.中国有色金 属工业总公司,1994.11.
    [77]刘利.炭素煅烧回转窑热工特性的研究[D],沈阳东北大学,2008.
    [78]王秉铨.工业炉设计手册(第2版)[M],北京:机械工业出版社,1996:1006-1009.
    [79]梅炽.有色冶金炉[M],北京:冶金工艺出版社,2003,146-151.
    [80]霍云光.燃烧与传热工程计算图表[M],天津科学技术出版社,1982,63-63.
    [81]王树徽,王建兵.回转窑煅烧石油焦清洁生产方案研究[J],油气田环境保护,2006,16(3):36-38.
    [82]王洪宇.回转窑烟气净化系统的改造[J],轻金属,2004,(9):47-49.
    [83]胡兴利.回转窑余热发电经济效益浅析[J],有色冶金节能,2007,(5):46-47.
    [84]阳培龙,黎旅汉.回转窑余热回收系统的节能改进[J],有色冶金节能,2007,(4):54-56.
    [85]唐继黔.利用回转窑烟气余热的一种新方法[J],贵州化工,2005,30(6):17-19.
    [86]唐金泉,常子冈,唐兆伟.提高回转窑纯低温余热发电能力的途径[J],水泥,2005,(5):8-14.
    [87]张斌,刘合明,孙培敬.φ4.0m×60m回转窑辐射热的应用[J],水泥,2008,(10):27-28.
    [88]杜春季,魏利民,苏满.利用回转窑窑体散热供办公室取暖[J],水泥,2003,(8):63-63.
    [89]韩昭沧.燃料及燃烧(第2版)[M],北京:冶金工艺出版社,2007,7-7
    [90]方修睦,姜永成,张建利.建筑环境测试技术[M],中国建筑工业出版社:2001,16-39.
    [91]张德丰.Matlab数值分析与应用[M],北京:国防工业出版社,2007:2-3.
    [92]求是科技编著. MATLAB 7.0从入门到精通[M],北京:人民邮电出版社,2006:1-2.
    [93]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M],北京:北京理工大学出版社,2004:19-20.
    [94]王金瑞,张凯,王刚. Fluent技术基础与应用实例[M],北京:清华大学出版社,2007:1-2.
    [95]Marias F, Roustan H, Pichat A. Modeling of a rotary kiln for the pyrolysis of aluminum waste [J],
    Chemical Engineering Science,2005,60 (16):4609-4622.
    [96]孟柏庭.有色冶金炉[M],长沙:中南大学出版社,2005:236-239.
    [97]Raj A. S, Suresh S, Sivakumar K, Pradeep K A. Mathematical modeling of fluidized bed combustion-2:combustion of gases [J], Fuel,1998,77(9/10):1033-1049.
    [98]钱之荣 范广举 耐火材料实用手册[M],北京:冶金工业出版社,1992:709-402.
    [99]赵现新.气体穿过固定阀的流体力学性能及数值模拟[D],杭州浙江工业大学,2004.
    [100]周杜娟,毛羽,江华,王娟.燃油加热炉燃烧过程的三维数值模拟[J],工业炉,2004.26(2):38-44.
    [101]于进.浅谈回转窑工艺操作最佳化的途径[J],轻金属,1999,(8):44-48.
    [102]周萍,刘朝东,周乃君,李海丹.石油焦煅烧回转窑内多场耦合数值仿真与操作参数的优化[J], 炭素技术,2006,25(2):1-5.
    [103]肖国俊,丁学俊,骆名文,熊用.石油焦煅烧回转窑内流场在不同二、三次风入口条件下的数值模拟[J],炭素,2007,(2):38-42.
    [104]《有色冶金炉设计手册》编委会编.有色冶金炉设计手册[M],北京:冶金工业出版社,2000:402-402.
    [105]Watkinson A P, Brimacombe J K. Heat transfer in a direct-fired rotary kiln. Ⅱ. Heat flow results and their interpretation [J], Metallurgical and Materials Transaction B,1978,9(3):209-219.
    [106]Mellmann J, Specht E, Liu X Y. Prediction of rolling bed motion in rotating cylinders [J], AlChE Journal,2004,50(11):2783-2793.
    [107]Liu X Y, Specht E, Gonzalez O G, Walzel P. Analytical solution for the rolling-mode granular motion in rotary kilns[J], Chemical Engineering and Processing,2006,45(6):515-521.
    [108]沈火明,高淑英.理论力学[M],北京:中国铁道出版社,2007:75-75.
    [109]Sullivan J D, Maier C G, Ralson O C. Passage of solid particles through rotary cylindrical kilns [R], U.S. Bureau of Mines Technical Paper,1927, No.384.
    [110]Chatterjee A, Sathe A V, Mukhopadhyay P K. Flow of materials in rotary kilns used for sponge iron manufacture:part Ⅱ. Effect of kiln geometry [J], Metallurgical and Materials Transaction B,1983, 14(3):383-392.
    [111]Descoins N, Dirion J L, Howes T. Solid transport in a pyrolysis pilot-scale rotary kiln:preliminary results-stationary and dynamic results [J], Chemical Engineering and Processing,2005,44(2): 315-321.
    [112]Spurling R J. Granular flow in an inclined rotating cylinder:steady state and transients [D], Department of Chemical Engineering, University of Cambridge,2000.
    [113]Saeman W C. Passage of solids through rotary kilns:factors affecting time of passage [J], Chemical Engineering Progress,1951,47(10):508-514.
    [114]Kramers H, Croockewit P. The passage of granular solids through inclined rotary kilns [J], Chemical Engineering Science,1952,1(6):259-265.
    [115]Scott D M., Davidson J F, Lim S Y, Spurling R J. Flow of granular material through an inclined, rotating cylinder fitted with a dam [J], Powder technology,2008,182(3):466-473.
    [116]Spurling R J, Davidson J F, Scott D M. The Transient Response of Granular Flows in an Inclined Rotating Cylinder [J], Chemical Engineering Research and Design,2001,79(1):51-61.
    [117]Labas E, Houzelot J L, Ablitzer D, et al. Experimental study of residence time, particle movement and bed depth profile in rotary kilns[J], Canadian Journal of Chemical Engineering,1995,73(2): 173-180.
    [118]Gonzalez L M, Romero J J B. Solids movement in rotary kilns in the slumping regime:model using a control plane parallel to the steepest descent [J], Particle & Particle Systems Characterization,2005, 22(2):119-132.
    [119]龙岩.炭素回转窑生产过程的自动控制[J],轻金属,2006,(5):57-58.
    [120]王莉,阳春华.炭素煅烧自动控制系统的设计与实现[J],冶金自动化,2005,(3):46-49.
    [121]张志福,杨笠.变频器在炭素回转窑控制系统中的应用[J],变频器世界,2005,(4):98-100
    [122]张孝正.煅烧回转窑煅烧带的控制及实现[J],青海大学学报(自然科学版),2007,25(4):10-12,21.
    [123]尤祥胜.变频调速在铝行业的应用[J],有色冶金节能2006,(1):39-41.
    [124]张俊生.回转窑出料系统的改造[J],天津冶金2007,(1):41-42.
    [125]吴智明.提高炭阳极质量的实践[J],炭素技术,1999,(2):31-37.
    [126]候帆,吴家风.关于焦炭煅烧回转窑设计的思考[J],轻金属,2000,(5):43-47.
    [127]包崇爱.实现回转窑稳定煅烧的对策[J],炭素技术.2001,(4):43-45.
    [128]车得福,刘艳华.烟气热能梯级利用[M],北京:化学工业出版社,2006:8-15
    [129]李云雁,胡传荣.试验设计与数据处理[M],北京:化学工业出版社,2005:8-13,201-203.
    [130]李爱民,李水清.严建华,岑可法.固体废弃物在回转窑内停留时间的试验研究[J],化学反应工程与工艺,2002,18(2):152-157.
    [131]李水清,池涌,李润东,李爱民,严建华,岑可法.城市垃圾在回转窑内传输过程的模型和优化[J],化工学报,2002,53(10):1015-1021.
    [132]李爱民,李水清,严建华,李润东,池涌,岑可法.城市垃圾在回转窑内传输过程的冷态实验[J],化工学报,2002,53(9):912-917.
    [133]Ingram A, Seville J P K, Parker D J, Fan X, Forster R G. Axial and radial dispersion in rolling mode rotating drums [J], Powder Technology,2005,158(1-3):76-91.
    [134]李爱民,蔡九菊,王志,魏砾宏.固体废弃物在回转窑内混合特性的试验[J],东北大学学报(自然科学版),2002,23(2):152-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700