三丁基锡对热带爪蟾胚胎组织结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三丁基锡(TBT)作为一种生物灭杀剂,广泛应用于船舶防污涂料中。我们前期的研究表明,将热带爪蟾胚胎在环境浓度下的TBT中暴露24 h、36 h和48 h后,胚胎产生特异的畸形现象,如眼睛畸形、泄殖腔膨大、窄鳍和皮肤色素消失等,而导致这些畸形表型产生的原因尚未明确。
     为了进一步研究TBT诱导热带爪蟾胚胎产生特异性畸形表型的原因,我们将热带爪蟾胚胎暴露于50、100和200 ng·L-1TBTCl中,36 h和72 h后观察畸变部位组织结构的变化。以揭示TBT诱导的热带爪蟾胚胎内部组织结构的变化,及其与畸形表型之间的联系。
     结果表明,TBT导致热带爪蟾胚胎眼睛畸形、躯干膨大、泄殖腔膨大、尾鳍变窄甚至消失。进一步的组织学观察显示,晶状体和视网膜层很少分化甚至不分化,色素层既不连续也不平滑;外鳃未被吸收,内鳃未分化完全;软腭板形态畸形,甚至咽部没有形成软腭板;膨大的腹腔内部充满了包含大量卵黄的未分化的内脏细胞;大量富含卵黄颗粒的细胞填充在呈肿块状或棒状隆起的泄殖腔内部,堵塞了出口甚至外翻至体外,有的泄殖腔外表皮膨胀;在躯干和尾部的背鳍和腹鳍均变窄甚至完全消失。
     组织结构的变化揭示了畸形表型的内在原因。所有胚胎早期的细胞均含有卵黄颗粒,这些卵黄颗粒随着胚胎的发育而在细胞内逐渐被吸收。浓度组腹腔内细胞富含卵黄颗粒,说明细胞未完全分化,导致肠道没有进一步拉长和盘绕,进而使得腹腔膨大。在TBT暴露组中,泄殖腔壁细胞富含卵黄颗粒,细胞类型与大肠壁细胞类似。由此可见,增厚的泄殖腔壁仍然来自于原有未分化的肠道组织。泄殖腔上表皮细胞未分化、外表皮扩张和背、腹鳍的消失导致了泄殖腔的膨大。
     热带爪蟾尾鳍的变窄甚至消失可能与TBT诱导的细胞凋亡有关。在TBT导致的胚胎畸形中,尾鳍的畸形和泄殖腔的膨大总是同时发生,而泄殖腔和尾鳍的发育均与骨形成蛋白信号(BMP)有关。总之,组织学观察揭示了TBT诱导的爪蟾胚胎特异性畸形产生的内在原因,并为机制的解析提供了依据。
Tributyltin (TBT) has been widely used as a biocide in antifouling paints. In our previous study, we found that unique malformations are induced in Xenopus tropicalis embryos by TBT at environmentally relevant concentrations after 24,36 and 48 h of exposure. The most obvious alterations were abnormal eyes, enlarged proctodaeums, narrow fins and skin hypopigmentaion. The reasons leading to the external changes, however, are not well known.
     Based on the findings of morphological malformations above, we exposed embryos of X. tropicalis to 50,100 and 200 ng·L-1 tributyltin chloride (TBTC1) for 36 and 72 h, and the histological changes were observed on the main phenotypes of malformations. Our aim was to determine the histological abnormalities induced by TBT and to reveal the internal relationship between histological changes and the external malformations.
     The embryos treated with TBT showed multiple malformations such as abnormal eyes, enlarged trunks, enlarged proctodaeums and narrow fins. The histological changes were further observed on these main malformations induced by TBT. The lens and the retinal layers of abnormal eyes were slightly or barely differentiated, and that the pigment epithelium was neither continuous nor smooth. The external gills were not absorbed, and the inner gills were not well developed. The velar plates developed in a deformed way, what is worse, some were absent in the pharynx. The abdomens were full of undifferentiated gut tissue with yolk-rich inclusions in the tadpoles with enlarged trunks. The proctodaeums formed a bump-like or columnar structure. The mass of yolk-rich cells occupied the lumen, blocked the opening and even turned inside out of the proctodaeum. Both the ventral and dorsal fins in trunks and tails became narrow or even disappeared totally.
     Our results suggest that great changes of histology took place corresponding to the unique phenotypes. All the embryonic cells inherit yolk platelets from the egg cytoplasm and consumed them intracellularly during embryogenesis. The yolk-rich mass in TBT treatment tadpoles suggest that the gut tissue was poorly differentiated, which led to the failed elongation of the guts and subsequently the enlarged trunks. In TBT treatment groups, both the large intestine and proctodaeum were rich in yolk granules, sharing the similar cell types. Therefore, the thick proctodaeums still came from the original undifferentiated gut tissues. The enlarged proctodaeums were due to the undifferentiation of inner layer, the expansion of outer epidermal part and the absence of fins around them.
     The narrow fins or absence of fins in X. tropicalis larvae might be due to the apoptosis induced by TBT. The fin defects were always companied by enlarged protodaeums in this study. The development of proctodaeums and ventral fins are closely related to bone morphologenetic protein (Bmp) signaling. In brief, the histological observations provided insights into the reason of the unique external malformations in some degree.
引文
Alsop D, Hewitt M, Kohli M, et al.,2003. Constituents within pulp mill effluent deplete retinoid stores in white sucker and bind to rainbow trout retinoic acid receptors and retinoid X receptors [J]. Environ Toxicol Chem,22:2969-2976.
    Alzieu C,1991. Environmental problems caused by TBT in France:assessment, regulations, prospects [J]. Mar Environ Res,32:7-17.
    Alzieu C,1996. Biological effects of tributyltin in marine organisms. In:de Mora, S.J. (Ed.), Tributyltin:Case Study of an Environmental Contaminant, Cambridge Environmental Chemistry Series, vol.8. Cambridge University Press, Cambridge.167-211.
    American Society for Testing and Materials (ASTM),1998. Standard guide for conducting the frog embryo teratogenesis assay - Xenopus (FETAX), E1439-91. In:Annual Book of ASTM Standards, vol.11.05. ASTM, Philadelphia, PA,826-836.
    Antizar-Ladislao B,2008. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment [J]. Environ Int,34:292-308.
    Baba K, Okada K, Kinoshita T, et al.,2009. Bisphenol A disrupts notch signaling by inhibiting gamma-secretase activity and causes eye dysplasia of Xenopus laevis [J]. Toxicol Sci,108(2): 344-355.
    Bryan G W, Gibbs P E, Burt G R, et al.,1987. The effects of tributyltin accumulation on adult dog-whelks. Nucella lapillus:long-term field and laboratory experiments [J]. J Mar Biol Assoc UK,67:524-544.
    Bryan G W, Gibbs P E, Burt G R,1988. A comparison of the effectiveness of tri-n-butyltin chloride and five other organotin compounds in Promoting the development of imposex in the dog-whelk, Nucella lapillus [J]. J Mar Biol Assoc UK,68:733-744.
    Bryan G W, Gibbs P E, Hummerstone G L, et al.,1986. The decline of the gastropod Nucella lapillus around southwest England:evidence for the effect of tributyltin from antifouling Paints [J]. J Mar Biol Assoc UK,66:611-640.
    Chalmers A D, Slack J M W,1998. Development of the gut in Xenopus laevis [J]. Dev Dynam, 212:509-521.
    Chalmers A D, Slack J M W,2000 The Xenopus tadpole gut:fate maps and morphogenetic movements [J]. Development,127:381-392.
    Champ M A,2000. A review of organotin regulatory strategies, pending actions, related costs and benefits [J]. Sci Total Environ,258:21-71.
    Cleary J J,1985. Organotin and total tin in coastal waters of South-west England [J]. Mar Pollut Bull,16:350-355.
    Collins J P, Storfer A.2003. Global amphibian declines:sorting the hypotheses [J]. Divers. Distrib, 9:89-98.
    Cossette S M M, Drysdale T A,2004. Early expression of thyroid hormone receptor β and retinoid X receptor y in the Xenopus embryo [J]. Differentiation,72 (5):239-249.
    Dawson D A, WILKE T S,1991. Evaluation of the frog embryo teratogenesis assay:Xenopus (FETAX) as a model system for mixture toxicity hazard assessment [J]. Environ Toxicol Chem,10:940-945.
    Decherf S, Seugnet I, Fini J B, et al.,2010. Disruption of thyroid hormone-dependent hypothalamic set-points by environmental contaminants [J]. Mol Cell Endocrinol,323(2): 172-182.
    Duhamel B,1961. From the mermaid to anal impeforation:the syndrome of caudal regression [J]. Arch Dis Child,36:152-155.
    Dumont J, Schultz TW, Buchanan M, Kao G.1983. Frog embryo teratogenesis assay-Xenopus (FETAX)—a short-term assay application to complex environmental mixtures, In Waters, Sandhu, Lewtas, Claxton, Cherno, and Nesnow:Short-Term Bioassays in the Analysis of Complex Environmental Mixtures Ⅲ,393-405. Plenum Publishing, New York.
    Duvic M, Hymes K, Heald P, et al.,2001. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma:Multinational phase Ⅱ-Ⅲ trial results [J]. J Clin Oncol,19 (9):2456-2471.
    Embry M R, Belanger S E, Braunbeck T A, et al.,2010. The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research [J]. Aquat Toxicol, 2(15):79-87.
    Evans R M,2007. The nuclear receptor superfamily:a rosetta stone for physiology [J]. Mol Endocrinol,19(8):1429-1438.
    Fort D J, Stover E L, Propst T L, et al.1996. Evaluation of the Developmental toxicity of theophylline, dimethyluric acid, and methylxanthine metabolites using FETAX [J]. Drug Chem Toxicol,19:267-278.
    Fort D J, Stover E L, Propst T L, et al.1998. A evaluation of the developmental toxicity of coumarin,4-hydroxycoumarin and 7-hydroxycoumarin using FETAX [J]. Drug Chem Toxicol,21:15-18.
    Gibbs P E, Bryan G W,1986. Reproduetive failure in populations of the dog-whelk, Nucella lapillus, caused by imposex induced by tributyltin from antifouling paints [J]. J Mar Biolog Asso UK,66:767-777.
    Gibbs P E, Bryan G W, Pascoe P L, et al.,1987. The use of the dogwelk, Nucella lapillus, as an indicator of tributyltin (TBT) contamination [J]. J Mar Biolog Asso UK,67:767-777.
    Gibbs P E, Pascoe P L, Burt G R,1988. Sex change in the female dog whelk, Nucella lapillus, induced by tributyltin from antifouling paints [J]. J Mar Biol Assoc UK,68:715-731.
    Grun F, Watanabe H, Zamanian Z, et al.,2006. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates [J]. Mol Endocrinol,20(9):2141-2155.
    Guo S Z, Qian L J, Shi H H, et al.,2010. Effects of tributyltin (TBT) on Xenopus tropicalis embryos at environmentally relevant concentrations [J]. Chemosphere,79:529-533.
    Hall L W,1988. Tributyltin environmental studies [J]. Mar Pollut Bull,19:431-438.
    Hano T, Oshima Y, Kim S G., et al.,2007. Tributyltin causes abnormal development in embryos of medaka, Oryzias latipes. [J]. Chemosphere,69:927-933.
    Havis E, Mevel S L, Morvan-Dubois G, et al.,2006. Unliganded thyroid hormone receptor is essential for Xenopus laevis eye development [J]. Eur Mol Biol Org,25:4943-4951.
    Hoke R A, Ankley G T,2005. Application of frog embryo teratogenesis assay-Xenopus to ecological risk assessment [J]. Environ. Toxicol. Chem,24(10):2677-2690.
    Hu J Y, Zhang Z B, Wei Q W, et al.,2009. Malformations of the endangered Chinese sturgeon, Acipenser sinensis, and its causal agent [J]. PNAS,106(23):9339-9344.
    Hu J, Zhen H, Wan Y, et al.,2009. Trophic magnification of triphenyltin in a marine food web of Bohai Bay, North China:comparison to tributyltin [J]. Environ Sci and Technol, 40(10):3142-3147.
    Inoue K, Nakama K, Sawada K, et al.,2011. Screening of agonistic activities against four nuclear receptors in wastewater treatment plants in Japan using a yeast two-hybrid assay [J]. J Environ Sci,23(1):125-132.
    Janosek J, Hilscherova K, Blaha I, et al.,2006. Environmental xenobiotics and nuclear receptors— interactions, effects and vitro assessment [J]. Toxicol in Vitro,20:18-37.
    Jones D M,2009. An investigation of the proctodeal region with respect to development and breakdown of the cloacal membrane in Xenopus laevis [D].
    Kao KR, Elinson RP,1988. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos [J]. Develop Bio,127:64-77.
    Kraft J C, Schuh T, Juchau M, et al.,1994. The retinoid X receptor ligand,9-cis-retinoic acid, is a potential regulator of early Xenopus development [J]. Proc Natl Acad Sci USA 91, 3067-3071.
    Lenkowski J R, Reed J M, Deininger L, et al.,2008. Perturbation of organogenesis by the herbicide atrazine in the amphibian Xenopus laevis [J]. Environ Health Perspect,116(2): 223-230.
    Li J, Ma M, Wang ZJ,2008. A two-hybrid yeast assay to quantify the effects of xenobiotics on retinoid X receptor-mediated gene expression [J]. Toxicol Lett,176:198-206.
    Lu H C, Eichele G, Thaller C,1997. Ligand-bound RXR can mediate retinoid signal transduction during embryogenesis [J]. Development,124 (1):195-203.
    Martinez-Morales J R, Rodrigo I, Bovolenta P,2004. Eye development:a view from the retina pigmented epithelium. Bioessays,26(7):766-77.
    Mann R M, Hyane R V, Choung C B, et al.,2009. Amphibians and agricultural chemicals:Review of the risks in a complex environment [J]. Environ pollut,11(157):2903-2927.
    Nicklin S, Robson M W,1988. Organotins:toxicology and biological effects [J]. Appl Org Chem, 2:487-505.
    Nishikawa J, Mamiya S, Kanayama T, et al.,2004. Involvement of the retinoid x receptor in the development of imposex caused by organotins in gastropods [J]. Environ Sci Technol,38: 6271-6276.
    Pietro C, Lino O.2001. Teratogenic and toxic effects of alcohol ethoxylate and alcohol ethoxy sulfate surfactants on Xenopus laevis Embryos and Tadpoles [J]. Ecotoxicol Environ Saf,48: 170-177.
    Pyati U J, Cooper M S, Davidson A J, et al.,2006. Sustained Bmp signaling is essential for cloaca development in zebrafish [J]. Development,133:2275-2284.
    Reversade B, Kuroda H, Lee H, et al.,2005. Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos [J]. Development, 132(15):3381-3392.
    Riidel H, Muller J, Steinhanses J, et al.,2007. Retrospective monitoring of organotin compounds in freshwater fish from 1988 to 2003:results from the German environmental specimen bank [J]. Chemosphere,66:1884-1894.
    Schoff P K, Johnson C M, Schotthoefer A M, et al.,2003. Prevalence of skeletal and eye malformations in frogs from north-central United States:estimations based on collections from randomly selected sites [J]. Wildlife Dis,39(3):510-521.
    Shi H H, Huang C J, Zhu S X, et al.,2005. Generalized system of imposex and reproductive failure of females in gastropods along the coastal waters of mainland China [J]. Mar Ecol Prog Ser,304:179-189.
    Shi H H, Qian L J, Guo S Z, et al.,2010. Teratogenic effects of tetrabromobisphenol A on Xenopus tropicalis embryos [J]. Com Biochem Physiol, C,152:62-68.
    Shimasaki Y, Kitano T, Oshima Y, et al.,2003. Tributyltin causes masculinization in fish [J]. Environ Toxicol Chem,22(1):141-144.
    Smith E D,1988. Incidence frequency of types and etiology of anorectal malformations [J]. Birth Defects Orig Artie Ser,24:231-246.
    Smith B S,1981. Male characteristics on female mud snails caused by antifouling bottom paints [J].J Appl Toxicol,1:22-25.
    Stebbing A R D,1985. Organotins and water quality-some lessons to be learned [J].Mar Pollut Bull,9:195-220.
    Stuart S N, Chanson J S, Cox N A, et al.,2004. Status and trends of amphibian declines and extinctions worldwide [J]. Science,306:1783-1786.
    Tanabe S,1999. Butyltin contamination in marine mammals-a review [J]. Mar Pollut Bull,39: 62-72.
    Tindall A J, Morris I D, Pownall M E, et al.,2007. Expression of enzymes involved in thyroid hormone metabolism during the early development of Xenopus tropicalis [J]. Biol Cell,99(3): 151-163.
    Tucker A S, Slack J M W,2004. Independent induction and formation of the dorsal and ventral fins in Xenopus laevis [J]. Dev Dynam,230:461-467.
    Zhang H T, Zhou R, Li L, et al.,2011. Danthron functions as a retinoic X receptor antagonist by stabilizing tetramers of the receptor [J]. J Bio Chem,286 (3):1868-1875.
    Zhang J L, Zuo Z H, Wang Y Q, et al.,2011. Tributyltin chloride results in dorsal curvature in embryo development of Sebastiscus marmoratus via apoptosis pathway [J]. Chemosphere,82: 437-442.
    Zhang Z B, Hu J Y, Zhen H J, et al.,2008. Reproductive inhibition and transgenerational toxicity of triphenyltin on Medaka (Oryzias latipes) at Environmentally relevant levels [J]. Environ Sci Technol,42(21):8133-8139.
    江桂斌,刘稷燕.2000.我国部分内陆水域有机锡污染现状初探[J].环境科学学报,9:636-638.
    江桂斌,徐福正,何滨等.1999.有机锡化合物测定方法研究进展[J].海洋环境科学,18(3):21-26.
    江桂斌.2001.国内外有机锡污染研究现状[J].卫生研究,30(1):1-3.
    江先群,李汝祺.1958.北方狭口蛙个体发育的研究——Ⅰ.鳃和肺的发生、发展与变化[J].动物学报,10(01):35-52.
    李剑,饶凯锋,马梅等,2008.酵母双杂交技术构建重组维甲酸x受体(RXR)基因酵母[J].科学通报,53(17):2028-2033.
    钱丽娟,刘青坡,郭素珍等.2009.爪蟾胚胎致畸实验(FETAX)在检测污染物发育毒性中的应用[J].安全与环境学报,9(4):24-28.
    钱丽娟.2010.运用热带爪蟾(Xenopus tropicalis)胚胎检测污染物的发育毒性[D].
    秦占芬,徐小白.2006.非洲爪蟾在生态毒理学研究中的应用:概述和实验动物质量控制[J].上海:华东师范大学环境科学系.
    曲漱惠.1980.动物胚胎学[M].北京:人民教育出版社.
    王连生.1991.有机污染物化学(下)[M].北京:科学出版社.
    徐晓白.1998.典型化学污染物在环境中的变化及生态效应[M].北京:科学出版社.
    张红卫,王子仁,张士璀.2011.发育生物学[M].北京:高等教育出版社.
    张康生,刘双进,赵忠宪.1996.有机锡污染调控对策初步分析[J].中国环境科学,16(4):293-296.
    张天荫.1994.“动物的发育”讲座(四)——两栖类胚胎的器官发生[J].生物学通报,29(10):15-17
    周景明,秦占芬,徐晓白.2006.两栖类动物在环境毒理学研究中的应用[J].环境与健康杂志,23(4):369-371.
    朱利瑞.2009.非洲爪蟾眼发育和晶状体再生过程中Pax6基因表达荧光定量PCR和免疫组化分析[D].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700