PCB153、P,P’-DDE单独及联合对新生期大鼠甲状腺激素的干扰作用及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲状腺干扰物(Thyroid disrupting chemicals, TDCs)是指能够作用于下丘脑-垂体-甲状腺轴或直接作用于甲状腺激素受体(Thyroid Hormones Receptor,TR),影响体内甲状腺激素(Thyroid Hormones, THs)代谢及作用的外源性化合物。PCB153是生物和人体组织中含量最高的PCBs同系物,其含量与机体总PCB负荷具有很好的相关性;p,p'-DDE是DDT在环境和机体内存留时间最持久、浓度最高的代谢产物,是环境中DDT长残留期的标志物。PCBs和p,p'-DDE对人和实验动物甲状腺功能具有明显的干扰作用。
     本研究以PCB153和p,p'-DDE作为受试物,以新生期SD大鼠作为研究对象,给予不同低剂量的PCB153和p,p'-DDE,建立大鼠暴露模型;本研究主要观察PCB153和p,p'-DDE单独或联合染毒对大鼠甲状腺生长发育,血清THs的影响,并探讨与THs合成、分泌、代谢密切相关的机制,旨在为进一步研究此类TDCs对甲状腺系统的毒性作用及其机制提供科学依据。
     第一部分、PCB153和p,p'-DDE单独及联合染毒对大鼠甲状腺及THs的影响
     目的:PCB153和p,p'-DDE单独或联合染毒对大鼠甲状腺及THs的影响。
     方法:对新生期的仔鼠从出生后第3天至第15天进行染毒,隔天一次,共7次。按照1ml/kg体重的剂量,经口灌胃进行染毒。PCB153单独暴露实验:溶剂对照组,0.025mg/kg PCB153,0.25mg/kg PCB153,2.5mg/kg PCB153。p,p'-DDE单独及与PCB153联合暴露实验:溶剂对照组,0.1mg/kg,p'-DDE,1mg/kg,p'-DDE,10mg/kg p'-DDE,0.25mg/kg PCB153+1mg/kg p,p'-DDE,2.5mg/kg PCB153+10mg/kg p,p'-DDE。每次染毒前,称取动物体重(哺乳期);染毒结束后,每周称取动物体重一次。所有动物处死后分离甲状腺、大脑、肝等器官,称重后计算脏器系数。采用ELISA试剂盒检测血清中TT4、FT4、TT3、FT3、TSH、TRH。 Morris水迷宫定位航行实验、空间探索实验衡量动物空间学习记忆能力。
     结果:与对照组相比,2.5mg/kg PCB153组大鼠定位航行实验的潜伏期和总路程明显增加,差异有统计学意义(P<0.05)。在出生后21天时,与对照组相比:0.25mg/kg PCB153、2.5mg/kg PCB153组甲状腺脏器系数,差异有统计学意义(P<0.05)。与对照组相比:p,p'-DDE单独及与PCB153联合组甲状腺脏器系数、2.5mg/kg PCB153+10mg/kg p,p'-DDE组肝脏脏器系数升高,差异有统计学意义(P<0.05)。对大鼠出生后21天(PND21)血清甲状腺激素影响:与对照组相比,0.25mg/kg PCB153、2.5mg/kg PCB153组大鼠血清TT4、FT3、TT3水平、各染毒组TRH水平明显下降,差异有统计学意义(P<0.05)。与对照组相比,各暴露组大鼠血清TT4,FT3(除0.1mg/kg p,p-DDE暴露组)明显下降,差异有统计学意义(P<0.05)。在出生后50天时,与对照组相比,各暴露组大鼠血清TT4、TT3、FT4(2.5mg/kg PCB153组)、FT3(0.25mg/kg PCB153、2.5mg/kg PCB153)、TSH (0.25mg/kg PCB153、2.5mg/kg PCB153)水平明显下降,差异有统计学意义(P<0.05)。与对照组相比,各PCB153组大鼠血清TRH水平明显上升,差异有统计学意义(P<0.05);与对照组相比,大鼠血清TT4(各暴露组)、FT4(10mg/kg p,p'-DDE组)水平明显下降,差异有统计学意义(P<0.05)。与PCB153同剂量单独暴露组相比:大鼠血清TT3、FT3水平在0.25mg/kg PCB153+lmg/kg p,p'-DDE、2.5mg/kg PCB153+10mg/kg p,p'-DDE组明显升高,差异有统计学意义(P<0.05)。析因分析表明PCB153与p,p'-DDE联合对大鼠(PND50)血清FT3水平影响存在交互作用(F=9.49,P<0.05)。
     结论:PCB153、p,p'-DDE单独和/或联合暴露,会对大鼠甲状腺的生长发育产生影响。PCB153、p,p'-DDE单独和/或联合暴露后,大鼠体内甲状腺激素稳态的遭到破坏。PCB153可能会对大鼠的学习、空间记忆能力产生不良影响。
     第二部分、PCB153和p,p'-DDE单独及联合染毒甲状腺干扰机制探讨
     目的:研究探讨PCB153和p,p'-DDE单独及联合染毒对甲状腺的干扰机制。
     方法:采用ELISA试剂盒检测血清中NIS、TG、TPO、TTR, ROS、MDA、 GSH-PX、SOD水平。用Real time RT-PCR技术检测出生50天后大鼠肝脏组织中TR (TRα1、TRβ1、TRβ2),脱碘酶(D1,D2),肝组织代谢酶(CYP1A1、 CYP2B3、 UGT1A1、UGT1A9)、甲状腺激素跨膜转运蛋白(MCT8)、视黄醇类X受体(RXRα)、ERK1/2信号通路(Kras1、KRaf1、 MEK1、ERK1、ERK2)等基因mRNA表达情况,用Western blot检测出生50天后大鼠肝脏组织中TRβ1、RXRα、总ERK1/2、磷酸化ERK1/2的蛋白表达情况。
     结果:21天时,与对照组相比:大鼠血清TPO(各PCB153组)、NIS(0.25mg/kg PCB153、2.5mg/kg PCB153组)水平明显下降,差异有统计学意义(P<0.05)。PCB153染毒对大鼠血清TG、TTR水平有性别差异,与对照组同性别相比,雄与雌性大鼠在0.25mg/kg PCB153、2.5mg/kg PCB153组TG、TTR水平明显下降,差异有统计学意义(P<0.05)。与对照组相比,各PCB153染毒组大鼠血清ROS、MDA水平上升,差异有统计学意义(P<0.05);0.25mg/kg PCB153、2.5mg/kg PCB153组GSH-PX、SOD水平明显下降,差异有统计学意义(P<0.05)。与对照组相比,各染毒组大鼠血清ROS(除0.1mg/kg p,p'-DDE暴露组)水平明显上升,差异有统计学意义(P<0.05)。50天时,与对照组相比,大鼠血清TPO水平在各PCB153组,TG水平在10mg/kg p,p'-DDE组明显下降,差异有统计学意义(P<0.05);PCB153染毒TTR水平影响有性别差异,与对照组同性别相比,雌性大鼠在0.25mg/kg PCB153、2.5mg/kg PCB153组大鼠血清TTR水平明显下降,差异有统计学意义(P<0.05)。与对照组相比,各PCB153暴露组大鼠血清ROS、MDA水平上升,差异有统计学意义(P<0.05);各PCB153暴露组大鼠血清GSH-PX、SOD水平明显下降,差异有统计学意义(P<0.05)。
     与对照组同性别相比:雄性大鼠中,肝脏组织TRα1mRNA表达水平在各PCB153、10mg/kg p,p'-DDE, TRβ1mRNA表达水平在各PCB153(除0.25mg/kg PCB153组)、p,p'-DDE组(除1mg/kg p,p'-DDE组),TRβ2mRNA表达水平在各p,p'-DDE组中及联合组明显上升,差异有统计学意义(P<0.05);雌性大鼠中,TRα1mRNA表达水平在2.5mg/kg PCB153组、TRβ1mRNA表达水平在10mg/kg p,p'-DDE中,TRβ2mRNA表达水平在2.5mg/kg PCB153,各p,p'-DDE(除1mg/kg p,p'-DDE组)组及联合组明显上升,差异有统计学意义(P<0.05)析因分析表明,p,p'-DDE与PCB153联合对雄性大鼠(PND50)肝脏组织TRβ1mRNA表达水平的影响存在交互作用(F=10.00,P<0.05)。
     与对照组同性别相比,雄性大鼠肝脏组织D1mRNA表达水平在各PCB153组中、p,p'-DDE单独及与PCB153联合组中,D2mRNA表达水平在2.5mg/kg PCB153组中明显上升,差异有统计学意义(P<0.05);雌性大鼠肝脏组织,D2mRNA表达水平在0.25mg/kg PCB153、2.5mg/kg PCB153、1mg/kg p,p'-DDE、 lOmg/kg p,p'-DDE、2.5mg/kg PCB153+10mg/kg p,p'-DDE组中明显上升,差异有统计学意义(P<0.05)。
     与对照组同性别相比,雄性大鼠肝脏组织CYP1A1mRNA表达水平在各PCB153组、UGT1A1mRNA表达水平在各PCB153组、各p,p'-DDE单独组,UGT1A9mRNA表达水平在0.025mg/kg PCB153、2.5mg/kg PCB153组、各p,p'-DDE组中,CYP2B3mRNA表达水平在0.025mg/kg PCB153、2.5mg/kg PCB153组、各p,p'-DDE单独组中明显上升,差异有统计学意义(P<0.05)。雌性大鼠肝脏,CYP1A1mRNA表达水平在各p,p'-DDE单独组,UGT1A1mRNA表达水平在2.5mg/kg PCB153组中、UGT1A9mRNA表达水平在2.5mg/kg PCB153、10mg/kg p,p'-DDE组中明显上升,差异有统计学意义(P<0.05)。析因分析表明,p,p'-DDE与PCB153联合对雄性大鼠(PND50)肝脏组织CYP1A1mRNA表达水平的影响存在交互作用(F=10.28,P<0.05)。
     与对照组同性别相比,雄性大鼠肝脏组织MCT8在各PCB153组中、1mg/kg p,p'-DDE、10mg/kg p,p'-DDE组中,RXRα mRNA表达水平在各PCB153组,10mg/kg p,p'-DDE组中明显上升,差异有统计学意义(P<0.05);雌性大鼠肝脏组织,MCT8mRNA表达水平在10mg/kg p,p'-DDE组中明显下降,差异有统计学意义(P<0.05),RXRα mRNA表达水平在各个PCB153组中明显上升,差异有统计学意义(P<0.05)。
     与对照组同性别相比,雄性大鼠肝脏组织Kras1mRNA表达水平在10mg/kg p,p'-DDE组中、Krafl mRNA表达水平在0.25mg/kg PCB153、10mg/kg p,p'-DDE组,ERK1mRNA表达水平在10mg/kg p,p'-DDE组,ERK2mRNA表达水平在0.1mg/kg p,p'-DDE、10mg/kg p,p'-DDE暴露组中明显上升,差异有统计学意义(P<0.05);而MEK1mRNA表达水平在各PCB153暴露组中表达水平明显下降,差异有统计学意义(P<0.05),在10mg/kg p,p'-DDE组中表达水平明显上升,差异有统计学意义(P<0.05)。雌性大鼠肝脏组织Kras1mRNA表达水平在lmg/kg p,p'-DDE组中,Krafl mRNA表达水平在2.5mg/kg PCB153组,MEK1mRNA表达水平在1mg/kg p,p'-DDE组中明显上升,差异有统计学意义(P<0.05)。析因分析表明,p,p'-DDE与PCB153联合对雄性大鼠(PND50)肝脏组织Kraf1、 Kras1、MEK1mRNA表达水平的影响存在交互作用(F=8.33、6.53、8.19,P<0.05)。
     与对照组同性别相比,雄性大鼠肝脏组织总ERK1/2蛋白表达水平在0.025mg/kg PCB153、2.5mg/kg PCB153、10mg/kg p,p'-DDE组中,p-ERK1/2蛋白表达水平在2.5mg/kg PCB153、10mg/kg p,p'-DDE组中,TRβ1蛋白表达水平在2.5mg/kg PCB153、01mg/kg p,p'-DDE组中,RXRα蛋白表达水平在0.25mg/kg PCB153+lmg/kg p,p'-DDE蛋白表达水平明显上升,差异有统计学意义(P<0.05)。雌性大鼠肝脏组织中RXRa蛋白表达水平在2.5mg/kgPCB153+10mg/kg p,p'-DDE组中明显上升,差异有统计学意义(P<0.05)。
     结论:
     1) PCB153单独暴露可以抑制TPO、NIS、TG,而p,p'-DDE则对TPO产生抑制作用,对合成THs产生影响。
     2) PCB153抑制大鼠体内TTR水平,影响大鼠体内甲状腺激素转运。
     3) PCB153和p,p'-DDE能上调雄性大鼠MCT8表达。
     4)PCB153和p,p'-DDE能上调脱碘酶和代谢酶的基因表达,干扰THs代谢。
     5) PCB153和p,p'-DDE(?)干扰肝脏TR及核受体RXRα,干扰THs稳态。
     6) PCB153和p,p'-DDE能改变机体氧化应激状态,并激活ERK1/2信号通路,调节基因表达。
Thyroid disrupting chemicals (TDCs) are chemicals that affect thyroid metabolism, either through the hypothalamic-pituitary-thyroid axis or directly via nuclear receptors. Studies found that PCB153is the highest content congeners of PCBs in the biological and human tissues; p,p'-DDE, which the most important metabolite of DDT, the most persistent in the environment and the body, the highest concentration of metabolites, is a sign of the residual period of DDT in environment. The study found that the PCBs and p, p'-DDE can disrupt thyroid functions of humans and experimental animals.
     In the present study, neonatal Sprague-Dawley (SD) rats were exposed to PCB153and p, p'-DDE at a lower dose, the effects of PCB153and/or p, p'-DDE on rat growth and development, THs, were observed. In addition, The ELISA, Real time-PCR, Western blot and other ways were used to detect possible mechanisms on THs synthesis, secretion, and metabolism, a variety of factors at the level of transcription or translation level. TDCs toxic effects on the thyroid system and its mechanism will provide the knowledge for further study.
     Part Ⅰ, the effect of PCB153and/or p, p'-DDE on neonatal rats' thyroid and THs
     Objective:To investigate the effects of PCB153and/or p, p'-DDE on neonatal rats' thyroid and THs.
     Methods:Neonatal pups from postnatal3day to15day were exposed to PCB153and/or p, p'-DDE every other day at the dose of1ml/kg body weight orally. PCB153exposure experiment:solvent control group,0.025mg/kg PCB153,0.25mg/kg PCB153,2.5mg/kg PCB153. p,p'-DDE single and combibation with PCB153experiment:solvent control,0.1mg/kg p,p'-DDE,1mg/kg p,p'-DDE, lOmg/kg p'-DDE,0.25mg/kg PCB153+1mg/kg p,p'-DDE,2.5mg/kg PCB153+10mg/kg p,p'-DDE. Before every exposure, weight of animals was examed in the lactation period; after the exposure, weight of animals once a week; all animals were sacrificed after the body was weight. The thyroid, cerebrum and liver were sperated from the body, weighted; organ coefficients were calculated. ELISA kits for detection of serum TT4, FT4, TT3, FT3, TSH and TRH were used in the present study. Morris water maze navigation test and space exploration experiments to measure animal spatial memory, working memory, and spatial ability.
     Results:Compared with control group, latency and total distance in navigation test in2.5mg/kg PCB153group were increased significantly, and the difference was statistically significant (P<0.05). At postnatal21, Compared with control group, thyroid-body coefficient is lower in0.25mg/kg PCB153,2.5mg/kg PCB153groups, the difference was statistically significant (P<0.05). Thyroid coefficient were increased in p,p'-DDE groups, the difference was statistically significant (P<0.05); liver organ coefficient increases in2.5mg/kg PCB153+10mg/kg p,p'-DDE, the difference was statistically significant (P<0.05). At PND21, compared with control group, serum TT4, FT3, TT3levels were significantly decreased in0.25mg/kg PCB153,2.5mg/kg PCB153groups, the difference was statistically significant (P<0.05); and so do the TRH level in every exposure group. Compared with control group, serum TT4, FT3(except0.1mg/kg p,p'-DDE group) levels were significantly decreased in every exposure group, and the difference was statistically significant (P<0.05), and so FT4levels in2.5mg/kg PCB153+10mg/kg p,p'-DDE group. At PND50, compared with control group, serum TT4, TT3levels were decreased in each exposed group, the difference was statistically significant (P<0.05), serum FT4levels in2.5mg/kg PCB153group, and FT3, TSH level in0.25mg/kg PCB153,2.5mg/kg PCB153group. But serum TRH levels were significantly increased in PCB153group, the difference was statistically significant (P<0.05). Compared with control group, serum TT4levels were significantly decreased in every exposure group, the difference was statistically significant (P<0.05), so does serum FT4levels in10mg/kg p,p'-DDE. Compared with same dose of PCB153single exposure group, serum TT3、FT3level was significantly increased in0.25mg/kg PCB153+lmg/kg p,p'-DDE,2.5mg/kg PCB153+10mg/kg p,p'-DDE group, and the difference was statistically significant (P<0.05). An interaction was found between PCB153and p, p'-DDE combined exposure on serum the FT3level (F=9.49, P<0.05).
     Conclusion:PCB153and/or p, p'-DDE exposure could disrupt the growth and development of the thyroids of rats. PCB153and/or p, p'-DDE exposure will disrupt the thyroid hormone homeostasis. PCB153might be harmful to the ability of learning, spatial memory of rats.
     Part Ⅱ, potential mechanisms of PCB153and/or p, p'-DDE on rats' thyroid hormone homeostasis
     Objective:The present study was designed to investigate potential mechanism of PCB153and/or p, p'-DDE on thyroid hormone homeostasis.
     Methods:ELISA kit for detection of serum NIS, TG, TPO, TTR, ROS, MDA, GSH-PX, SOD levels. RT-PCR were used to detect the rat (postnatal day50) hepatic mRNA expression levels of TR (TRal, TRβ1, TRβ2), deiodinase (D1, D2), liver tissue metabolic enzymes (CYP1A1, CYP2B3, UGT1A1, UGT1A9), thyroid hormone transmembrane transport protein (MCT8), retinoid X receptor (RXR alpha), ERK1/2signal pathway (Kras1, KRafl, MEK1, ERK1, ERK2), Western blot to detect the rat hepatic protein expression level of TRβ1, RXRa, total ERK1/2, phosphorylation of ERK1/2protein.
     Results:At PND21, compared with control group, serum TPO levels decreased significantly in PCB153group, and the difference was statistically significant (P<0.05), and so does the serum NIS in0.25mg/kg and2.5mg/kg PCB153groups. Gender differences were tested in PCB153groups on serum TG and TTR levels, compared with the control group of the same gender, TG and TTR levels were decreased in0.25mg/kg PCB153and2.5mg/kg PCB153group, the difference was statistically significant (P<0.05). Compared with the control group, serum levels of ROS, MDA were increased in each PCB153group, the difference was statistically significant (P<0.05); but serum GSH-PX, SOD levels were decreased in0.25mg/kg PCB153,2.5mg/kg PCB153group, the difference was statistically significant (P<0.05). Compared with control group, serum ROS levels (except0.1mg/kg p, p'-DDE group) were significantly increased in p,p'-DDE group, the difference was statistically significant (P<0.05). At PND50, compared with control group, serum TPO levels were significantly decreased in PCB153group, serum TG levels in10mg/kg p,p'-DDE group, and the difference was statistically significant (P<0.05). Gender differences were found in serum TTR in PCB153group, compared with control group of the same gender, serum TTR levels were decreased significantly in0.25mg/kg PCB153,2.5mg/kg PCB153female group, and the difference was statistically significant (P<0.05). Compared with control group, serum levels of ROS and MDA levels were increased in PCB153group, the difference was statistically significant (P<0.05); serum GSH-PX, SOD levels were significantly decreased in PCB153group, the difference was statistically significant (P<0.05).
     Compared with control group of the same gender, in male rats, the mRNA expression levels of TRα1in each PCB153group, lOmg/kg p,p'-DDE group, TRβ1in PCB153group (except0.25mg/kg group), p,p'-DDE group (except lmg/kg p,p'-DDE group), TRβ2in each p,p'-DDE group and combination groups were significantly increased, difference was statistically significant (P<0.05). In female rats, mRNA expression levels of TRal in2.5mg/kg PCB153group, TRβ1in10mg/kg p,p'-DDE group, TRβ2in2.5mg/kg PCB153, each p,p'-DDE group (except1mg/kg p, p'-DDE exposure group) and combination groups were significantly increased, difference was statistically significant (P<0.05). An interaction was found between PCB153and p,p'-DDE exposure on mRNA expression levels of TRβ1(F=10.00, P<0.05).
     Compared with control group of the same gender, in male rats, the mRNA expression levels of D1in each PCB153group, p, p'-DDE group and combination groups, D2in2.5mg/kg PCB153group was significantly increased, the difference was statistically significant (P<0.05). In female rats, the mRNA expression levels of D2in0.25mg/kg PCB153,2.5mg/kg PCB153,1mg/kg p,p'-DDE,10mg/kg p,p'-DDE,2.5mg/kg PCB153+10mg/kg p, p'-DDE group, were significantly increased, the difference was statistically significant (P<0.05).
     Compared with control group of the same gender, in male rats, the mRNA expression levels of CYP1A1in each PCB153group, UGT1A1in each PCB153group, p, p'-DDE group, UGT1A9in0.025mg/kg PCB153,2.5mg/kg PCB153group, each p,p'-DDE groups, CYP2B3in0.025mg/kg PCB153,2.5mg/kg PCB153group, each p, p'-DDE group were significantly increased, the difference was statistically significant (P<0.05); In female rats, the mRNA expression levels of CYP1A1in p, p'-DDE group, UGT1A1in2.5mg/kg PCB153, UGT1A9in2.5mg/kg PCB153, lOmg/kg p, p'-DDE group were significantly increased, the difference was statistically significant (P<0.05). An interaction was found between PCB153and p,p'-DDE combination exposure on mRNA expression levels of CYP1A1(F=10.28, P<0.05).
     Compared with control group of the same gender, in male rats, the mRNA expression levels of MCT8in each PCB153group,1mg/kg p,p'-DDE,10mg/kg p,p'-DDE group, RXRa in each PCB153group,10mg/kg p,p'-DDE group were significantly increased, the difference was statistically significant (P<0.05); In female rats, the mRNA expression levels of MCT8in lOmg/kg p,p'-DDE group were significantly decreased, the difference was statistically significant (P<0.05), the mRNA expression levels of RXRa in each PCB153group were significantly increased, the difference was statistically significant (P<0.05).
     Compared with control group of the same gender, in male rats, the mRNA expression levels of Krasl in lOmg/kg p,p'-DDE group, Krafl in0.25mg/kg PCB153and10mg/kg p, p'-DDE group, ERK1in10mg/kg p,p'-DDE group, ERK2in0.1mg/kg p,p'-DDE, lOmg/kg p,p'-DDE group were significantly increased, and the difference was statistically significant (P<0.05), and the mRNA expression levels of MEK1in each PCB153group were decreased, but in0mg/kg p,p'-DDE group significantly increased, the difference was statistically significant (P<0.05). In female rats, the mRNA expression levels of Krasl in lmg/kg p,p'-DDE group, Krafl in2.5mg/kg PCB153group, MEK1in lmg/kg p,p'-DDE exposure group, were significantly increased, the difference was statistically significant (P<0.05). interactions was found between PCB153and p,p'-DDE combination exposure on mRNA expression levels of Krafl, Krasl, MEK1(F=8.33,6.53,8.19, P<0.05).
     Compared with control group of the same gender, in male rats, the protein expression levels of total ERK1/2in0.025mg/kg PCB153,2.5mg/kg PCB153,10mg/kg p,p'-DDE group, p-ERK1/2in2.5mg/kg PCB153,10mg/kg p,p'-DDE group, TRβ1in2.5mg/kg PCB153+10mg/kg p,p'-DDE group, RXRa in2.5mg/kg PCB153+10mg/kg p,p'-DDE were significantly increased, and difference was statistically significant (P<0.05). In female rats, the protein expression levels of RXRa in2.5mg/kg PCB153+10mg/kg p,p'-DDE group were significantly increased, the difference was statistically significant (P<0.05).
     Conclusion:
     1) PCB153exposure can inhibit the serum levels of TPO, NIS, TG while p, p'-DDE inhibit that of TPO, which could disrupt the synthesis of thyroid hormones.
     2) PCB153exposure can inhibit the serum levels of TTR, disrupting the thyroid hormone transporter in the blood.
     3) PCB153and p,p'-DDE can upregulate hepatic mRNA expression of MCT8in male rats.
     4) PCB153and p,p'-DDE can upregulate hepatic mRNA expression of deiodinase gene and hepatic metabolic enzymes disrupting the thyroid hormone metabolism.
     5)PCB153and p,p'-DDE can upregulate hepatic mRNA expression of TR, and the nuclear receptor RXRa to disrupt thyroid hormone homeostasis.
     6) PCB153and p, p'-DDE change oxidative stress level of body in the rats, and activated ERK1/2signaling pathways.
引文
[1]Crofton K M. Thyroid disrupting chemicals:mechanisms and mixtures [J]. International journal of andrology,2008,31(2):209-223.
    [2]Diamanti-Kandarakis E, Bourguignon J P, Giudice L C, et al. Endocrine-disrupting chemicals:an Endocrine Society scientific statement [J]. Endocrine Reviews,2009,30(4):293-342.
    [3]周景明,秦占芬,丛琳,等.多氯联苯内分泌干扰作用及机理研究进展[J].科学通报,2004,(01):34-39.
    [4]Langer P, Kocan A, Drobna B, et al. Alpha-fetoprotein, carcinoembryonic antigen and beta2-microglobulin in adult population highly exposed to organochlorinated pollutants (PCB, DDE and HCB) [J]. Endocrine regulations,2011,45(3):149-155.
    [5]Knobeloch L, Turyk M, Imm P, et al. Temporal changes in PCB and DDE levels among a cohort of frequent and infrequent consumers of Great Lakes sportfish [J]. Environmental research, 2009,109(1):66-72.
    [6]Jayaraman S, Nacci D E, Champlin D M, et al. PCBs and DDE in tree swallow (Tachycineta bicolor) eggs and nestlings from an estuarine PCB superfund site, New Bedford Harbor, MA, U.S.A [J]. Environmental science & technology,2009,43(21):8387-8392.
    [7]Glynn A W, Wolk A, Aune M, et al. Serum concentrations of organochlorines in men:a search for markers of exposure [J]. Science of the Total Environment,2000,263(1-3):197-208.
    [8]Rignell-Hydbom A, Rylander L, Giwercman A, et al. Exposure to PCBs and p,p'-DDE and human sperm chromatin integrity [J]. Environmental health perspectives,2005,113(2):175-179.
    [9]Jaward F M, Zhang G, Nam J J, et al. Passive air sampling of polychlorinated biphenyls, organochlorine compounds, and polybrominated diphenyl ethers across Asia [J]. Environmental science & technology,2005,39(22):8638-8645.
    [10]Zhang Z, Liu L, Li Y F, et al. Analysis of polychlorinated biphenyls in concurrently sampled Chinese air and surface soil [J]. Environmental science & technology,2008,42(17):6514-6518.
    [11]Hogarh J N, Seike N, Kobara Y, et al. Passive air monitoring of PCBs and PCNs across East Asia: A comprehensive congener evaluation for source characterization [J]. Chemosphere, 2012,86(7):718-726.
    [12]孟祥周.中国南方典型食用鱼类中持久性卤代烃的浓度分布及人体暴露的初步研究[D].中国科学院研究生院(广州地球化学研究所),2007.
    [13]Boas M, Feldt-Rasmussen U, Skakkebaek N E, et al. Environmental chemicals and thyroid function [J]. European journal of endocrinology/European Federation of Endocrine Societies, 2006,154(5):599-611.
    [14]Jugan M L, Levi Y, Blondeau J P. Endocrine disrupters and thyroid hormone physiology [J]. Biochemical pharmacology,2010,79(7):939-947.
    [15]Zoeller T R. Environmental chemicals targeting thyroid [J]. Hormones,2010,9(1):28-40.
    [16]Meerts I A, Assink Y, Cenijn P H, et al. Placental transfer of a hydroxylated polychlorinated biphenyl and effects on fetal and maternal thyroid hormone homeostasis in the rat [J]. Toxicological sciences:an official journal of the Society of Toxicology,2002,68(2):361-371.
    [17]Ness D K, Schantz S L, Moshtaghian J, et al. Effects of perinatal exposure to specific PCB congeners on thyroid hormone concentrations and thyroid histology in the rat [J]. Toxicology Letters, 1993,68(3):311-323.
    [18]Qatanani M, Zhang J, Moore D D. Role of the constitutive androstane receptor in xenobiotic-induced thyroid hormone metabolism [J]. Endocrinology,2005,146(3):995-1002.
    [19]O'connor J C, Frame S R, Davis L G, et al. Detection of the environmental antiandrogen p,p-DDE in CD and long-evans rats using a tier I screening battery and a Hershberger assay [J]. Toxicological sciences:an official journal of the Society of Toxicology,1999,51(1):44-53.
    [20]Meeker J D, Altshul L, Hauser R. Serum PCBs, p,p'-DDE and HCB predict thyroid hormone levels in men [J]. Environmental research,2007,104(2):296-304.
    [21]Gao P, He P, Wang A, et al. Influence of PCB 153 on oxidative DNA damage and DNA repair-related gene expression induced by PBDE-47 in human neuroblastoma cells in vitro [J]. Toxicological sciences,2009,107(1):165-170.
    [22]Chapados N A, Casimiro C, Robidoux M A, et al. Increased proliferative effect of organochlorine compounds on human preadipocytes [J]. Molecular and cellular biochemistry,2012,365(1-2):275-278.
    [23]Liu C, Ha M, Cui Y, et al. JNK pathway decreases thyroid hormones via TRH receptor:a novel mechanism for disturbance of thyroid hormone homeostasis by PCB153 [J]. Toxicology,2012. 302:68-76
    [24]Zoeller R T, Rovet J. Timing of thyroid hormone action in the developing brain:clinical observations and experimental findings [J]. Journal of neuroendocrinology,2004,16(10):809-818.
    [25]Rice D C. Neurotoxicity produced by developmental exposure to PCBs [J]. Mental retardation and developmental disabilities research reviews,1997,3(3):223-229.
    [26]Jacobson J L, Jacobson S W, Humphrey H E. Effects of exposure to PCBs and related compounds on growth and activity in children [J]. Neurotoxicology and teratology,1990,12(4):319-326.
    [27]Takser L, Mergler D, Baldwin M, et al. Thyroid hormones in pregnancy in relation to environmental exposure to organochlorine compounds and mercury [J]. Environmental health perspectives,2005,113(8):1039-1045.
    [28]Alvarez-Pedrerol M, Ribas-Fito N, Torrent M, et al. Effects of PCBs, p,p'-DDT, p,p'-DDE, HCB and beta-HCH on thyroid function in preschool children [J]. Occupational and environmental medicine, 2008,65(7):452-457.
    [29]Crofton K M, Kodavanti P R, Derr-Yellin E C, et al. PCBs, thyroid hormones, and ototoxicity in rats:cross-fostering experiments demonstrate the impact of postnatal lactation exposure [J]. Toxicological Sciences,2000,57(1):131-140.
    [30]Zoeller R T, Dowling A L, Vas A A. Developmental exposure to polychlorinated biphenyls exerts thyroid hormone-like effects on the expression of RC3/neurogranin and myelin basic protein messenger ribonucleic acids in the developing rat brain [J]. Endocrinology,2000,141(1):181-189.
    [31]Jones K C, De Voogt P. Persistent organic pollutants (POPs):state of the science [J]. Environmental pollution,1999,100(1):209-221.
    [32]EU, Stockholm Convention on Persistent Organic Pollutants,2009, Adoption of Amendments to Annexes A, B, and C,Decisions SC-4/13,14,18, available at chm.pops.int.
    [33]Perez J J, Leon S V, Gutierrez R, et al. Polychlorinated biphenyls (PCBs) residues in milk from an agroindustrial zone of Tuxpan, Veracruz, Mexico [J]. Chemosphere,2012,89(4):404-408.
    [34]Zhou P, Wu Y, Yin S, et al. National survey of the levels of persistent organochlorine pesticides in the breast milk of mothers in China [J]. Environmental pollution,2011,159(2):524-531.
    [35]Wolf C, Lambright C, Mann P, et al. Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p, p'-DDE, and ketoconazole) and toxic substances (dibutyl-and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat [J]. Toxicology and industrial health,1999,15(1-2):94-118.
    [36]Haave M, Bernhard A, Jellestad F K, et al. Long-term effects of environmentally relevant doses of 2,2',4,4',5,5'hexachlorobiphenyl (PCB153) on neurobehavioural development, health and spontaneous behaviour in maternally exposed mice [J]. Behavioral and Brain Functions,2011,7:3.
    [37]Tebourbi O, Driss M R, Sakly M, et al. Metabolism of DDT in different tissues of young rats [J]. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes,2006,41(2):167-176.
    [38]He P, Wang A G, Xia T, et al. Mechanisms underlying the developmental neurotoxic effect of PBDE-47 and the enhanced toxicity associated with its combination with PCB153 in rats [J]. Neurotoxicology,2009,30(6):1088-1095.
    [39]Eriksson P, Nordberg A. The effects of DDT, DDOH-palmitic acid, and a chlorinated paraffin on muscarinic receptors and the sodium-dependent choline uptake in the central nervous system of immature mice [J]. Toxicology and applied pharmacology,1986,85(2):121-127.
    [40]Xiao W, Li K, Wu Q, et al. Influence of persistent thyroxine reduction on spermatogenesis in rats neonatally exposed to 2,2',4,4',5,5'-hexa-chlorobiphenyl[J]. Birth defects research. Part B, Developmental and reproductive toxicology,2010,89(1):18-25.
    [41]Makita Y, Tanaka A, Omura M, et al. Effects of simultaneous administration of tributyltin (TBT) and p, p'-DDE on female offspring of Wistar rats [J]. Journal of Toxicology and Environmental Health Part A,2003,66(24)-.2337-2347.
    [42]Shin J-H, Moon H J, Kang Ⅰ H, et al. OECD validation of the rodent Hershberger assay using three reference chemicals; 17 α-methyltestosterone, procymidone, and p, p'-DDE [J]. Archives of toxicology,2007,81(5):309-318.
    [43]封敏,卢圣锋,张承舜,等.国内大鼠Morris水迷宫实验现状与分析[J].辽宁中医杂志,2011,(11):2170-2172.
    [44]Safe S H. Polychlorinated biphenyls (PCBs):environmental impact, biochemical and toxic responses, and implications for risk assessment [J]. CRC Critical Reviews in Toxicology, 1994,24(2):87-149.
    [45]张金良,王舜钦.中国DDT污染及对人群健康影响的研究现况[J].预防医学情报杂志, 2006,22(4):416-421.
    [46]肖武生,李克勇,张杰,等.大鼠新生期暴露2,2',4,4',5,5'-六氯联苯对精子发生的影响[J].中华劳动卫生职业病杂志,2010,(7):512-516.
    [47]Lopez-Espinosa M J, Vizcaino E, Murcia M, et al. Association between thyroid hormone levels and 4,4'-DDE concentrations in pregnant women (Valencia, Spain) [J]. Environmental research, 2009,109(4):479-485.
    [48]Liu C, Wang C, Yan M, et al. PCB153 Disrupts Thyroid Hormone Homeostasis by Affecting its Biosynthesis, Biotransformation, Feedback Regulation, and Metabolism [J]. Hormone and Metabolic Research,2012.44:662-669
    [49]Xiao W, Zhang J, Liang J, et al. Adverse effects of neonatal exposure to 3,3',4,4',5,5'-hexachlorobiphenyl on hormone levels and testicular function in male Sprague-Dawley rats [J]. Environmental toxicology,2011,26(6):657-668.
    [50]何平PBDE-47和/或PCB153的神经毒性及其机制研究[D].华中科技大学,2009.
    [51]Bernal J. Thyroid hormone receptors in brain development and function [J]. Nature Clinical Practice Endocrinology & Metabolism,2007,3(3):249-259.
    [52]Nadler N. Synthesis of Thyroid Hormone [J]. Annals of Internal Medicine,1962,56(4):677-677.
    [53]Howdeshell K L. A model of the development of the brain as a construct of the thyroid system [J]. Environmental health perspectives,2002,110(Suppl 3):337.
    [54]Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function [J]. Thyroid: official journal of the American Thyroid Association,1998,8(9):827-856.
    [55]Breous E, Wenzel A, Loos U. The promoter of the human sodium/iodide symporter responds to certain phthalate plasticisers [J]. Molecular and cellular endocrinology,2005,244(1-2):75-78.
    [56]Tonacchera M, Pinchera A, Dimida A, et al. Relative potencies and additivity of perchlorate, thiocyanate, nitrate, and iodide on the inhibition of radioactive iodide uptake by the human sodium iodide symporter [J]. Thyroid:official journal of the American Thyroid Association, 2004,14(12):1012-1019.
    [57]Schmutzler C, Hamann I, Hofmann P J, et al. Endocrine active compounds affect thyrotropin and thyroid hormone levels in serum as well as endpoints of thyroid hormone action in liver, heart and kidney [J]. Toxicology,2004,205(1-2):95-102.
    [58]Santini F, Vitti P, Ceccarini G, et al. In vitro assay of thyroid disruptors affecting TSH-stimulated adenylate cyclase activity [J]. Journal of endocrinological investigation,2003,26(10):950-955.
    [59]Ishihara A, Nishiyama N, Sugiyama S, et al. The effect of endocrine disrupting chemicals on thyroid hormone binding to Japanese quail transthyretin and thyroid hormone receptor [J]. General and comparative endocrinology,2003,134(1):36-43.
    [60]Kudo Y, Yamauchi K. In vitro and in vivo analysis of the thyroid disrupting activities of phenolic and phenol compounds in Xenopus laevis [J]. Toxicological sciences:an official journal of the Society of Toxicology,2005,84(1):29-37.
    [61]Purkey H E, Palaninathan S K, Kent K C, et al. Hydroxylated polychlorinated biphenyls selectively bind transthyretin in blood and inhibit amyloidogenesis:rationalizing rodent PCB toxicity [J]. Chemistry & biology,2004,11(12):1719-1728.
    [62]Yamauchi K, Ishihara A, Fukazawa H, et al. Competitive interactions of chlorinated phenol compounds with 3,3',5-triiodothyronine binding to transthyretin:detection of possible thyroid-disrupting chemicals in environmental waste water [J]. Toxicology and applied pharmacology, 2003,187(2):110-117.
    [63]Shimada N, Yamauchi K. Characteristics of 3,5,3'-triiodothyronine (T3)-uptake system of tadpole red blood cells:effect of endocrine-disrupting chemicals on cellular T3 response [J]. Journal of endocrinology,2004,183(3):627-637.
    [64]Kitamura S, Kato T, Iida M, et al. Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds:Affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis [J]. Life sciences,2005,76(14):1589-1601.
    [65]Zoeller R T, Bansal R, Parris C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain [J]. Endocrinology,2005,146(2):607-612.
    [66]Kitamura S, Jinno N, Suzuki T, et al. Thyroid hormone-like and estrogenic activity of hydroxylated PCBs in cell culture [J]. Toxicology,2005,208(3):377-387.
    [67]Miyazaki W, Iwasaki T, Takeshita A, et al. Polychlorinated biphenyls suppress thyroid hormone receptor-mediated transcription through a novel mechanism [J]. Journal of Biological Chemistry, 2004,279(18):18195-18202.
    [68]Moriyama K, Tagami T, Akamizu T, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist [J]. The Journal of clinical endocrinology and metabolism,2002,87(11):5185-5190.
    [69]Gauger K J, Kato Y, Haraguchi K, et al. Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but do not bind to thyroid hormone receptors [J]. Environmental health perspectives,2004,112(5):516.
    [70]Bansal R, You S-H, Herzig C T, et al. Maternal thyroid hormone increases HES expression in the fetal rat brain:an effect mimicked by exposure to a mixture of polychlorinated biphenyls (PCBs) [J]. Developmental brain research,2005,156(1):13-22.
    [71]Seiwa C, Nakahara J, Komiyama T, et al. Bisphenol A exerts thyroid-hormone-like effects on mouse oligodendrocyte precursor cells [J]. Neuroendocrinology,2004,80(1):21-30.
    [72]Loaiza-Perez A I, Seisdedos M-T, De Pisarev D L K, et al. Hexachlorobenzene, a dioxin-type compound, increases malic enzyme gene transcription through a mechanism involving the thyroid hormone response element [J]. Endocrinology,1999,140(9):4142-4151.
    [73]Roelens S, Beck V, Aerts G, et al. Neurotoxicity of Polychlorinated Biphenyls (PCBs) by Disturbance of Thyroid Hormone-Regulated Genes [J]. Annals of the New York Academy of Sciences, 2005,1040(1):454-456.
    [74]Wade M G, Parent S, Finnson K W, et al. Thyroid toxicity due to subchronic exposure to a complex mixture of 16 organochlorines, lead, and cadmium [J]. Toxicological Sciences, 2002,67(2):207-218.
    [75]Zhou L-X, Dehal S S, Kupfer D, et al. Cytochrome P450 Catalyzed Covalent Binding of Methoxychlor to Rat Hepatic, Microsomal Iodothyronine 5'-Monodeiodinase, Type Ⅰ:Does Exposure to Methoxychlor Disrupt Thyroid Hormone Metabolism? [J]. Archives of biochemistry and biophysics, 1995,322(2):390-394.
    [76]Nishimura N, Yonemoto J, Miyabara Y, et al. Rat thyroid hyperplasia induced by gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Endocrinology,2003,144 (5):2075-2083.
    [77]Nishimura N, Miyabara Y, Sato M, et al. Immunohistochemical localization of thyroid stimulating hormone induced by a low oral dose of 2,3,7,8-tetrachlorodibenzo-< i> p-dioxin in female Sprague-Dawley rats [J]. Toxicology,2002,171(2):73-82.
    [78]Viluksela M, Stahl B U, Rozman K K. Tissue-specific effects of 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on the activity of phosphoenolpyruvate carboxykinase (PEPCK) in rats [J]. Toxicology and applied pharmacology,1995,135(2):308-315.
    [79]Nieminen P, Lindstrom-Seppa P, Juntunen M, et al. In vivo effects of bisphenol A on the polecat (Mustela putorius) [J]. Journal of Toxicology and Environmental Health Part A,2002,65(13):933-945.
    [80]Nieminen P, Lindstrom-Seppa P, Mustonen A-M, et al. Bisphenol A Affects Endocrine Physiology and Biotransformation Enzyme Activities of the Field Vole ( Microtus agrestis) [J]. General and comparative endocrinology,2002,126(2):183-189.
    [81]Schuur A G, Brouwer A, Bergman A, et al. Inhibition of thyroid hormone sulfation by hydroxylated metabolites of poly chlorinated biphenyls [J]. Chemico-biological interactions, 1998,109(1-3):293-297.
    [82]Schuur A G, Legger F F, Van Meeteren M E, et al. In vitro inhibition of thyroid hormone sulfation by hydroxylated metabolites of halogenated aromatic hydrocarbons [J]. Chemical research in toxicology,1998,11(9):1075-1081.
    [83]Schuur A G, Van Leeuwen-Bol I, Jong W M, et al. In vitro inhibition of thyroid hormone sulfation by polychlorobiphenylols:isozyme specificity and inhibition kinetics [J]. Toxicological Sciences, 1998,45(2):188-194.
    [84]Lin C-H, Lin P-H. Induction of ROS formation, poly (ADP-ribose) polymerase-1 activation, and cell death by PCB126 and PCB153 in human T47D and MDA-MB-231 breast cancer cells [J]. Chemico-biological interactions,2006,162(2):181-194.
    [85]Schell L M, Gallo M V, Ravenscroft J, et al. Persistent organic pollutants and anti-thyroid peroxidase levels in Akwesasne Mohawk young adults [J]. Environmental research,2009,109(1):86-92.
    [86]Schmutzler C, Bacinski A, Gotthardt Ⅰ, et al. The ultraviolet filter benzophenone 2 interferes with the thyroid hormone axis in rats and is a potent in vitro inhibitor of human recombinant thyroid peroxidase [J]. Endocrinology,2007,148(6):2835-2844.
    [87]Schmutzler C, Hamann I, Hofmann P J, et al. Endocrine active compounds affect thyrotropin and thyroid hormone levels in serum as well as endpoints of thyroid hormone action in liver, heart and kidney [J]. Toxicology,2004,205(1):95-102.
    [88]Ryu K Y, Senokozlieff M E, Smanik P A, et al. Development of reverse transcription-competitive polymerase chain reaction method to quantitate the expression levels of human sodium iodide symporter [J]. Thyroid:official journal of the American Thyroid Association,1999,9(4):405-409.
    [89]Braverman L E, He X, Pino S, et al. The effect of perchlorate, thiocyanate, and nitrate on thyroid function in workers exposed to perchlorate long-term [J]. The Journal of clinical endocrinology and metabolism,2005,90(2):700-706.
    [90]丁淼鸿,刘琴,张娆,等.过氯酸铵对大鼠体内碘负荷及抗氧化能力的影响[J].工业卫生与职业病,2012,(02):73-76.
    [91]解雨春,李文,汤金梅,等Aroclor1254对大鼠甲状腺结构及功能的影响[J].环境科学学报,2012,(11):2891-2897.
    [92]Li N, Ma M, Rao K, et al. In vitro thyroid disrupting effects of organic extracts from WWTPs in Beijing [J]. Journal of environmental sciences,2011,23(4):671-675.
    [93]Miller-Perez C, Sanchez-Islas E, Mucio-Ramirez S, et al. The polychlorinated biphenyls (PCBS) environmental pollutants and their effects on the nervous system and health [J]. Salud Mental, 2009,32(4).
    [94]Richardson V M, Staskal D F, Ross D G, et al. Possible mechanisms of thyroid hormone disruption in mice by BDE 47, a major polybrominated diphenyl ether congener [J]. Toxicology and applied pharmacology,2008,226(3):244-250.
    [95]Kato Y, Suzuki H, Ikushiro S, et al. Decrease in serum thyroxine level by phenobarbital in rats is not necessarily dependent on increase in hepatic UDP-glucuronosyltransferase [J]. Drug metabolism and disposition:the biological fate of chemicals,2005,33(11):1608-1612.
    [96]Meerts I A, Van Zanden J J, Luijks E A, et al. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro [J]. Toxicological sciences: an official journal of the Society of Toxicology,2000,56(1):95-104.
    [97]刘早玲,刘继文,张建清,等.2,2’,4,4’-四溴联苯醚对小鼠甲状腺激素系统稳态的影响及作用机制研究[J].卫生研究,2009,(05):522-524.
    [98]吴源,周群芳.甲基汞对幼年大鼠认知及甲状腺激素的干扰效应[J].环境与健康杂志,2010,(10):853-856.
    [99]瞿璟琰,施华宏,刘青坡,等.四溴双酚-A和五溴酚对红鲫甲状腺激素和脱碘酶的影响[J].环境科学学报,2008,(08):1625-1630.
    [100]Klammer H, Schlecht C, Wuttke W, et.al. Effects of a 5-day treatment with the UV-filter octyl-methoxycinnamate(OMC) on the function of the hypothalamo-pituitary-thyroid function in rats [J]. Toxicology 2007,238(2-3):192-199.,
    [101]Kelly G S. Peripheral metabolism of thyroid hormones:a review [J]. Alternative medicine review:a journal of clinical therapeutic,2000,5(4):306-333.
    [102]Koibuchi N. Cytochrome P450 1A1:is it involved in disruption of thyroid hormone action by polychlorinated biphenyl? [J]. Expert Review of Endocrinology & Metabolism,2011,6(5):657-659.
    [103]Connor K, Safe S, Jefcoate C R, et al. Structure-dependent induction of CYP2B by polychlorinated biphenyl congeners in female Sprague-Dawley rats [J]. Biochemical pharmacology, 1995,50(11):1913-1920.
    [104]Dickerson R, Mcmurry C, Smith E, et al. Modulation of endocrine pathways by 4,4'-DDE in the deer mouse< i> Peromyscus maniculatus [J]. Science of the total environment, 1999,233(1):97-108.
    [105]Nishimura N, Miyabara Y, Sato M, et al. Immunohistochemical localization of thyroid stimulating hormone induced by a low oral dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin in female Sprague-Dawley rats [J]. Toxicology,2002,171(2-3):73-82.
    [106]Nishimura N, Yonemoto J, Miyabara Y, et al. Rat thyroid hyperplasia induced by gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Endocrinology,2003,144 (5):2075-2083.
    [107]Hallgren S, Sinjari T, Hakansson H, et al. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice [J]. Archives of toxicology,2001,75(4):200-208.
    [108]Yu W G, Liu W, Jin Y H. Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism [J]. Environmental toxicology and chemistry/SETAC,2009,28 (5):990-996.
    [109]Moriyama K, Tagami T, Akamizu T, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist [J]. Journal of Clinical Endocrinology & Metabolism,2002,87(11):5185-5190.
    [110]Yamada-Okabe T, Aono T, Sakai H, et al.2,3,7,8-tetrachlorodibenzo-< i> p-dioxin augments the modulation of gene expression mediated by the thyroid hormone receptor [J]. Toxicology and applied pharmacology,2004,194(3):201-210.
    [111]Kitamura S, Suzuki T, Sanoh S, et al. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds [J]. Toxicological sciences:an official journal of the Society of Toxicology,2005,84(2):249-259.
    [112]Jagnytsch O, Opitz R, Lutz I, et al. Effects of tetrabromobisphenol A on larval development and thyroid hormone-regulated biomarkers of the amphibian Xenopus laevis [J]. Environmental research, 2006,101(3):340-348.
    [113]Kitamura S, Kato T, Iida M, et al. Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds:Affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis [J]. Life sciences,2005,76(14):1589-1601.
    [114]Fini J B, Le Mevel S, Turque N, et al. An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption [J]. Environmental science & technology, 2007,41(16):5908-5914.
    [115]Hofmann P J, Schomburg L, Kohrle J. Interference of endocrine disrupters with thyroid hormone receptor-dependent transactivation [J]. Toxicological sciences:an official journal of the Society of Toxicology,2009,110(1):125-137.
    [116]Cheek A O, Kow K, Chen J, et al. Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin [J]. Environmental health perspectives,1999,107(4):273.
    [117]Sugiyama S-I, Shimada N, Miyoshi H, et al. Detection of Thyroid System-Disrupting Chemicals Using in Vitro and in Vivo Screening Assays in Xenopus laevis [J]. Toxicological sciences, 2005,88(2):367-374.
    [118]居颖.电子垃圾污染对当地居民内分泌干扰效应研究[D].华中科技大学,2008.
    [119]颜世帅,徐海明,秦占芬.多溴二苯醚毒理学研究进展及展望[J].生态毒理学报,2010,(05):609-617.
    [120]曹庆珍,朱攀,袁静,等.三丁基锡对热带爪蟾蝌蚪甲调基因mRNA表达的影响[J].华东师范大学学报(自然科学版),2011,(06):65-74.
    [121]裘佳,陈虹,黄秉仁.甲状腺激素受体在调节靶基因转录中的激活和抑制作用[J].生命的化学,2009,(03):370-373.
    [122]Iwamuro S, Yamada M, Kato M, et al. Effects of bisphenol A on thyroid hormone-dependent up-regulation of thyroid hormone receptor alpha and beta and down-regulation of retinoid X receptor gamma in Xenopus tail culture [J]. Life sciences,2006,79(23):2165-2171.
    [123]Hussein Ael A, Abbas AM, El Wakil G A, et al. Effect of chronic excess iodine intake on thyroid function and oxidative stress in hypothyroid rats [J]. Canadian journal of physiology and pharmacology, 2012,90(5):617-625.
    [124]石玉琴.Fas/FasL和内质网通路在p,p'-DDE诱导大鼠睾丸细胞凋亡中的作用.[D].华中科技大学,2010.
    [125]王翀,梁娇君,王爱国,等.p, p'-DDE对离体培养的大鼠睾丸支持细胞MAPK通路的影响[J].卫生研究,2004,33(6):668-668.
    [126]Radice S, Chiesara E, Fucile S, et al. Different effects of PCB101, PCB118, PCB138 and PCB153 alone or mixed in MCF-7 breast cancer cells [J]. Food and chemical toxicology:an international journal published for the British Industrial Biological Research Association, 2008,46(7):2561-2567.
    [127]Umannova L, Neca J, Andrysik Z, et al. Non-dioxin-like polychlorinated biphenyls induce a release of arachidonic acid in liver epithelial cells:a partial role of cytosolic phospholipase A(2) and extracellular signal-regulated kinases 1/2 signalling [J]. Toxicology,2008,247(1):55-60.
    [1]Diamanti-Kandarakis E, Bourguignon J P, Giudice L C, et al. Endocrine-disrupting chemicals:an Endocrine Society scientific statement [J]. Endocr Rev,2009,30(4):293-342.
    [2]Boas M, Feldt-Rasmussen U, Skakkebaek N E, et al. Environmental chemicals and thyroid function [J]. European journal of endocrinology/European Federation of Endocrine Societies, 2006,154(5):599-611.
    [3]Patrick L. Thyroid disruption:mechanism and clinical implications in human health [J]. Alternative medicine review:a journal of clinical therapeutic,2009,14(4):326-346.
    [4]杨皓月,李丕鹏,陆宇燕.环境污染物对脊椎动物甲状腺及甲状腺激素影响的研究现状[J].环境化学,2012,(06):823-829.
    [5]胡伟婷,关海霞,滕卫平.环境内分泌干扰物对甲状腺影响[J].中国公共卫生,2013,(02):306-309.
    [6]Kelly G S. Peripheral metabolism of thyroid hormones:a review [J]. Alternative medicine review: a journal of clinical therapeutic,2000,5(4):306-333.
    [7]Andersen S, Pedersen K M, Bruun N H, et al. Narrow individual variations in serum T(4) and T(3) in normal subjects:a clue to the understanding of subclinical thyroid disease [J]. The Journal of clinical endocrinology and metabolism,2002,87(3):1068-1072.
    [8]Andersen S, Bruun N H, Pedersen K M, et al. Biologic variation is important for interpretation of thyroid function tests [J]. Thyroid:official journal of the American Thyroid Association, 2003,13(11):1069-1078.
    [9]Hansen P S, Brix T H, Sorensen T Ⅰ, et al. Major genetic influence on the regulation of the pituitary-thyroid axis:a study of healthy Danish twins [J]. The Journal of clinical endocrinology and metabolism,2004,89(3):1181-1187.
    [10]Bradley D J, Towle H C, Young W S,3rd. Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis:evidence for TR isoform-specific transcriptional regulation in vivo [J]. Proceedings of the National Academy of Sciences of the United States of America, 1994,91(2):439-443.
    [11]Keijzer R, Blommaart P J, Labruyere W T, et al. Expression of thyroid hormone receptors A and B in developing rat tissues; evidence for extensive posttranscriptional regulation [J]. Journal of molecular endocrinology,2007,38(5):523-535.
    [12]Hodin R A, Lazar M A, Wintman B I, et al. Identification of a thyroid hormone receptor that is pituitary-specific [J]. Science,1989,244(4900):76-79.
    [13]Cook C B, Kakucska I, Lechan R M, et al. Expression of thyroid hormone receptor beta 2 in rat hypothalamus [J]. Endocrinology,1992,130(2):1077-1079.
    [14]Wan W, Farboud B, Privalsky M L. Pituitary resistance to thyroid hormone syndrome is associated with T3 receptor mutants that selectively impair beta2 isoform function [J]. Molecular endocrinology, 2005,19(6):1529-1542.
    [15]Zoeller T R. Environmental chemicals targeting thyroid [J]. Hormones,2010,9(1):28-40.
    [16]Diamanti-Kandarakis E, Bourguignon J P, Giudice L C, et al. Endocrine-disrupting chemicals:an Endocrine Society scientific statement [J]. Endocrine Reviews,2009,30(4):293-342.
    [17]沈欧玺.邻苯二甲酸酯类化学物的内分泌干扰效应[D].南京医科大学,2010.
    [18]奚悦,李德华,单伟.壬基酚对大鼠甲状腺功能和超微结构的影响[J].毒理学杂志,2010,(05):401-404.
    [19]Sheng Z G, Tang Y, Liu Y X, et al. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism [J]. Toxicology and applied pharmacology, 2012,259(1):133-142.
    [20]Panganiban L, Cortes-Maramba N, Dioquino C, et al. Correlation between blood ethylenethiourea and thyroid gland disorders among banana plantation workers in the Philippines [J]. Environmental health perspectives,2004,112(1):42.
    [21]Chandra A K, Mukhopadhyay S, Lahari D, et al. Goitrogenic content of Indian cyanogenic plant food & their in vitro anti-thyroidal activity [J]. Indian Journal of Medical Research,2004,119:180-185.
    [22]武如峰,冯兆良,丁桂英,等.汞、锰、镉对大鼠甲状腺功能影响的初步观察[J].铁道劳动安全卫生与环保,1989,(03):13-14.
    [23]Schell L M, Gallo M V, Ravenscroft J, et al. Persistent organic pollutants and anti-thyroid peroxidase levels in Akwesasne Mohawk young adults [J]. Environmental research,2009,109(1):86-92.
    [24]Schmutzler C, Bacinski A, Gotthardt Ⅰ, et al. The ultraviolet filter benzophenone 2 interferes with the thyroid hormone axis in rats and is a potent in vitro inhibitor of human recombinant thyroid peroxidase [J]. Endocrinology,2007,148(6):2835-2844.
    [25]Schmutzler C, Hamann I, Hofinann P J, et al. Endocrine active compounds affect thyrotropin and thyroid hormone levels in serum as well as endpoints of thyroid hormone action in liver, heart and kidney [J]. Toxicology,2004,205(1):95-102.
    [26]Ryu K Y, Senokozlieff M E, Smanik P A, et al. Development of reverse transcription-competitive polymerase chain reaction method to quantitate the expression levels of human sodium iodide symporter [J]. Thyroid:official journal of the American Thyroid Association,1999,9(4):405-409.
    [27]Braverman L E, He X, Pino S, et al. The effect of perchlorate, thiocyanate, and nitrate on thyroid function in workers exposed to perchlorate long-term [J]. The Journal of clinical endocrinology and metabolism,2005,90(2):700-706.
    [28]Tonacchera M, Pinchera A, Dimida A, et al. Relative potencies and additivity of perchlorate, thiocyanate, nitrate, and iodide on the inhibition of radioactive iodide uptake by the human sodium iodide symporter [J]. Thyroid:official journal of the American Thyroid Association, 2004,14(12):1012-1019.
    [29]丁淼鸿,刘琴,张娆,等.过氯酸铵对大鼠体内碘负荷及抗氧化能力的影响[J].工业卫生与职业病,2012,(02):73-76.
    [30]Breous E, Wenzel A, Loos U. The promoter of the human sodium/iodide symporter responds to certain phthalate plasticisers [J]. Molecular and cellular endocrinology,2005,244(1-2):75-78.
    [31]Li N, Ma M, Rao K, et al. In vitro thyroid disrupting effects of organic extracts from WWTPs in Beijing [J]. Journal of environmental sciences,2011,23(4):671-675.
    [32]Richardson V M, Staskal D F, Ross D G, et al. Possible mechanisms of thyroid hormone disruption in mice by BDE 47, a major polybrominated diphenyl ether congener [J]. Toxicology and applied pharmacology,2008,226(3):244-250,
    [33]Kato Y, Suzuki H, Ikushiro S, et al. Decrease in serum thyroxine level by phenobarbital in rats is not necessarily dependent on increase in hepatic UDP-glucuronosyltransferase [J]. Drug metabolism and disposition:the biological fate of chemicals,2005,33(11):1608-1612.
    [34]Meerts I A, Van Zanden J J, Luijks E A, et al. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro [J]. Toxicological sciences: an official journal of the Society of Toxicology,2000,56(1):95-104.
    [35]Purkey H E, Palaninathan S K, Kent K C, et al. Hydroxylated polychlorinated biphenyls selectively bind transthyretin in blood and inhibit amyloidogenesis:rationalizing rodent PCB toxicity [J]. Chemistry & biology,2004,11(12):1719-1728.
    [36]Kudo Y, Yamauchi K. In vitro and in vivo analysis of the thyroid disrupting activities of phenolic and phenol compounds in Xenopus laevis [J]. Toxicological sciences:an official journal of the Society of Toxicology,2005,84(1):29-37.
    [37]Ishihara A, Nishiyama N, Sugiyama S, et al. The effect of endocrine disrupting chemicals on thyroid hormone binding to Japanese quail transthyretin and thyroid hormone receptor [J]. General and comparative endocrinology,2003,134(1):36-43.
    [38]Shimada N, Yamauchi K. Characteristics of 3,5,3'-triiodothyronine (T3)-uptake system of tadpole red blood cells:effect of endocrine-disrupting chemicals on cellular T3 response [J]. Journal of endocrinology,2004,183(3):627-637.
    [39]刘早玲,刘继文,张建清,、等.2,2’,4,4’-四溴联苯醚对小鼠甲状腺激素系统稳态的影响及作用机制研究[J].卫生研究,2009,(05):522-524.
    [40]吴源,周群芳.甲基汞对幼年大鼠认知及甲状腺激素的干扰效应[J].环境与健康杂志,2010,(10):853-856.
    [41]瞿璟琰,施华宏,刘青坡,等.四溴双酚-A和五溴酚对红鲫甲状腺激素和脱碘酶的影响[J].环境科学学报,2008,(08):1625-1630.
    [42]Klammer H, Schlecht C, Wuttke W, et al. Effects of a 5-day treatment with the UV-filter octyl-methoxycinnamate (OMC) on the function of the hypothalamo-pituitary-thyroid function in rats [J]. Toxicology,2007,238(2-3):192-199.
    [43]Schmutzler C, Hamann I, Hofmann P J, et al. Endocrine active compounds affect thyrotropin and thyroid hormone levels in serum as well as endpoints of thyroid hormone action in liver, heart and kidney [J]. Toxicology,2004,205(1-2):95-102.
    [44]Kitamura S, Jinno N, Suzuki T, et al. Thyroid hormone-like and estrogenic activity of hydroxylated PCBs in cell culture [J]. Toxicology,2005,208(3):377-387.
    [45]Wade M G, Parent S, Finnson K W, et al. Thyroid toxicity due to subchronic exposure to a complex mixture of 16 organochlorines, lead, and cadmium [J]. Toxicological Sciences, 2002,67(2):207-218.
    [46]Schuur A G, Legger F F, Van Meeteren M E, et al. In vitro inhibition of thyroid hormone sulfation by hydroxylated metabolites of halogenated aromatic hydrocarbons [J]. Chemical research in toxicology,1998,11(9):1075-1081.
    [47]Ekuase E J, Liu Y, Lehmler H J, et al. Structure-activity relationships for hydroxylated polychlorinated biphenyls as inhibitors of the sulfation of dehydroepiandrosterone catalyzed by human hydroxysteroid sulfotransferase SULT2A1 [J]. Chemical research in toxicology, 2011,24(10):1720-1728.:
    [48]Nishimura N, Miyabara Y, Sato M, et al. Immunohistochemical localization of thyroid stimulating hormone induced by a low oral dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin in female Sprague-Dawley rats [J]. Toxicology,2002,171(2-3):73-82.
    [49]Nishimura N, Yonemoto J, Miyabara Y, et al. Rat thyroid hyperplasia induced by gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Endocrinology,2003,144(5):2075-2083.
    [50]Yu W G, Liu W, Jin Y H. Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism [J]. Environmental toxicology and chemistry/SETAC,2009,28(5):990-996.
    [51]史熊杰,刘春生,余珂,等.环境内分泌干扰物毒理学研究[J].化学进展,2009,(Z1):340-349.
    [52]Osius N, Karmaus W, Kruse H, et al. Exposure to polychlorinated biphenyls and levels of thyroid hormones in children [J]. Environmental health perspectives,1999,107(10):843-849.
    [53]Takser L, Mergler D, Baldwin M, et al. Thyroid hormones in pregnancy in relation to environmental exposure to organochlorine compounds and mercury [J]. Environmental health perspectives,2005,113(8):1039-1045.
    [54]Chevrier J, Eskenazi B, Holland N, et al. Effects of exposure to polychlorinated biphenyls and organochlorine pesticides on thyroid function during pregnancy [J]. American journal of epidemiology, 2008,168(3):298-310.
    [55]Koopman-Esseboom C, Morse D C, Weisglas-Kuperus N, et al. Effects of dioxins and polychlorinated biphenyls on thyroid hormone status of pregnant women and their infants [J]. Pediatric research,1994,36(4):468-473.
    [56]Chevrier J, Eskenazi B, Bradman A, et al. Associations between prenatal exposure to polychlorinated biphenyls and neonatal thyroid-stimulating hormone levels in a Mexican-American population, Salinas Valley, California [J]. Environmental health perspectives,2007,115(10):1490-1496.
    [57]Hagmar L, Bjork J, Sjodin A, et al. Plasma levels of persistent organohalogens and hormone levels in adult male humans [J]. Archives of environmental health,2001,56(2):138-143.
    [58]Turyk M E, Persky V W, Imm P, et al. Hormone disruption by PBDEs in adult male sport fish consumers [J]. Environmental health perspectives,2008,116(12):1635-1641.
    [59]Pavuk M, Schecter A J, Akhtar F Z, et al. Serum 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) levels and thyroid function in Air Force veterans of the Vietnam War [J]. Annals of epidemiology, 2003,13(5):335-343.
    [60]Chang S C, Thibodeaux J R, Eastvold M L, et al. Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS) [J]. Toxicology,2008,243(3):330-339.
    [61]Santini F, Vitti P, Ceccarini G, et al. In vitro assay of thyroid disruptors affecting TSH-stimulated adenylate cyclase activity [J]. Journal of endocrinological investigation,2003,26(10):950-955.
    [62]何宝霞,傅业全,徐世文.镉中毒对鸡垂体氧化应激和凋亡的影响[J].毒理学杂志,2007,(02):124-126.
    [63]何宝霞,傅业全,李金龙,等.镉对鸡垂体Fas和caspase-3 mRNA表达的影响[J].环境科学学报,2008,(07):1419-1424.
    [64]朱伟,杨杏芬,魏青,等.镉诱导腺垂体细胞凋亡与半胱天冬酶信号变化初探[J].中华预防医学杂志,2005,(02):44-47.
    [65]Moriyama K, Tagami T, Akamizu T, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist [J]. Journal of Clinical Endocrinology & Metabolism,2002,87(11):5185-5190.
    [66]Yamada-Okabe T, Aono T, Sakai H, et al.2,3,7,8-tetrachlorodibenzo-< i> p-dioxin augments the modulation of gene expression mediated by the thyroid hormone receptor [J]. Toxicology and applied pharmacology,2004,194(3):201-210.
    [67]Kitamura S, Suzuki T, Sanoh S, et al. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds [J]. Toxicological sciences:an official journal of the Society of Toxicology,2005,84(2):249-259.
    [68]Kitamura S, Kato T, Iida M, et al. Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds:Affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis [J]. Life sciences,2005,76(14):1589-1601.
    [69]Fini J B, Le Mevel S, Turque N, et al. An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption [J]. Environmental science & technology, 2007,41(16):5908-5914.
    [70]Hofmann P J, Schomburg L, Kohrle J. Interference of endocrine disrupters with thyroid hormone receptor-dependent transactivation [J]. Toxicological sciences:an official journal of the Society of Toxicology,2009,110(1):125-137.
    [71]Moriyama K, Tagami T, Akamizu T, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist [J]. The Journal of clinical endocrinology and metabolism,2002,87(11):5185-5190.
    [72]Miyazaki W, Iwasaki T, Takeshita A, et al. Polychlorinated biphenyls suppress thyroid hormone receptor-mediated transcription through a novel mechanism [J]. Journal of Biological Chemistry, 2004,279(18):18195-18202.
    [73]Cheek A O, Kow K, Chen J, et al. Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin [J]. Environmental health perspectives,1999,107(4):273.
    [74]Seiwa C, Nakahara J, Komiyama T, et al. Bisphenol A exerts thyroid-hormone-like effects on mouse oligodendrocyte precursor cells [J]. Neuroendocrinology,2004,80(1):21-30.
    [75]Sugiyama S-Ⅰ, Shimada N, Miyoshi H, et al. Detection of Thyroid System-Disrupting Chemicals Using in Vitro and in Vivo Screening Assays in Xenopus laevis [J]. Toxicological sciences, 2005,88(2):367-374.
    [76]居颖.电子垃圾污染对当地居民内分泌干扰效应研究[D].2008.
    [77]颜世帅,徐海明,秦占芬.多溴二苯醚毒理学研究进展及展望[J].生态毒理学报,2010,(05):609-617.
    [78]曹庆珍,朱攀,袁静,等.三丁基锡对热带爪蟾蝌蚪甲调基因mRNA表达的影响[J].华东师范大学学报(自然科学版),2011,(06):65-74.
    [79]裘佳,陈虹,黄秉仁.甲状腺激素受体在调节靶基因转录中的激活和抑制作用[J].生命的化学,2009,(03):370-373.
    [80]Iwamuro S, Yamada M, Kato M, et al. Effects of bisphenol A on thyroid hormone-dependent up-regulation of thyroid hormone receptor alpha and beta and down-regulation of retinoid X receptor gamma in Xenopus tail culture [J]. Life sciences,2006,79(23):2165-2171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700