木质胶接接头力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材是人类应用最早的材料之一,由丁木材本身具有天然纹理和色泽、易加工、质轻而强重比大、可生物降解、隔声、隔热、绝缘等优点,使木质材料在人类发展的历程中发挥了极其重要的作用。在钢材、水泥、木材、塑料这四大工程材料中,木材是惟一的可再生材料。木质材料已被广泛应用于家具、建筑、乐器、船舶、车辆、医疗器械等各个行业。为了对木质材料进行正确合理的有效使用,就需要了解木材及其连接件的物理力学性能。因此本文针对以桦木为材料的几种胶接接头的力学性能进行了相关理论和试验的研究。
     论文首先提出了课题的研究背景和研究意义,对木质胶接技术和检测手段进行了阐述,对国内外胶接接头的应力分析、无损检测方法和蠕变特性进行了总结和论述,确定了论文的研究方向和主要研究内容。
     胶接接头的应力分布是一个复杂的力学问题,本文提出利用三角级数求和的方法,从理论上推导了胶接接头的应力分布区域及解析解的大小,为木质胶接接头应力的分析和求解提供了一种新的理论方法。
     对桦木搭接胶接接头力学性能进行了正交试验研究。主要研究胶合长度l、试件厚度h和试件宽度b三因素对其力学性能的影响。得到各因素对最大拉伸载荷影响的强弱关系为b>l>h,最优方案为b3l3h3;也得到各因素对拉伸强度影响的强弱关系为h>l>b,最优方案为h1l3b1。得到各因素对弹性模量(MOE)影响的强弱关系为l>h>b,最优方案为l3h1b3;也得到各因素对静曲强度(MOR)影响的强弱关系为h>l>b,最优方案为h1l3b3,弯曲性能的综合最优方案为l3h1b3。并利用Matlab软件构建了搭接接头力学性能的曲面模型和预测方程。
     对桦木盖板胶接接头力学性能进行三组单因素试验研究。三个因素分别为盖板长度(胶合长度)l、盖板厚度h1、试件和盖板同厚(h=h1),研究它们对接头力学性能的影响。发现拉伸载荷和拉伸强度随胶合长度l的增加而增加,拉伸载荷随盖板厚度h1的增加而增加,而拉伸强度却随盖板厚度h1的增加而略有减小,拉伸载荷和拉伸强度随试件和盖板同厚(h=h1)的增加而减小;弯曲载荷、MOE和MOR都随胶合长度l的增加而增加,随盖板厚度h1或试件和盖板同厚(h=h1)的增加而减小。
     对桦木斜接胶接接头的力学性能进行了单因素试验研究。研究三种斜率(1:4、1:8、1:12)对其力学性能的影响。斜率k由1:4变到1:8,胶合长度增加20mm,接头的拉伸载荷与拉伸强度增加了2.5倍;由1:8变到1:12,胶合长度也增加20mm,而拉伸载荷与拉伸强度只增加了29.49%;弯曲载荷、MOE和MOR都随斜率的减小而增加。因此斜率越小,斜接接头力学性能越好。
     对桦木指接胶接接头的力学性能进行了试验研究。研究三种斜度α(1:8、1:10、1:12)对其弯曲力学性能的影响。弯曲载荷、MOE和MOR都随斜度的减小而增加。因此斜度越小,指接接头力学性能越好。
     利用ANSYS有限元法对桦木胶接接头的力学性能进行了仿真分析,在仿真等效应力图中各种接头受力变形呈现不同程度对称分布,在胶合区域存在应力集中现象。搭接接头应力峰值随胶合长度l的增加而逐渐减小;随试件厚度h的增加,拉伸应力峰值增大,而弯曲应力峰值略有减小。盖板接头的应力峰值也随胶合长度l的增加而逐渐减小;随盖板厚度hl的增加,拉伸应力峰值而减小,随试件和盖板同厚(h=h1)的增加而增大;弯曲应力峰值随盖板厚度hl或试件和盖板同厚(h=h1)的增加而略有增大。斜接接头弯曲应力峰值随斜率k的减小而减小。指接接头由上到下的胶合面的弯曲剪切应力由负变正,数值由大到小再变大,剥离应力峰值在胶合面的中间区域,由上到下峰值逐渐减小,而且斜度越小,应力峰值越小。接头的仿真分析与胶接接头应力理论分析结论存在一致性,可以利用ANSYS有限元对接头的力学性能进行仿真分析。
     对桦木胶接接头进行了弯曲蠕变试验。搭接和盖板接头的抗弯曲蠕变现象相近似,其抗弯曲蠕变性能随胶合长度和试件厚度(或盖板厚度)的增加而增强,而且接头在蠕变的过程中,会出现突变再恢复的现象。斜接接头的抗弯曲蠕变在140h(第六天)左右发生一次大突变,比原木的突变发生要早,变异量也大,而且变异量随斜率减小而增加。从曲线整体看,斜接接头比搭接和盖板接头的蠕变曲线要光滑平整,也没有蠕变突变再恢复的现象。并利用对数方程和乘幂方程对蠕变曲线进行了回归分析,获得的回归方程精度很高,可以被用来预测各类胶接接头的蠕变过程。
     利用快速傅里叶变换(FFT)分析技术的弯曲振动法对四种桦木胶接接头进行无损检测。得到动态弹性模量Ef和破坏试验获得的拉伸强度σ(斜接接头除外)、MOE及MOR之间存在明显的相关性,回归关系高度显著,获得的回归方程可进行接头强度预测。
     将胶接接头应用到单板层级材(LVL)中,结果表明,通过设计合理的接头类型和结构尺寸,可以满足LVL等木质复合材料不同工作场合的使用性能,有效地提高LVL的力学性能和利用率。
     本文通过试验检测、理论推导和有限元分析的方法对木质胶接接头进行了力学性能的评价及其影响规律的研究,获得的理论模型及预测模型对于木质接头的实践应用有着积极的作用。
Wood is one of the earliest application materials in human history. The advantages of wood are light mass, high strong-heavy ratio, biodegradability, comfortability of vision and touch, sound insulation, heat insulation and etc, and play an important role in the development process of human. In the four engineering materials of steel, wood, plastics and cement, wood is the only renewable material. Wood materials have been used widely in construction, furniture, musical instruments, vehicles, ships and medical instruments. In order to make the correct and reasonable use of wood materials, physical and mechanical performances of wood and wood fittings, the related theory and experiments of mechanical performances of several gluing joints made birch have been done in this paper.
     The research background and significance of the topic have been put forward firstly, gluing technology and testing methods of wood have also been illustrated, the glue joint stress analysis, nondestructive testing methods and creep characteristics of wood joints both in abroad and at home have been summarized and discussed, thus research direction and research contents have been determined.
     Stress distribution of gluing joint rubber is a complex mechanical problem, this paper puts forward the method by using trigonometric series summation, the stress distribution and the analytical solutions have been deduced theoretically, a new theory method of the stress analysis and solution of wood gluing joint has been provided.
     Orthogonal experiment research of mechanical performance of birch lap gluing joint has been carried. The main three research factors are agglutination lengthι, specimen width h and specimen thickness b. The relationship of all the factors on the maximum tensile load is b>l> h, the optimal scheme is b3ι3h3; also the relationship of all the factors on the tensile strength is h>l>b, the optimal scheme is b3ι3h3. the relationship of all the factors on MOE is l>h>b, the optimal scheme is h1ι3h3; Also the relationship of all the factors on MOR is h>l>b, the optimal scheme is h1ι3h3, the optimal solution scheme of bending performance is h1ι3h3. And by using Matlab software, surface model and prediction model of joint mechanical properties have been builded.
     Three groups of factor experiment research have been carried for the mechanical performances of birch cover plate gluing joints. The three factors influencing mechanical property are gluing length, cover plate thickness and specimen and cover plate with the same thickness. Tensile load and tensile strength increase with the increase of gluing length, tensile strength slightly and reduces with cover plate thickness, tensile load and tensile strength decrease with the increase of cover plate thickness, Bending load, MOE and MOR all increase with the increase of gluing length, decrease with the increase of the cover plate thickness, and decrease with the increase of the thickness of specimen and cover plate.
     Single factor experiment research of mechanics performance of the birch scarf gluing joints has been carried. When the slope k change from1:4to1:8, the tensile load of joints increased2.5times, When the slope k change from from1:8to1:12, the tensile load increased only29.49%; Bending load, MOE and MOR also decrease with the slope increase. So the smaller the slope, the better the mechanics performance is.
     Experiment research of mechanics performance of the birch finger joints has been carried. The influence of three slopeα (1:8,1:10,1:12) on the bending mechanical properties has been discussed. Bending load, MOE and MOR are all increased with the decrease of slope. So the smaller the slope, the better the mechanics performance is.
     Simulation analysis of mechanical performance of the birch gluing joints has been done by using the ANSYS finite element method, the different degree symmetric distributions are present in the simulation equivalent stress graghs, the stress concentration phenomenon of shear stress and stripping stress exists in the gluing regions; the peak values of lap joints decrease with the increase of the gluing lengthι; with the increasing of specimen thickness, the peak tensile stress increase and the peak bending stress increase slightly. The peak tensile stress values of cover plate joints also decrease with the increase of the gluing lengthι; with the increasing of cover plate thickness h1the peak tensile stress decrease, with the increasing of both h andh-h1, the peak tensile stress increase; the peak bending stress increase with the increasing of h or h=h1. The peak bending stress decreases with the decreasing of the slopes k. The bending shear stress of the finger joint changed from negative to positive values from the top layer to the bottom layer, the peak stripping stress exist in the middle areas of gluing area, and gradually decreased from top to low. The smaller the slope, the smaller the peak stress is.
     From the above results, there is a same changing tendency with the theory analysis, so ANSYS finite element method can be used to simulate the mechanical performances of gluing joints.
     Bending creep test of birch gluing joint has been done. Creep phenomena of lap and cover plate joints are similar, flexural creep properties increase with the increase of gluing length and specimen thickness (or cover plate thickness), and mutation recovery phenomenon appears in the creep process. A big mutation has happened in140hour (the sixth day) around, which is earlier than the log opponent; the variation amount is also larger and increases with the slope decrease. From the overall of the curves, the creep curves are more smoothly and have no creep mutations recovery phenomenon. The regression analysis using the logarithmic equation and power equation has carried, the precision of regression curve is high, and can be used to predict of various gluing joint creep process.
     Nondestructive testing of four types brich gluing joints have been done by using the bending vibration method of FFT analysis technology, obvious correlation relationships between dynamic elastic modulus Ef and the tensile strength a got by damaging test(except scarf joints), the significant relationship has existed between MOE and MOR, the regression is highly obvious, the regression equation can predict the joint strength.
     When applying the veneer joint for veneer lumber (LVL) application, the results show that, through the reasonable design of the joint type and structure size, can meet LVL wood composite materials different application requirements, effectively improve the mechanical properties and utilization of LVL.
     Mechanical properties and the influence law of wood gluing joints have been researched by using experimental testing, theory derivation and finite element analysis methods in the paper, the obtained theory model and prediction model have a positive effect for the practical application of wood joints.
引文
[1]李坚.生物质复合材料学.北京:科学出版社,2008
    [2]徐修祝.高聚物胶接界面裂纹应力应变分布的研究.南京工业大学硕士论文,2005:3-6
    [3]S. T. Tu, R. Wu, and R. Sandstrom. Design against Creep Failure for Weldments in 0.5Cr0.5Mo0.25V Pipe. Int. J. Press. Ves. & Piping,1994(58):345~354.
    [4]S. T. Tu, J. M.Gong, X. Ling et al. Long Term Measurement of Local Creep Deformation by Optical Fiber Marking and Remote Monitoring, Nontraditional Methods bf Sensing Stress, Strains, and Damage in Materials and Structures:Second Volume, ASTM STP 1323, West Conshohochen:ASTM.
    [5]S. T. Tu, J. M. Gong and X. Ling. Mechanical Behavior of Laboratory Cross-Weld Specimen and its Relation with the Practical Cases at Elevated Temperature. Acta Metall. Sinica,2009(12):82~88.
    [6]殷勇,涂善东.胶接接头力学研究回顾.化工机械,2001,28(4):241-245
    [7]N. Su and R. I. Mackie. Two-dimensional Creep Analysis of Structural Adhesive Joint. Int. J. of Adhesion and Adhesive,1993,13(1):56~63.
    [8]G. C. Mays. Interim Report WBRU/IR35, University of Dundee, UK, 1982
    [9]A. Saxena. Mechanics and Mechanisms of Creep Crack Growth. Facture Mechanics: Microstructure and Micromechanisms, ed. S.V. Nair, J.K. Tien, R.C. Bates and O. Buck. ASM International,1989:283~334
    [10]顾继友.胶接理论与胶接基础.北京:科学出版社,2003
    [11]王新阁,孟庆迪,韩慧伶.现代飞机胶接技术的发展与应用.创新驱动,加快战略性新兴产业发展——吉林省第七届科学技术学术年会论文集(上),2012,234~239
    [12]Konnerth, J., Gindl, W., Harm, M., Miiller, U.. Comparing dry bond strength of spruce and beech wood glued with different adhesives by means of scarf- and lap joint testing method. Holz als Roh- und Werkstoff, 1981,64:269~271
    [13]S. S. Lee. Time-dependent boundary Element Analysis for an Interface Crack in a Two-dimensional Visco-elastic Model Composite. Int. J. Fact,1996, (77):15-28
    [14]M. V. Srinivas, G. Ravichandran. Interfacial Crack Propagation in a Thin Viscoelastic Film Bonded to an Elastic Substrate. Int. J. Fact,1994, (65):15~28
    [15]游敏,郑小玲.胶接强度分析与应用.武汉:华中科技大学出版社,2009
    [16]富田文一郎,雨宫昭二等.木材。接着·接着剂.产调出版,1996
    [17]陈根座等.胶粘剂手册.北京:电子工业出版社,1994
    [18]S. S. Voyutskii. Autohesion and Adhesion of High Polymers. John Wiley,1964
    [19]D. Kutscha and K. E. HoferJr. Feasibility of Joining Advanced Composite Flight Vehicles. AFML-TR-68-391,1969
    [20]G. M. Lehman and A. V Hawley. Inestigation of Joints in Advanced Fibrous Composites for Aircraf Structures,1969, (1):69~43
    [21]J. N. Dickson, T. M. Hsu. Development of an Understanding of the Fatigue Phenomenon of Bonded and bolted Joints in advanced Filarnentary Composite Materials. Vol.1.Analysis Materials. AFFDL-TR72-64(AD750132),1972
    [22]L. J. Hart-smith. Adhesive-bonded Single Lap Joints. NASA-CR 112236,1973
    [23]M. Goland and E. Reissner. J Appl Mech. Trans ASME,1944,66:17~29
    [24]R. D. Adams and N A. Peppiatt. J Strain Anal,1973,8:134~141
    [25]C. Mylonas. The Optical System of Polariscopes as Used in Photoelasticity. Measurement Science and Technology,1948,25(3):77~89
    [26]W. James Renton, R. Jack, Vinson.The Efficient Design of Adhesive Bonded Joints. The Journal of Adhesion,2009,7(3):214~219
    [27]D. J. Allman. A Theory for Elastic Stresses in Adhesive Bonded Lap Joints. The Quarterly Journal of Mechanics and Applied Mathematics,1977,30(4):415~423
    [28]G R. Wooley and D R. Carver. J Aircraft,1971,8:817~822
    [29]N. L. Harrison, W. J. Harrison. The Stresses in an Adhesive Layer. The Journal of Adhesion,1972,3(3):82-89
    [30]R. D. Adams, N. A. Peppiatt. Stress Analysis of Adhesive-bonded Lap Joints. The Journal of Strain Analysis for Engineering Design,1974,9(3):185~189
    [31]A. D. Crocombe, R. D. Adams. Peel Analysis Using the Finite Element Method. The Journal of Adhesion,1981,12(2):127~132
    [32]A. D. Crocombe, R. D. Adams. Influence of the Spew Fillet and other Parameters on the Stress Distribution in the Single Lap Joint. The Journal of Adhesion,1981, 13(2):141~149
    [33]M. Kemal Apalak, R. Davies. Analysis and Design of Adhesively Bonded Comer Joints: Fillet Effect. International Journal of Adhesion and Adhesives,1994,14(3):163~169
    [34]R. D Adams. Effect of Poisson'S Ratio Strains in Adherends on Stresses of an Idealized Lap Joint. The Journal of Strain Analysis for Engineering Design,2008,8(2):134~143
    [35]J A. Harris and R D. Adams. Ubt Symp On Adhesive Joints. In: Proc Org Coatings Appl Polym Sci,184 Nat Meeting, London: Amer Chem Soc Publ,1982
    [36]J A. Harris and R D. Adams, R. Adhesion. In:Allen K W. Ed. London:Appl Sci Publ, 1983
    [37]D. W. Oplinger. Effects of Adherend Deflections in Single-lap Joints. International Journal of Solids and Structures,2004,31:2565~2578
    [38]M. Y. Tsai, D W. Oplinger, J. Morton. Improved TheoreticalS olutions for Adhesive Lap Joints. Int J S olids Structures,2008,35 (12):1163~1169
    [39]M. Y. Tsai, J. Morton. An Experimental Investigation of Nonlinear Deformations in Single-lap Joints. Mechanics of Materials,1995,20:183~189
    [40]L. J. Hart-Smith. Adhesive Bonded Single Lap Joints. NASA CR-112236,1973,1
    [41]L. J. Hart-Smith. Adhesive Bonded Scraf and Stepped Lap Joints. NASA CA-112237, 1973,1
    [42]W. William. Sable and Parivz Sharifi. Structural Analysis of Bonded Joints Using the Finite Element Method. ICCM/8,1991,7
    [43]O. C. Zienkiewicz, I C. Cormeau. Visco Plasticity and Creep in Elastic Solids a Unified Numerical Solution Approach. International Journal for Numerical Methods in Engineering,1974,8:821~829
    [44]K. W. Allen and M. E. R. Shanahan. The Creep Behaviour of Structure Adhesive Joints I. Journal of Adhesion,2005,7:161~168
    [45]K. W. Allen and M. E. R. Shanahan. The Creep Behaviour of Structure Adhesive Joints II. Journal of Adhesion,2006,8:43~47
    [46]W. Althof. Creep Recovery and Relaxation of Shear Loaded Adhesive Bondlines. Journal of Plastics and Composites,2010,1:29~35
    [47]Y. R. Nagaraja, R. S. Alwar. Viscoelastic Analysis of an Adhesive Bonded Plane Lap Joint. Computers & Structures,2008,11:621~629
    [48]H. F. Brinson. The Viscoelastic Constitutive Modelling of Adhesives. Composites,1982, 134:377~389
    [49]N. Su, R I. Mackie. Two Dimensional Creep Analysis of Structural Adhesive Joints. Int J Adhesion and Adhesives,2009,13(1):33~38
    [50]H. L. Groth. Viscoelastic and Viscoplastic Stress Analysis of Adhesive Joints. Int J Adhesion and Adhesives,1990,10(3):207~218
    [51]L. G. PAUL.胶接接头在静态负载条件下的蠕变和松弛行为.中国胶粘剂,2008,17(3):56~59
    [52]美国无损检测学会.《美国无损检测手册》译审委员会译.美国无损检测手册·超声卷(下册).上海:世界图书出版公司,1996
    [53]L. Goglio, M. Rossetto. Ultrasonic Testing of Adhesive Bonds of Thin Matel Sheets. NDT & E International,2009,32(6):323~331
    [54]S. I. Rokhlin, D. Marom. Study of Adhesive Bonds Using Low-frequency Obliquely Incident Ultrasonic Waves. JA coust Soc Am,1986,80(2):585~590
    [55]A. K. Moidu, et al. Use of Focused Ultrasonic Beams to Characterize the Interfacial Region in Bonded Joints[A]. IEEE Ultrasonics Symposium,1995:775~778
    [56]U. Bork, R. E. Challis. Nondestructive Evaluation of the Adhesive Fillet Size in a T-peel Joint Using Ultrasonic Lamb Waves and a linear Network for Data Discrimination. Meas Sci Technol,2010, (6):72~84
    [57]K. Heller, L. J. Jacobs, J. Qu. Characterization of Adhesive Bond Properties Using Lamb Waves. NDT & E In-ternational,2010,33(8):555~563
    [58]N. Guo, P. Cawley. Lamb wave Reflection for Quick Nondestructive Evaluation of Large Composite Laminates. Materials Evaluation,1994,52 (3):404~411
    [59]P. Cawley, M. J. Hodson. The NDT of Adhesive Joints Using Ultrasonic Spectroscopy[A]. New York:Review of Progress in QNDE,1988,1377~1384
    [60]V. N. Bindal, T. K. Saksena, JN. Som. Studies on Evaluation of the Strength of the Adhesive-bonded Joint Using the Ultrasonic Resonance Method. Applied Acoustics, 1992,35(1):75~82
    [61]N. Guillaume, et al. Complications of Using Resonance-frequency Shifts to Detect Defects in Adhesive Joints. New York:Review of Progress in QNDE,2010,1285~1292
    [62]A. Vary. Acousto-ultrasonics:Retrospective Exhortation with Bibliography. Materials Evaluation,1991,49(5):581~584
    [63]A. Vary. Acousto-ultrasonic Characterization of Fiber Reinforced Composites. Materials Evaluation,2012,40(6):650~662
    [64]T. Kundu, A. Maji, T. Ghosh, et al. Detection of kissing bonds by Lamb waves. Ultrasonics,1998,35(8):573~580
    [65]A. Fahr, S. Lee, S. Tanary, et al. Estimation of strengthin adhesively bonded steel specimens by acoustoultrasonic technique. Materials Evaluation,1989,47(2):233~240
    [66]C. C. H. Guyott. P. Cawley. Evaluation of the cohesive properties of adhesive joints using ultrasonic spectroseopy. NDT International,1988,21(8):83~89
    [67]P. Cawley and M. J. Hodson. The NDT of adhesive joints using ultrasonic spectroscopy. Review of Progress in Quantitative Evaluation,2011,8:179~185
    [68]B. A. Barna, R. T. Allemeier, J. G. Rodriguez, et al. Aeousto-optic measurement of micromechanical resonance for adhesive bond integrity. Review of Progress in Quantitative Nondestruetive Evaluation,2009,8
    [69]K. B. Armstrong. Long-term durability in water of aluminium alloy adhesive joints bonded with epoxy adhesives. International Journal of Adhesion and Adhesives,2007, 17(2):89~105
    [70]孙强.基于CFD的车用尾气余热温差发电装置流场分析及优化.武汉理工大学硕士论文,2012
    [71]吴代华,晏石林.有拉-弯耦合效应的复合材料接头胶层应力分析.武汉工业大学报,1989,11(2):233~242
    [72]常保华等.胶粘剂厚度和弹性模量对胶焊接头应力分布的影响.材料工程,1998,5:19~22
    [73]常保华等.板厚对不同胶粘剂胶焊单搭接头中应力分布影响的数值分析.中国机械工程,1999,10(3):341~344
    [74]常保华等.搭接长度对胶焊接头应力分布的影响.机械强度,1999,21(2):109-112
    [75]常保华等.胶焊搭接接头的应力分布和疲劳行为研究.机械工程学报,2000,36(2):106~119
    [76]纪东连等.胶焊技术与胶接接头的设计分析.汽车技术,1999,3:19~22
    [77]沃西源,涂彬,夏英伟,房海军.复合材料胶接工艺和胶接接头内应力分析.航天返回与遥感,2008,29(1):63~69
    [78]殷勇,涂善东,朱进.胶焊单搭接头长时力学性能分析.航空材料学报,2011,21(3):57~62
    [79]胡以强,李培宁,琚定一.双搭接接头应力场的边界元分析.华东化工学院学报,1991,17(4):455~461
    [80]Z. Guan, A. Wu, J. Wang. Study on ASTM Shear-loaded Adhesive Lap Joints, Chinese Journal of Aeronautics,2004,17(2):79~86
    [81]李智,游敏,郑小玲,余珊.单搭接接头峰值应力数值模拟的正交法分析.中国粘接剂,2006,15(1):10~13
    [82]孙德新.同轴单搭接胶接接头应力分布的探讨.粘接,2008,29(7):24-26
    [83]孔凡荣,游敏,郑小玲,杨春梅.搭接长度对胶接接头工作应力分布影响的数值分析.机械强度,2004,26(2):213~217
    [84]曹平,游敏,刘刚,阮传文.单搭接接头承载能力与搭接长度关系定量描述.化学与粘合,2004-6:330~333
    [85]余珊,游敏,郑小玲,李智.预偏角对单搭接接头强度的影响.弹性体,2008,18(4):11~14
    [86]余海洲,游敏,郑小玲,付建科.单搭接接头胶层间隙对强度和应力的影响.机械强度,2006,28(5):775~779
    [87]孔凡荣,游敏,郑小玲,杨春梅.间隙连接对胶接接头应力分布和强度的影响.宇航材料工艺,2004,4:39~43
    [88]陈煊,李玉龙,史飞飞,赵海燕,马啸.板厚、温度和速度对单搭接胶接接头强度的影响.爆炸与冲击,2009,29(5):449~456
    [89]杜正兴,高宗战,岳珠峰.胶瘤对单搭接胶接接头应力分布影响的数值分析.机械强度,2008,30(5):839~843
    [90]赵波,吕振华.单搭接胶接接头弹性应力的二维分析方法.应用力学学报,2009,26(3):608~615
    [91]赵波,吕振华,吕毅宁.基于理论解的三种胶接接头简化有限元单元.工程力学,2010,27(7):1~10
    [92]曹蕾蕾,赵宁,郭辉,贾清健.单搭接接头温度场与热应力分布的研究.计算机仿真,2009,26(5):307~312
    [93]张晓峰.木材干燥质量对胶接界面的影响.东北林业大学博士论文,2010,62-66
    [94]张海军,陈爱国,杨庆山.梁柱盖板连接节点强度和刚度的有限元分析.科学技术与工程,2007,7(22):5954~5958
    [95]陈清琦,轩福贞,涂善东.基于数值模拟的弹性-蠕变双材料界面应力分析.机械强度,2009,31(3):497~502
    [96]胡绍海,张树京.胶接结构的声发射检测,无损检测.1994,16(6)
    [97]侯向辉等.胶接接头无损检测研究进展.粘接,1995,16(4):23~26
    [98]李宝权.细木工板结构设计的研究.吉林林业科技,1997,129(04):7~9
    [99]杜国兴.单板接头方式对层积材力学性能的影响.林业科技开发,1990,2:38~39
    [100]卢宝贤,李静辉,丁卫等.几个主要树种的蠕变特性.力学与实践,1996,18(1):36~38
    [101]C. Bengtesson. Creep of timber in different loading modes-material property aspects. World Conference on Timber Engineering,2010
    [102]刁海林,梁炳钊,徐峰.马尾松、尾赤桉木材蠕变特性常数研究.广西科学,2011, 10(2):342-348
    [103]S. M. Holzer, J R. Loferski, D A. Dillard. A Review of creep in wood:concepts relevant to develop long-term behavior predictions for wood structures. Wood and Fiber Science, 2011,21(4):376-392
    [104]P. Morlier.Creep in timeber structures:report of RILEM technical committee 112-TSC. London:E FNSPON,1995
    [105]Gindl-Altmutter, W., Miiller, U., Konnerth, J. The significance of lap-shear testing of wood adhesive bonds by means of Volkersen's shear lag model. Eur. J. Wood Prod,2012. 70:903~905
    [106]W. N. Findley, D B. Peterson. Prdiction of long time creep with ten-year creep data on four plastics, Proceedings ASTM,2011,58:841~861
    [107]P. Gressel. Prediction of long-time deformation behavior from short-term creep experients. Holz Roh-werks,1984,42:293~301
    [108]王逢瑚.木质材料流变学.哈尔滨:东北林业大学出版社,1997
    [109]徐咏兰.不同结构杨木单板层积材的蠕变和抗弯性能.木材工业,2012,16(6):10~12
    [110]刘学勇.高温蠕变行为研究.西南交通大学硕士论文,2009.
    [111]E. L. Schaffer. Influence of heat on the longitudinal creep of dry Douglas Fir//Meyer R W, Kellog R M. Structural uses of wood in adverse environments. Society of Wood Science and Technology,1982:20~52
    [112]渡边治人(张勤丽,张齐生,张彬渊译).木材应用基础.上海:上海科学技术出版社,1986
    [113]青郁,刘自强,崔广兴等.木材内腐x光电视检测研究.东北林业大学学报,1983(4):109~114
    [114]刘自强,戴澄月,韩奎焕.木材缺陷的射线无损检测.林业科学,1984(2):220~223
    [115]刘自强,乔景禄,戚大伟.木材缺陷图像的伪色彩处理.林业科学,1989(2):185-189
    [116]S. Grundberg. Scanning for InternalDefects in Logs. Lulea, Sweden:Lulea University of Technology,1994:14~19
    [117]邓志刚,邓荣斌.板材缺陷的微波检测.林业机械与木工设备,1998,(6):30~31
    [118]V. FuntB, C. BryantE. Detection of internal log defects by auto-matic interpretation of computer images. Forest Prod J,2007,37:56~62
    [119]F. W. Tayloy, FG. J. Wagner, CW. McMillin, et al. Locatingknots by Industrial tomography-A feasibility study. ForestProd J,2008,34:42~46
    [120]杨学春.基于应力波原木内部腐朽检测理论及试验的研究.哈尔滨:东北林业大学,2004
    [121]林文树.应力波与超声波在木材内部缺陷检测中的对比研究.哈尔滨:东北林业大学,2005
    [122]林文树,杨慧敏,王立海.超声波与应力波在木材内部缺陷检测中的对比研究.林业科技,2005,30(2):39-41
    [123]L. M. Henrique R. Dos. Non-detruetive evaluation of adhesive bond. British Journal of Non-destrueting Testing,2012,31(12):675~679
    [124]K. Yoshitaka, T. Mario, Y. Hiroshi. Young's modulus obtained by flexural vibration test of a wooden beam with inhomogeneity of density. J Wood Sci,2006,52:20~24
    [125]崔英颖.基于振动法进行木材应力分等和缺陷检测的研究.北京:北京林业大学,2006
    [126]C. Hu, M. Tafzal. A statistical algorithm for comparing mode shapes of vibration testing before and after damage in timbers. J Wood Sci,2006,52:348-352
    [127]X. Yang,Y. Ishimaru, I. Iida, et al. Application of modal analysisby transfer function to nondestructive testing of wood I:determination of localized defects inwood by the shape of the flexural vibration wave. J Wood Sci,2012,48:283~288
    [128]X. Yang, T. Amano, Y. Ishimaru, et al. Application ofmodal analysis by transfer function to nondestructive testing of wood II:modulus of elasticity evaluation of sections of differing quality in awooden beam by the curvature of the flexural vibration wave. J. Wood Sci,2007,49:140~144
    [129]C. C. Fook, J. Li, B. Samali, et al. Application of modal-based damage-detection method to locate and evaluate damage in timber beams. J Wood Sci,2007,53:394~400
    [130]孙建平,王逢瑚,于海鹏.小波分析与人工神经网络在木质材料无损检测中的应用.木材工业,2004,18(5):24~26
    [131]王逢瑚,孙建平.木质复合材料无损检测中振动信号的处理方法.东北林业大学学报,2004,32(1):61~63
    [132]胡英成.木质复合材料的动态特性与无损检测.哈尔滨:东北林业大学出版社,2004
    [133]张福范.复合材料层间应力.北京:高等教育出版社,1993
    [134]吴晓青,李嘉禄,焦亚男.复合材料胶接方式的设计.纺织学报,2012,24(4):372~376
    [135]周祝林,吴妙生.复合材料胶接(上).纤维复合材料,1997,1:51~55
    [136]刘君伍,黄建云.复合材料胶接接头传载能力分析.纺织高校基础科学学报,2008,21(1):113~118
    [137]王礼立.应力波基础(第2版).北京:国防工业出版社,2005
    [138]Semra lak,Giirsel Clakoglu,Ismail Aydin.Effects of Logs Steaming,Veneer Drying and Aging on the Mechanical Properties of Laminated Veneer Lumber (LVL).Building and Environment.2007,42(1):93~98
    [139]G.E. Troughton, C. Lum. Pilot Plant Evaluation of Steam-Injection Pressing for LVL and Plywood Products. Forest Products Journal,2000,50(1):25~28
    [140]徐咏兰,金菊婉.单板层积材喷蒸热压的初步探讨.林产工业,2000,27(4):22~24
    [141]Wang Brad Jianhe, Dai Chunping. Hot-pressing stress graded aspen veneer for laminated veneer lumber(LVL). Holzforschung,2005,59(1):10~17
    [142]Erol Burdurlu, Murat Kilic, Abdullah Cemil llce, Ozan Uzunkavak. The effects of ply organization and loading direction on bending strength and modulus of elasticity in laminated veneer lumber (LVL) obtained from beech (Fagus orientalis L.) and lombardy poplar (Populus nigra L.). Construction and Building Materials,2007,21(8):1720~1725
    [143]1. Aydin,S.Colak,etc..A Comparative Study on Some Physical and Mechanical Properties of Laminated Veneer Lumber (LVL) Produced from Beech (Fagus Orientalis Lipsky) and Eucalyptus (Eucalyptus Camaldulensis Dehn.) Veneers. Holz Roh Werkst Vol.2010, 62(3):218~220
    [144]吕斌,付跃进等.几种人工林树种单板层积材的生产试验及力学性能研究.林产工业.2004,31(3):13~17
    [145]贾娜,金维洙.单板层积梁弯曲破坏的试验研究与分析.中国安全科学学报.2006,16(8):135~139
    [146]Hayashi Tomoyuki, Miyatake Atsushi, Harada Masaki. Outdoor exposuretests of structural laminated veneer lumber I:Evaluation of the physical properties after six years. Journal of Wood Science,2012,48(3):69~74
    [147]Colakoglu Gursel, Aydin Ismail, Yildiz Umit C, Yildiz Sibel. Effect of boric acid treatment on mechanical properties of laminated veneer lumber. Silva Fennica,2011, 37(4):505~510
    [148]程丽美,黄慧,朱一辛.玻璃纤维增强杨木单板层积材弯曲性能的初步研究.江西林业科技,2008,6:54~62
    [149]张利.增强型单板层积材的制备与性能优化研究.东北林业大学硕士论文,2010
    [150]李金.金属网复合单板层积材的制备与力学性能研究.东北林业大学硕士论文,2012
    [151]隋仲义,林利民,由昌久,杨玲.超长单板层积材生产工艺技术研究.林业机械与木工设备,2005,33(8):39-42
    [152]赵丹,李晓秀,顾玉成,李显力.单板厚度对杨木单板层积材强度性能的影响.林业科技,2001,26(2):40~42
    [153]Hayashi Tomoyuki, Miyatake Atsush. Tensile strength properties of glued laminated wood and laminated veneer lumber with butt-joints. Journal of the Society of Materials Science,2003,52(4):341-346
    [154]Biblis, Evangelos J. Edgewise flexural properties and modulus of rigidity of different sizes of southern pine LVL and plywood. Forest Products Journal,2011,51(3):381~384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700