基于流固耦合的排气歧管热强度复合因素影响规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着发动机强化程度越来越高,其零部件的热负荷与机械负荷也在不断增大;发动机排气歧管长期处于激热、激冷交变状态下,并还承受随发动机振动而产生的附加惯性力作用,其工作环境十分恶劣。如果排气歧管局部受热过高,或者热量不能及时散发,轻则导致排气歧管局部变形,重则导致排气歧管开裂或者断裂,最后导致发动机无法正常工作。另外,发动机排气系统的流动性能和热力学性能也直接影响发动机的动力性、经济性和排放特性,因此对其研究的需求日益提高。
     排气歧管热负荷和热强度问题的解决常常是提高整个排气系统技术水平的关键,直接影响着发动机排气系统的工作可靠性和耐久性。以往的研究只是针对整体排气歧管进行热应力计算和整体结构的改进优化,并没有具体分析某一结构变化对排气歧管流场与热应力的影响规律。本文以某四缸增压汽油机排气歧管为研究对象,基于流固耦合的热分析方法,通过解决其在冷热冲击试验中发生疲劳断裂的问题来更进一步揭示不同结构对排气歧管流场与热应力的影响规律,并提出了排气歧管模拟研究中的新方法。
     本文的主要研究内容和结论如下:
     1.建立排气歧管流固耦合仿真模型。首先根据厂家提供的发动机设计参数,利用一维性能仿真软件GT-POWER对发动机进行一维仿真计算,并将其输出的结果作为CFD计算的边界条件,然后通过STARCCM+软件计算得到排气歧管内、外表面的热边界条件;再通过有限元软件ABAQUS计算整体排气歧管的温度场分布,最后以温度场为热载荷计算排气歧管的热应力分布和热变形,并与排气歧管实际裂纹处进行比较。结果表明出现裂纹处均是热应力较大且集中的区域,说明此排气歧管发生疲劳破坏是由于热应力较大所致。
     2.验证流固耦合仿真模型温度场。为全面了解排气歧管工作时的温度情况,并为仿真分析提供验证依据,建立了排气歧管温度测试试验台。利用红外热像仪测量发动机在全负荷不同转速下的排气歧管上表面温度,再通过布置热电偶的方式,测量发动机在相同工况下排气歧管内部流过的废气温度以及排气歧管外壁面温度;并将试验结果与模拟结果进行比较。结果发现温度分布趋势及范围一致,最大误差为4.3%,在允许误差范围内,说明所建立的流固耦合仿真模型较为准确,可以应用于后续的仿真研究和排气歧管开发设计中。
     3.排气歧管整体结构改进以解决疲劳断裂问题。运用所建立的流固耦合仿真计算模型对原始排气歧管结构的流场及热应力进行研究分析,发现其流动均匀性及流通性均较差,且热应力分布不均匀,导致疲劳断裂。针对此种情况,对原始结构进行了三次改进。其中,改进结构1与改进结构2虽然在流动性与热应力方面得到一些改善,但效果不明显,仍存在热应力过大导致开裂的现象;改进结构3是将排气歧管四合一结构变为四二合一结构,并经过计算得出其性能要好于前述结构,并且此模型在试验中没有发生疲劳破坏,说明此四二合一结构的排气歧管可以满足发动机的正常工作需要。
     4.局部结构变化对排气歧管影响规律的研究。在整体模型研究的基础上针对排气歧管4种局部结构分别进行研究,分析单个支管的弯曲半径不同、相交支管的相交角度不同及凹槽深度不同时的两种不同局部结构流场及热应力的变化。
     (1)对弯曲半径分别为52mm、57mm、62mm、67mm和72mm的5个支管进行仿真研究分析,得出压力损失、温度和热应力均随着弯曲半径的增大而增加的结论。
     (2)对相交角度分别为45.6°、50.5°、54.3°、57.4°和60.0°的局部支管进行研究分析。可知,随着相交角度的增大,局部支管的压力损失也相应增大,而热应力并未随其变化,但经过分析可知相交角度为50.5°和57.4°时热应力相对较小。
     (3)选取当凹槽深度分别为1mm、1.5mm、2mm、2.5mm和3mm的两种不同结构的局部支管进行研究。可知随着凹槽深度的增加,结构1与结构2的结构变化处最大热应力与热应力最大差值均逐渐增大;两种情况对比时,发现当凹槽深度≤2mm时,热应力及其最大差值是结构2大于结构1,而当凹槽深度>2mm时,只有外壁面热应力最大值和最大差值为结构1大于结构2,其余热应力大小基本上还是结构2大于结构1。所以在设计排气歧管时,尽量使凹槽深度越小越好,如两种形状均可,则尽量选择内壁面平滑的方式即结构1。
     5.进行了基于响应面法的排气歧管外形多因素优化设计。利用响应面法试验优化设计方法,以出口及支管与稳压腔相交的融合曲面滚动球半径为设计参数,运用稳态CFD流场分析,通过Design-Expert试验优化设计软件得出设计参数的影响规律,并总结得出较为理想的设计方案。优化后两个指标均有不同程度的提高,流通性和流动均匀性得到明显改善。
With the increasing work intension of engines, the components of engine are bearing higherthermal and mechanical loads. The engine exhaust manifold works with alternating shock ofheat and cold, and also bears additional inertia force due to the engine vibration. Consider tothe bad working condition, if any local area of the exhaust manifold is seriously heated, or theheat is unable to be dissipated in time, local deformation or even break of the exhaustmanifold will be caused, as a result that the engine is unable to work normally. As the flowand thermodynamic properties of the exhaust system directly influence the engine power,economy and emission, a study on the exhaust system is necessary.
     The solution method to the thermal load and intensity is usually a key technology toimprove the exhaust system, and the thermal load and intensity have a directly effect on thereliability and durability of the engine’s exhaust system. The previous studies mainly focusedon the thermal stress calculation and preliminary optimization for the entire exhaust manifold,but the relationship between the exhaust manifold performance and a certain structurechanges was never analyzed detailed. This paper mainly focuses on the exhaust manifold of aturbocharged gasoline engine, and based on fluid-solid coupling, a thermal analysis method isused to solve the problem of fatigue failure about the exhaust manifold which happens oftenin the thermal shock test. As a result, the influence rules of different structures on the flowfield and thermal stress of the exhaust manifold is indicated, and an effective method forsimulation study on the exhaust manifold is proposed.
     Main research contents and conclusions in this paper:
     1. The fluid-solid coupling simulation model of exhaust manifold is established.Firstly,calculating the performance parameters of the engine using the one-dimensional simulationsoftware GT-POWER based on the design parameters provided by the manufacturer, gettingthe inlet mass flow and temperature and outlet mass flow and temperature; use these results as CFD boundary conditions, calculating the fluid temperature and heat exchange coefficient ofboth the internal and external surface of the manifold using STARCCM+, then use thetemperature and heat exchange coefficient as thermal boundary conditions of the manifold,mapping these conditions to the finite element model of the manifold. Calculating thetemperature field of the manifold by means of the finite element software ABAQUS, andfinally use the temperature field as thermal load of the manifold, calculating the heat stressdistribution and thermal deformation. compare the calculation results with the actual cracks ofthe manifold, found that cracks are more likely formed in the area where exists strong andconcentrated thermal stress, indicating that this model is accurate, and able to offer certainpredication of fatigue failure of the exhaust manifold.
     2. To verify the temperature field of fluid-Solid coupling simulation model throughexperimental. Exhaust manifold temperature platform is set up to help us to havecomprehensive view of temperature when exhaust manifold is working and to provide testbasis. We use thermal infrared imager to monitor the temperature of exhaust manifold whenmotor is full-load working (different speed). Full-load working, speed4500r/min, the highesttemperature is658℃.We get the temperature of gas and ektexine through thermocouplearrangement. The temperature variation trend is the same with thermal infrared imager’result.We compared the test result with the simulation result and found there was no difference intemperature range (biggest error is4.3%, which is acceptable), which can prove Fluid-SolidCoupling simulation temperature field test working well and we can use it in simulationresearch and manifold design.
     3. Improving the overall structure of the exhaust manifold in order to solve the problem offatigue fracture. Using Fluid-Solid coupling simulation model established to analyze the flowfield and thermal stress of the original manifold structure. It was found that the flowuniformity and liquidity are poor, leading fatigue fracture as a result of the uneven distributionof thermal stress. In such cases, the original structure was improved three times, and the threeimproved structure of the flow field and thermal stress were all analyzed. Although, theresearch results of improve the structure1and improve the structure2in some improvementon the flow field and the distribution of thermal stress, but the improvement is not apparent,there are still some cracks caused by the excess thermal stress; This requires to do further analysis of structural improvements which based on the basic structure of the exhaustmanifold. The flow uniformity through the flow field, pressure loss and pressure lossunevenness of the improve the structure3calculated are best among the original model andthe optimized structure1and2; thermal stress and deformation on the solid outer region arealso significantly better than the previous three models; and fatigue fracture problem does notoccur in the bench test, indicating that a scheme with four-to-two-to-one meets the needs ofthe engine’s normal operating, the effect of structural improvement is significant.
     4. Research on the influence laws of the local structure changed on the exhaust manifold.On basis of the research of integrated model,Analyse these4kinds of local structurerespectively which may impact flow field and thermal stress of the exhaust manifold.Theselocal structures are bending radiusof single branch pipe,intersecting angle of cross branchpipe,wall thickness of single branch pipe and groove depth. And then conclude the influencelaw of each single factor.
     (1) Bending radius of52mm,57mm,62mm,67mm and72mmare selected to researchand analyse about these five local branch pipes. It is concluded that pressure loss, temperatureand thermal stress increase with the increasing bending radius.
     (2) A research and analysis has been done about five local branch pipes of whichintersecting angles are respectively,57mm,62mm,67mm and72mm. Pressure loss of localbranch pipes increase with the increasing intersecting angles. However thermal stress does notchange along with variation of the intersecting angles. But it concludes that thermal stress isquite small when the intersecting angles are50.5°and57.4°.
     (3) Research on the local model with different thickness of exhaust manifold wall andgroove depth ofwall. The selected wall thickness are3mm、2.5mm、2mm、1.5mmand1mm.Meanwhile the selected groove depth are respectively,1mm、1.5mm、2mm、2.5mmand3mm.It draws a conclusion that maximum thermal stress and the maximum difference ofthermal stress are both gradually increased with the decreasing wall thickness or increasinggroove depth. Comparing the two situations.,it can be found thatthermal stress and itsmaximum difference’s value of fluted model is greater than the model thickness changedwhen the value of wall thickness is greater than groove depth’s. However the outer wallthermal stress’ maximum value of the model thickness changed is the only one which greater than the model thickness changed,and the rest of the parameters of fluted model are basicallygreater than the model thickness changed when the value of wall thickness is less than groovedepth’s.So it is much better to make wall thickness large or groove depth smaller as far aspossible when designing the exhaust manifold. Try to choose the form of smooth inner wall, iftwo shapes are both available.
     5. The multi-factor optimal design of exhaust manifold outline based on the responsesurface method. In view of pre-research on the hole and the part of exhaust manifold; basedon the optimal design method developing from response surface method; taking the radius ofintersecting hook face rolling ball of exit, branch pipe and pressure stabilizing cavity, asdesign parameter; applying steady state CFD flow field analysis and Design-Expert softwareto get the influence regularity of design parameter. Finally summering a preferable designscheme. After optimization, there are different level increase of two indexes and remarkableimprovement of liquidity and flow uniformity.
引文
[1]杨勇.基于呼吸系统的排气歧管设计及有限元分析[D].西安:西安理工大学,2010
    [2] J.Galindo,J.M.Lujan,J.R.Serrano,et al.Design of an exhaust manifold to improve transientperformance of a high-speed turbocharged diesel engine[J]. Experimental Thermal andFluid Science,2004,28(8):863–875
    [3] G.C.Mavropoulos. Experimental study of the interactions between long and short-termunsteady heat transfer responses on the in-cylinder and exhaust manifold diesel enginesurfaces[J]. Applied Energy,2011,88(3):867–881
    [4]刘志勇,夏毅敏,戴湘利.排气歧管开裂故障分析[J].实验力学,2007,22(5):500-504
    [5]傅秋阳.某发动机排气歧管流固耦合分析的应用[J].合肥工业大学学报(自然科学版),2009,32(增刊),175-177
    [6]王超.某高镍铸铁排气歧管低周热疲劳性能研究[D].武汉:武汉理工大学,2013
    [7] Samson Yoon, K.O.Lee, S.B.Lee, et al. Thermal Stress and Fatigue Analysis of ExhaustManifold[J], Key Engineering Material,2004,261-263:1203-1208.
    [8]袁守利,谢亮,刘志恩.汽车排气系统传热与热负荷研究[J].武汉理工大学学报(信息与管理工程版),2011(3):407-410.
    [9] Mika Nuutinen,Ossi Kaario,Martti Larmi. Conjugate heat transfer in CI engine CFDsimulations[C]. SAE Paper2008-01-0973
    [10] Yang Wan li, Chen Yan, Zheng Xiao lin. Simulat ion of coupling heat transfer of component system in ICE combusion chamber [J]. European Journal of Mechanical and Enironme tal Engineering,2003,48(4):219-224.
    [11] Liu Yong, ReitzR.D.,Modeling of heat conduction with in chamber walls formultidimensional internal combust ion engine simulations [J]. International Journal ofHeat and Mass Transfer,1998,41(6/7):859-869.
    [12] Shi Long Xu, Yan Shi, Shou Cheng Li. Heat Transfer and Thermal Load Analysis ofExhaust Manifold[J].Applied Mechanics and Materials,2012,226-228:2240-2244.
    [13]常思勤.汽车发动机气道流动模拟的数学模型与数值算法[J].武汉汽车工业学学报,1996,18(4):1-5.
    [14]高娟利.发动机排气歧管的疲劳性能研究[D].西安:西安理工大学.2009
    [15] A.Benoit,M.H.Maitournam.Cyclic behavior of structures under thermomechanicalloadings Applicitaion to exhaust manifolds[J].International Journal of Fatigue,2012,38:65-74.
    [16]张翠平.495G型汽油机进排气歧管的设计[J].农业机械学报,2000,31(5):81-84
    [17]王立新,刘斐,潘雪伟.发动机排气歧管断裂分析及其设计改进[J].上海汽车,2007(12):15-18
    [18] Fu Dong, Huang Dui, Juma Ahmed, et al. Numerical Simulation of Thermal Stress for aLiquid-Cooled Exhaust Manifold[J].Journal of Thermal Science and EngineeringApplications,2009, Vol.l(No.3):31010-31019.
    [19]李湘华,张小姣.柴油机排气歧管流场分析与结构优化[J].柴油机,2006,28(4):25-27
    [20]范晓梅,许,勇,杨群立.发动机排气压力波性能仿真分析[J].计算机仿真,2010,27(2):282-285
    [21]韩文艳,许思传,邓潇.涡轮特性曲线优化与缸内直喷汽油机排气歧管匹配研究[J].汽车技术,2012,(2):19-22
    [22]包维霞,王立新,黄佐华.排气歧管形式和加工工艺对汽油机性能影响的研究[J].内燃机工程,2012,33(3):64-68
    [23]赵阳.基于仿生的汽车排气歧管温度场及振动特性分析[D].西安:西安理工大学,2009.
    [24] J Wollin,S F Benjamin.A study of the flow performance of ceramic contoured substratesfor automotive exhaust catalyst system.[C].SAE Paper1999-01-3626
    [25]杨明慧.基于有限元分析的发动机排气歧管优化设计[D].西安:长安大学,2009.
    [26]齐洋.高镍球铁耐热性能与排气歧管数值模拟研究[D].长春:吉林大学,2010
    [27] Pieere-Olivier Santacreu, Christian Simon, Arthur Coleman. Thermomechanical FatigueBehavior of Stainless Steel Grades for Automotive Exhaust Manifol Applications [J].Thermome chanical Fatigue Behavior of Materials,2002,4:227-239.
    [28]廉贞松,杨云龙,曹占义.汽车排气歧管用球墨铸铁的热疲劳性研究[J].铸造技术,2011,32(11):1517-1519
    [29] Yun-long Yang,zhan-yi Cao,zhen-song Lian and Hai-xia Yu.AStudy on Micfostructunof Ductile Ni-Resist Cast Iron for Exhaust ManIfolds and Mechanical Property at thecondition ofAlternative Thermal Cycles[J].Advanced Materials Reseafch,201l,(194-196):95-99.
    [30]崔晓鹏,刘海峰,王成刚.汽车用排气歧管材料的应用现状及发展方向[J].铸造,2008,57(10):1001-1004
    [31]张旭升,颜伏伍,袁伟.汽油机歧管式催化转化器的设计研究[J].汽车工程,2008,30(3):264-267
    [32]陈礼.轿车发动机排气歧管总成优化与硏究[D].广州:广东工业大学,2012.
    [33]姚春德,傅晓光,纪兆琳.进排气系统的阻力对车用柴油机性能影响的研究[J].小型内燃机与摩托车,2001,30(5):5-7.
    [34] Benson R.S. The Thermodynamics and Gas Dynamics of Internal Combustion Engine
    [R].London: Oxford Clarebdon Press,1982,5,100-105.
    [35] M.D.Bassett, R.J.Pearson and D.E.Winterbone, R.Sierens. Steady-Flow Loss-CoefficientEstimation for Exhaust Manifold Pulse-Converter Type Junctions[C]. SAEPaper990213
    [36] Grauer.Diana.K., Chapman, Kirby.S. Development of an exhaust manifold designoptimization forcylinder scavenging and turbocharger performance[C].ASME InternCombust Engine Div Publlce,2010:55-63.
    [37] Liu Z, Benjamin S F, Roberts C A, et al. A Coupled1D/3D Simulation for the FlowBehaviour inside a Close-Coupled Catalytic Converter [C]. SAE Paper2003-01-1875
    [38]陆小明,高李洪,冯春晃.利用进排气系统调谐改善EQ6100汽油机性能[J].内燃机工程,1995,16(3):24-28
    [39]李湘华.某四缸柴油机排气歧管开裂故障分析[J].柴油机,2013,35(2):31-34
    [40]马帅营,陈传举,王雅丽.发动机排气歧管稳流试验研究[J]内燃机与动力置,2008,(5):11-15
    [41]马帅营.排气歧管流动阻力测试系统研制[D].洛阳:河南科技大学,2009.
    [42]陈征,张波,尧命发.基于数值模拟的排气歧管优化策略[J].内燃机工程,2009,30(3):51-56
    [43]周毅,黄文凯,陈青华.基于BOOST软件对某款汽油机排气歧管的优化[J].汽车技术,2010,(4):8-11
    [44]叶年业,黄勇,夏志豪.排气歧管结构对发动机性能影响研究[J].内燃机与动力装置,2012,132(12):13-16
    [45]周培.多面体融合与多管道融合研究及应用[D].上海:上海交通大学,2012.
    [46]马志豪,陈孝培,袁中营. GW15汽油机排气歧管的优化设计[J].河南科技大学学报(自然科学版),2013,34(4):40-44
    [47]龚金科,官庆武.4缸柴油机排气歧管分析与设计的研究术[J].汽车工程,2013,35(2):354-357
    [48]李迎,陈红岩,俞小莉.流固耦合仿真技术在发动机稳态传热计算中的应用[J].内燃机工程,2007,28(4):19-22
    [49]白敏丽,吕继组,丁铁新.六缸柴油机冷却系统流动与传热的数值模拟研究[J].内燃机报,2004,22,(6):525-531
    [50] Eunhyun Lee, Beomkeun Kim, Jong Sik Park.. Thermal deformation analysis of exhaustmanifold for turbo diesel engine. Key Engineering Materials,2006,326(1):541-544.
    [51] Abhijit Londhe,Vivek Yadav,Aditya Mulemane. A multi-disciplinary approach forevaluating strength of engine cylinder head and crankcase assembly underthermoStructural loads[C]. SAE Paper2009-01-0819
    [52]苏培刚.Q475发动机缸体的传热和强度研究[D].重庆:重庆大学,2005
    [53] R.M. Hazime,S. H. Dropps,D. H. Anderson. Transient Non-Linear FEAand TMF LifeEstimates of Cast Exhaust Manifolds[C]. SAEPaper2003-01-0918.
    [54] Tiainen J,Kallio I,Leino A,et al. Heat transfer study of a high power density dieselengine[C]. SAE Paper2004-01-2962
    [55] Yasar Deger, Burkhard Simperl, Luis P. Jimenez. Coupled CFD-FE-Analysis for theExhaust Manifold of a Diesel Engine,2004ABAQUS Users′Conferenc.
    [56] Fan Qin Yin, KubaMasayuk, iNakanishiJunichi. Coupled Analysis of Thermal Flowand Thermal Stress of an Engine Exhaust Manifold [C]. SAE Paper2004-01-1345
    [57] Zhang Xiaogang, Lakshmikanth Meda, Mathias Keck. Numerical study on skintemperature and heat loss of vehicle exhaust system [J], SAE Paper,2005-01-1622.
    [58] Seifert,Thomas,Riedel,Hermann,Pramhas,Gueniher.Lifetime models for high temperaturecomponents[J].Auto Technology,2007(7):34-38
    [59] Watanabe,Yoshimasa,Shiratani,Kazuhiko,Iwanaga,Shogo.Thermal fatigue life predictionFor stainless exhaustmanifold[J].Engine Component Technology,2007(1317):147-152
    [60] Fu.D,Huang.D,Juraa.A,etal. Numerical Simulation of Thermal Stress for aLiquid-Cooled Exhaust Manifold[J], Journal of Thermal Science and EngineeringApplications,2009
    [61]李红庆,杨万里,刘国庆等.内燃机排气歧管热应力分析[J].内燃机工程,2005,26(5):81-84
    [62]杨万里,许敏,刘国庆.发动机排气歧管热负荷数值模拟[J].华中科技大学学报(自然科学版),2006,34(12):98-100
    [63]赵阳.基于仿生的汽车排气歧管温度场及振动特性分析[D].西安:西安理工大学,2009
    [64]杨晓,郭涛.CFD_FEA耦合计算分析发动机排气歧管热负荷[J].装备制造技术,2010,10:60-62
    [65]董非,范秦寅,姜树李.内燃机流-固-热耦合数值模拟的研究[J].汽车工程.2009,35(2):147-150
    [66]邓帮林,刘敬平,杨靖等.基于双向流固耦合的汽油机排气歧管热应力分析[J].内燃机学报,2011,29(6):549-554
    [67]曹元福,杨振宇,柯妍.排气歧管热负荷仿真与试验研究[J].汽车工程,2012,34(5):418-422
    [68]宗德媛.汽油机歧管式催化转化器动态特性分析[D].重庆:重庆大学,2015.
    [69]徐世龙.某汽油机排气歧管的热负荷研究[D].南京:南京理工大学,2013.
    [70] Eads.K,Haghighi.K,Kim.H.J.Finite element optimization of an exhaust system[C].SAEPaper2000-01-0117.
    [71] Nis Miller,Svend Gade.Operational Modal Analysis on a Passenger Car ExhaustSystem[C]. SAEPaper2002-01-3574.
    [72]吴永桥,鄢奉林.汽车排气总管的静力分析和模态分析[J].武汉汽车工业大学,2000,22(3):10-13
    [73]赵金斗,邓兆祥,褚志刚.排气歧管罩动态特性分析与结构改进设计[J].重庆大学(自然科学版),2005,28(9):19-22
    [74]邢素芳,王现荣,王超等.发动机排气系统振动分析[J].河北工业大学学报,2005,34(5):109-111.
    [75]徐献阳.车辆排气系统的振动模态分析及优化[D].上海:上海交通大学,2007
    [76]董理.汽油机紧藕合式排气歧管振动特性研究[D].哈尔滨:哈尔滨工程大学,2008
    [77]李松波.车辆排气系统振动建模与动力学特性研究[D].上海:上海交通大学,2008
    [78]刘志恩,田静,颜伏伍.汽车排气系统悬挂点布置研究[J].武汉理工大学学报(信息与管理工程版),2010,32(6):950-953
    [79]陈东兴.车用发动机排气歧管总成旳疲劳可靠性优化研究[D].广州:广东工业大学,2013.
    [80]李强.基于响应面法的车门抗撞性优化设计[D].长春:吉林大学,2011
    [81] Wong F.S. Slope reliability and response surface method[J]. Journal of GeotechnicalEngineering Division. ASCE,1985,111(1):32-53.
    [82] Schueller G I, Stix R. Acritical appraisal of methods to determine failure probabilities[J].Structural Safety,1987,4(4):193-209.
    [83] Faravelli L. Response surface approach for reliability analysis[J]. Journal of EngineeringMechanics, ASCE,1989,115(12):2763-2781.
    [84] Rajashekhar M R, Ellingwood B R. Anew look at the response surface approach forReliability analysis[J]. Structural Safety,1993,10(12):205-220.
    [85] Kim S H, Na S N. Response surface method using vector projected sampling points[J].Structural Safety,1997,14(1):3-19.
    [86] Kanazaki.M, Morikaw.M, Obavashi.S, et al. Multiobjective design optimization ofmerging configuration for an exhaust manifold of a car engine[C].Springer Verlag.2002:45-51.
    [87]朱晴,袁兆成,马家义等.基于流固耦合的某增压汽油机排气歧管热分析[J].汽车工程,2013,35(12):1134-1138
    [88]万婷婷.歧管式催化转换器的应力分析与结构优化[D].无锡:江南大学,2011.
    [89] Abu-Khiran.E,Douglas.R.,McCullough.G. Pressure Loss Characteristics in CatalyticConverters[C].SAE Paper2003-32-0061
    [90]李龙超,许涛.某柴油机排气歧管的热固耦合分析[J].汽车工程师,2011,(3):55-57
    [91]陈纯,马力,邓基峰.排气歧管总成热应力分析及温度场试验验证[J].研究与开发,2012,(10):66-69
    [92]张群,汝彬,韩业鹏.发动机排气管流-固-热强耦合分析[J].计算机辅助功能2013,22(3):34-38
    [93]陈勇.某柴油机排气管热应力计算分析[J].建设机械技术与管理,2013,(4)103-106
    [94] Ioanou M,Gurney D,Downing J.The application of design of experiments and1-Dsimulation to create a rapid concept optimisation tool for14engines[C].SAE2005-01-0226
    [95]陆炜.发动机冷却水套耦合仿真方法研究[D].长春:吉林大学,2012
    [96]周龙保,刘巽俊,高宗英.内燃机学[M].北京:机械工业出版社,2005
    [97]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [98]李明.STAR-CCM+与流场计算[M].北京:机械工业出版社,2011.
    [99]李雪妮.发动机排气歧管非稳态传热串行耦合分析方法研究[D].武汉:武汉理工大学,2013.
    [100]郑浩.水平管道内氮浆的流动传热特性研究[D].杭州:浙江大学,2010
    [101]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [102]杨世铭.传热学[M].北京:高等教育出版社,1989.
    [103]陈园明,许涛.CFD技术在发动机排气歧管设计中的应用[J].内燃机.2011,(4):30-32
    [104]郑美茹.基于CFD的汽车排气歧管流场分析[J].内燃机与配件,2010,(11):11-14
    [105]孙立旺,朱清山,侯献军.基于直接流固耦合的发动机排气歧管热应力分析[J].河南农业大学学报,2012,46(1):81-84
    [106]孙立旺.歧管化转化器的结构设计及优化[D].武汉:武汉理工大学,2012.
    [107]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [108]郭立新,韩颖,惠涵.CFD-FE耦合计算分析某汽油机排气歧管热负荷[J].现代车用动力,2009,134(2):10-14
    [109]郭立新,杨海涛,夏兴兰.某汽油机气缸盖热负荷分析[J].现代车用动力,2006,(4):16-20
    [110]李利.汽油机不锈钢排气歧管的热负荷分析与优化[D]武汉:武汉理工大学,2012.
    [111]刘晓宇.汽车排气歧管设计理论研究[D].武汉:武汉理工大学,2013.
    [112] Mamiya Nao isa, Masuda Takafum, iNoda Yasush i.Thermal Fatigue Life of ExhaustManifolds Predicted by Simulation [C]. SAE Paper2002-01-0854.
    [113]陈海波.汽油机固_液耦合及沸腾传热研究[D].长春:吉林大学,2009.
    [114] Yao S L.Research onrelationship between exhaust temperature and exhaust manifold ofdiesel engine [J] Chinese Internal Combustion Engine Engineering,1994,15(3):1-6.
    [115] David C, Pascal C. Fluid dynamic modeling of junctions internal combustion engineinlet and exhaust systems [J]. Journal of Thermal Science,2010(19):410-418
    [116] Andreas Lang, Kay Ellinghaus. Using CFD to calculate transient thermal load onexhaust manifolds [J]. MTZ worldwide,2004(5):16-18
    [117]王素梅,董沛存.柴油机排气歧管的CFD数值模拟分析[J].沈阳理工大学学报,2012,31(4):90-94
    [118] Weltens.H, Bressler.H, Terres.F, et al.Opti misation of catalytic converter gas f lowdstribution by CFD prediction[C]. SAE Paper930780
    [119] Wend and.D.W, Matthes.W.R. Visualization of automotive catalytic converter internalflow[C]. SAE Paper861554
    [120]姬芬竹,谷可帅.汽油机进气歧管流通性和均匀性数值模拟[J].北京航空航天大学学报,2013
    [121] Klass.R., Kuhn.B. Fillet and surface intersections defined by rolling balls[J]. ComputerAided Geometric Design,1992,9(3):185-193.
    [122] Farouki.R.A.,Sverrisson.R. Approximation of rolling-ball blends for free-formparametric surfaces[J]. Computer-Aided Design,1996,28(11):871-878.
    [123] Kos, G., Martin, R. R., Varady, T. Methods to recover constant radius rolling ball blendsin reverse engineering[J]. Computer Aided Geometric Design,1999,17(2):127-160.
    [124]丁宇明.管道相交处连接曲面的几何分析[J].工程图学学报,1987,8:1-12
    [125]林大钧.管道间过渡带曲面的构造与分析[J].华东理工大学学报,1997,23(4):435-440
    [126]熊俊涛,乔志德,韩忠华.基于响应面法的跨声速机翼气动优化设计[J].航空学报,2006,27(3):399-402.
    [127]段巍.汽轮机叶片强度可靠性分析的响应面方法研究[D].北京:华北电力大学,2009.
    [128]隋允康,宇慧平.响应面方法的改进及其对工程优化的应用[M].北京:科学出版社,2011.
    [129]戴伟.基于响应面方法的立管结构可靠性研究[D].哈尔滨:哈尔滨工程大学,2012.
    [130]臧献国.基于模态振型和响应面法的结构声学性能优化设计[D].长沙:湖南大学,2010.
    [131]徐向宏,何明珠.试验设计与Design-Expert、SPSS应用[M].北京:科学出版社,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700