光子材料固体激光技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子材料的种类丰富,它包括了非线性光学材料、激光材料和光学半导体材料等等。这些光子材料都具有优良的光学特性,在非线性光学、固体激光、集成光学和半导体光学领域发挥着重要的作用。碳化硅晶体和铌酸锂晶体是常见的光子材料,碳化硅晶体具有高热导率的性质,同时在中红外波段碳化硅晶体有良好的光学性质,这些特性让碳化硅晶体在固体激光中既可以充当热沉积材料,也可以作为通光窗口,为未来激光器的发展提供新的方向。掺杂稀土元素的铌酸锂晶体可以产生激光振荡和放大,并在同一块晶体中展现出激光特性、非线性光学特性和电光效应,让其在激光领域、集成光学和非线性光学中有重要的应用前景。因此,研究碳化硅晶体和铌酸锂晶体在固体激光中的应用,可以实现集成化、紧凑化的激光器。
     第一章,介绍了碳化硅晶体、铌酸锂晶体和金刚石这三种常用光子学材料的物理性质、热学性质和光学性质;在本章的第二部分,我们介绍了这三种材料在固体激光领域的研究状况和应用现状。着重介绍了凭借碳化硅晶体实现的优良热管理,以及掺杂稀土元素铌酸锂晶体的重要用途等;
     第二章,研究了风冷冷却条件下,以碳化硅晶体为包层的掺钕钒酸钇平板波导激光器的热效应和激光特性。首先通过理论模拟的方法,分析了碳化硅晶体作为热沉积装置时激光激活介质内部的温度分布情况和热致应力分布情况。模拟结果显示,采用碳化硅晶体作为热沉可以实现优良的热管理,为激光的产生提供了基础条件;在实验中得到了百瓦级激光输出,通过实验验证了碳化硅包层材料对激光系统热管理起到的重要作用,实现了碳化硅晶体在固体激光中的应用。
     第三章,设计了碳化硅晶片和掺钕钒酸钇复合结构劈裂片状激光器的模型,研究了不采用任何主动冷却设备时的激光特性。采用液体毛细键合的方式将碳化硅晶片和掺钕钒酸钇激活介质片键合,通过数值模拟的方法研究了复合结构的稳定性,并分析了复合结构的温度分布和热应力分布。得到的结果显示,液体毛细键合层在激光最高功率运行时十分稳定。同时,通过实验证明了数值模拟的正确性,并得到了稳定的激光输出,实现了高效、轻便的自冷却激光器。
     第四章,研究了高掺杂浓度铥镁共掺铌酸锂晶体的生长,以及其吸收光谱和荧光发射光谱特性,发现铥镁共掺铌酸锂晶体有较宽的荧光发射谱线。相比于其他掺铥激光介质,铥镁共掺铌酸锂晶体具有较大的受激发射截面。在激光实验中,我们获得了短2-μm连续激光输出,获得了多波长的激光输出。实现了首次在铥镁铌酸锂晶体中激光的瓦级输出,比之前同类报道的输出功率高四个数量级。输出激光也具有良好的光束质量。同时,定量分析了铥镁铌酸锂晶体的光折变效应,没有在实验中发现光折变效应。
Photonic material is characterized by rich variety, such as nonlinear optics material, lasermaterial, semiconductor optical material and so on. All of these photonic materials haveexcellent optical properties, and have extensive applications in nonlinear optics, solid-statelaser, integrated optics and semiconductor optics. Silicon carbide (SiC) and lithiumniobate (LiNbO3) are typical photonic materials. SiC has high thermal conductivity, aswell as processes excellent optical properties in mid-infrared band. Due to these properties,SiC can be adopted as heat sink material in solid-state laser, and as laser transmissionwindow. It can also give a new direction for the future development of laser. LiNbO3crystal doped with rare-earth ions can generate laser oscillation and amplification, inwhich laser property, nonlinear optics property and electro-optics effect can be integratedwithin just one crystal. It can be well used in solid-state laser, integrated optics andnonlinear optics. Therefore, the study on SiC and LiNbO3in the application of solid-statelaser can realize integrated and compact laser.
     In the first section, we introduce the SiC crystal, LiNbO3crystal and diamond, whichare typical high refractive optical materials, including physical, thermal and opticalproperties. In the second part of this section, we introduce the research status andapplication situation in solid-state laser in detail. Furthermore, we focus on the excellentmanagement which is achieved depending on the SiC, as well as the important function ofLiNbO3crystal doped with rare-earth ions in solid-state laser.
     In the second section, we study the thermal effect and laser performance of Nd:YVO4slab laser cooled by air, which is clamped by two SiC claddings. By numerical simulation, we analyze the temperature distributions and thermal induced stress distributions in laseractive slab and SiC claddings. The numerical simulation results show that the excellentthermal management can be gotten by utilizing the SiC slabs as heat sink claddings, itplays fundamental roles in laser operation. In experiment, we get100W class laser outputpower. It demonstrates that silicon carbide plays important role in thermal management,and can be used in solid-state laser engineering.
     In the third section, we design a compact split disk laser with SiC wafer and Nd:YVO4disks, and research the laser performance without any active cooling. The composite ofSiC wafer and Nd:YVO4disks are bonded via liquid capillarity. By numerical simulation,we analyze the firmness of the composite under different conditions, and the temperatureand thermal induced stress distributions in different region of the composite. Thenumerical simulation results show that the bonding layer of composite is very firm duringlaser operation. Experimentally, the results show that the numerical simulations areaccurate and in a good agreement with the numerical thermal analysis. Stable laser outputpower is obtained in experiment, and an efficient and compact self-cooling laser can berealized by this novel design.
     In the fourth section, we research the growth of Tm,Mg:LiNbO3crystal with highTm3+ions doping concentration, as well as the absorption spectrum and fluorescenceemission spectrum of the crystal. It is found that the Tm,Mg:LiNbO3crystal has broaderfluorescence emission spectrum. Comparing with other Tm3+-doped laser active crystal,Tm,Mg:LiNbO3crystal has bigger stimulated emission cross section. Experimentally, weobtain short2micron output laser, and realize multi-wavelength laser operation by tuningexperiment. To the best of our knowledge, this is the first time to achieve watt-level laseroperation in Tm,Mg:LiNbO3crystal and the output power is four orders of magnitudehigher than that previously reported in Tm-doped LiNbO3crystal. The output laser hasexcellent beam quality. In addition, quantitative analysis about the long-termphotorefractive effect is also provided, no photorefractive effect appear in laser experiment.
引文
[1]. J. L. Jackel, C. E. Rice, and J. J. Veselka,“Proton exchange for high-indexwaveguides in LiNbO3,” Appl. Phys. Lett.41,607-608(1982).
    [2]. G.Y. Zhou, and M. Gu,“Direct optical fabrication of three-dimensional photoniccrystals in a high refractive index LiNbO3crystal,” Opt. Lett.31,2783-2785(2006).
    [3]. K. Paivasaari, V.K. Tikhomirov, and J. Turunen,“High refractive index chalcogenideglass for photonic crystal applications,” Opt. Express15,2336-2340(2007).
    [4]. R. Ahuja, S.D. Ferreira, C. Persson,,J. M. Osorio-Guillen, I. Pepe, K. Jarrendahl, O. P.A. Lindquist, N. V. Edwards, Q. Wahab, and B. Johansson,“Optical properties of4H-SiC,” J. Appl. Phys.91,2099-2103(2002).
    [5]. Y. Goldberg, M.E. Levinshtein, and S.L. Rumyantsev, Properties of AdvancedSemiconductorMaterials GaN, AlN, SiC, BN, SiC, SiGe. John Wiley&Sons, Inc.,New York,2001,93-148.
    [6]. J. E. Field, The Properties of Diamond, Academic Press, London,1979. ch2.
    [7]. A. Dargys, and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs andInP, Science and Encyclopedia Publishers, Vilnius,1994, ch3and ch6.
    [8]. G. E. Peterson, A. A. Ballman, P. V. Lenzo, and P. M. Bridenbaugh,“Electro-opticproperties of LiNbO3” Appl. Phys. Lett.5,62-64(1964).
    [9]. M.H.Hobgood,, R.C. Glass, G. Augustine, R.H. Hopkins, J. Jenny, M. Skowronski,W.C. Mitchel, and M. Roth,“Semi-insulating6H-SiC grown by physical vaportransport,” Appl. Phys. Lett.66,1364-1366(1995).
    [10]. A.A. Lebedev,“Deep level centers in silicon carbide: A review,” Semiconductors33,107-130(1999).
    [11].G.L. Harris, Properties of Silicon Carbide, the Institution of Electrical Engineers,London,1995, introduction.
    [12].K. J rrendahl, and R. Davis,“Material Properties and Characterization of SiC,”Semiconductors and Semimetals52,2-15(1998).
    [13].S.E. Saddow, and A. Agarwal, Advances in Silicon Carbide Processing andApplications, Artech House, Inc., London,2004, cha1.
    [14].Vodakov, A. Yu, and E.N. Mokhov, Silicon Carbide, Univ. of South Carolina Press,Columbia,1974, pp508.
    [15].W. J.Choyke, and G. Pensl,“Physical Properties of SiC,” Materials Research SocietyBulletin22,25-29(1997).
    [16].A.Taylor, R.M. Jones, Silicon Carbide-A High Temperature Semiconductor,Pergamon Press, Oxford, London, New York, Paris,1960, cha3.
    [17]. S. Kobayashi,“Energy Band Structure of the Carborundum SiC Crystal,” J Phys. Soc.Jpn.11,175-176(1956).
    [18].R.W.G. Wyckoff, Crystal Structures, Interscience, New York,1965, pp113.
    [19].W. J. Choyke, D. R. Hamilton, and Lyle Patrick,“Optical Properties of Cubic SiC:Luminescence of Nitrogen-Exciton Complexes, and Interband Absorption,” Phys.Rev.133, A1163–A1166(1964).
    [20]. N.W. Thibault,“Morphological and structural crystallography and optical propertiesof silicon carbide (SiC),” Am. Mineral.29,327-329(1944).
    [21].Lyle Patrick, D. R. Hamilton, and W. J. Choyke,“Growth, Luminescence, SelectionRules, and Lattice Sums of SiC with Wurtzite Structure,” Phys. Rev.143,526-536(1966).
    [22].N.T. Son, W.M. Chen, O. Kordina, A.O. Konstantinov, B. Monemar, E. Janzen, D.M.Hnfman D Volm M. Drechsler, and R.K. Mever,“Electron effective masses in4HSiC,” Appl. Phys. Lett.66,1074-1076(1995).
    [23].N. T. Son, C. Hallin, and E. Janzén,“Hole effective masses in6H-SiC from opticallydetected cyclotron resonance,” Phys. Rev. B66,045304-045304(2002).
    [24].Kern, E.L., D.W. Hamil, H.W. Deam, and H.D. Sheets, Mater. Res. Bull., Proceedingsof the International Conference on Silicon Carbide, University Park, Pennsylvania,USA, October20-231968, Special Issue4, S25-S32(1969).
    [25].D. Morelli, J. Hermans, C. Beetz, W.S. Woo, G.L. Harris, and C. Taylor,“SiliconCarbide and Related Materials Eds. Spencer,” Institute of Physics Conference Series.137,313-316(1993).
    [26].O.Nilsson, H. Mehling, R. Horn, J. Fricke, R. Hofmann, S.G. Muller, R. Eckstein, D.Hofmann,“Determination of the thermal diffusivity and conductivity ofmonocrystalline silicon carbide (300-2300K),” High Temperatures-High Pressures29,73-79(1997).
    [27].G.A. Slack,“Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, andDiamond,” J. Appl. Phys.35,3460-3466(1964).
    [28].E. A. Burgemeister, W. von Muench, and E. Pettenpaul,“Thermal conductivity andelectrical properties of6H silicon carbide,” J. Appl. Phys.50,5790-5794(1979).
    [29].L.J. Tong, M.Mehregany, and L.G. Matus,“Mechanical properties of3C siliconcarbide,” Appl. Phys. Lett.60,2992-2994(1992).
    [30].C. M. Su, Manfred Wuttig, A. Fekade, and M. Spencer,“Elastic and anelasticproperties of chemical vapor deposited epitaxial3C-SiC,” J. Appl. Phys.77,5611-5616(1995).
    [31].G. Handbuch, and D.A. Chemie, Silicium,8th edition, Verlag Chemie,Weinheim,1959.
    [32].P.T.B. Shaffer,“Refractive Index, Dispersion, and Birefringence of Silicon CarbidePolytypes,” Applied Optics10,1034-1036(1971).
    [33].P.T.B. Schaffer, and R.G. Naum,“Refractive Index and Dispersion of Beta SiliconCarbide,” J. Opt. Soc. Am.59,1498(1969).
    [34].孙慷等,压电学(上册),国防工业出版社,北京,1984.
    [35].M. Lawrence,“Lithium niobate integrated optics,” Rep. Prog. Phys.56,363-429(1993).
    [36].A. Rauber, Chemistry and physics of lithium niobate, Current Topics in MaterialsScience, Amsterdam,1978, pp481.
    [37].J. Rams, and J.M. Cabrera,“Nonlinear optical efficient LiNbO3waveguides protonexchanged in benzoic acid vapor: Effect of the vapor pressure,” J. Appl. Phys.85,1322-1328(1999).
    [38].R. Ramponi, M. Marangoni, and R. Osellame,“Dispersion of the ordinaryrefractive-index change in a proton-exchanged LiNbO3waveguide,” Appl. Phys.Lett.78,2098-2100(2001).
    [39].李铭华,杨春晖,徐玉恒等,光折变晶体材料科学导论,科学出版社,北京,2003, pp163.
    [40].杨春晖,孙亮,冷雪松,徐超,范叶霞,徐玉恒等,光折变非线性光学材料:铌酸锂晶体,科学出版社,北京,2009,pp2.
    [41].K. Nassau, H.J. Levinstein, and G.M. Loiacono,“Ferroelectric lithium niobate.1.Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids27,983-988(1966).
    [42].S.C. Abrahams, J.M. Reddy, and J.L. Bernstein,“Ferroelectric lithium niobate.3.Single crystal X-ray diffraction study at24°C,” J. Phys. Chem. Solids27,997-1012(1966).
    [43].S.C. Abrahams, J.M. Reddy, and J.L. Bernstein,“Ferroelectric lithium niobate.4.Single crystal neutron diffraction study at24°C,” J. Phys. Chem. Solids27,1013-1018(1966).
    [44].S.C. Abrahams, J.M. Reddy, and J.L. Bernstein,“Ferroelectric lithium niobate.5.Single crystal neutron diffraction study at24°C,” J. Phys. Chem. Solids27,1019-1026(1966).
    [45].K.K.Wong, Properties of Lithium Niobate, IET, London,2002, pp8.
    [46].Y. Kusminov, Lithium Niobate Crystals, Cambridge International Science, London,1997, pp26.
    [47].G.D. Boyd, R.C. Miller, K. Nassau, W.L. Bond, and A. Savage,“LiNbO3: AnEfficient Phase Matchable Nonlinear Optical Material,” Appl. Phys. Lett.5,234-236(1964).
    [48].S.D. Smith, H.D. Riccius, and R.P. Edwin,“Refractive indices of lithium niobate,”Opt. Commun.17,332-335(1976).
    [49].J.D. Axe, and D.F. O’Kane,“Infrared dielectric dispersion of LiNbO3,”Appl. Phys.Lett.9,58-60(1966).
    [50].R. Eckardt, H. Masuda, Y.X. Fan, and R.L. Byer,“Absolute and relative nonlinearoptical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measuredby phase-matched second-harmonic generation,” IEEE J. Quantum Electron.26,922-933(1990).
    [51].W. Hershey, The Book of Diamonds, Hearthside Press, New York,1940, pp28.
    [52].Christoph Wild, CVD Diamond Properties and Useful Formula, Fraunhofer IAF,Freiburg,2008.
    [53].H. O. Pierson, Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing,Properties and Applications, NOYES PUBLICATIONS, Park Ridge, New Jersey,1994, ch11.
    [54].K.E. Spear,“Diamond-Ceramic Coating of the Future,” J. Am. Ceram. Soc.72171-191(1989)
    [55].D. F. Eggers, and G.D. Halsey, Physical Chemistry, John Wiley&Sons, New York,1964.
    [56].C.F. Gardinier,“Physical Properties of Superabrasives,” Ceramic Bulletin,671006-1009(1988).
    [57].J.B. Dawson, The Properties of Diamond, Academic Press, London,1979, pp.539.
    [58].R. Berman, The Properties of Diamond, Academic Press, London,1979, pp.6.
    [59].J.E. Field, The Properties of Diamond, Academic Press, London,1979, pp.282.
    [60].J. Davies, Chemistry and Physics of Carbon, Taylor&Francis, London,1977, pp.1-143.
    [61].D.F. Edwards, and E. Ochoa,“Infrared refractive index of diamond,” J. Opt. Soc.Amer.71,607-608(1981).
    [62].J. Wilks, and E. Wilks, Properties and Applications of Diamond, ButterworthHeinemann Ltd., Oxford,1991.
    [63].G. A. Newburgh, M. Dubinskii, and L. D. Merkle,“Silicon carbide face-cooled4%ceramic Nd:YAG laser,” Electron. Lett.43,286–288(2007).
    [64].G. A. Newburgh, A. Michael, and M. Dubinskii,“Composite Yb:YAG/SiC-prism thindisk laser,” Opt. Express18,17066-17074(2010).
    [65].L.F. Johnson, and A.A. Ballman,“Coherent Emission from Rare Earth Ions inElectro-optic Crystals,” J. Appl. Phys.40,297-302(1969).
    [66].R. Brinkmann, W. Sohler, and H. Suche,“Continuous-wave erbium-diffused LiNbO3waveguide laser,” Electron. Lett.27,415–417(1991).
    [67].J.K. Jones, J.P. de Sandro, M.Hempstead, D.P. Shepherd, A.C. Large, A.C. Tropper,and J.S. Wilkinson,“Channel waveguide laser at1μm in Yb-indiffused LiNbO3,”Opt. Lett.20,1477-1479(1995).
    [68].J.P. de Sandro, J.K. Jones, D.P. Shepherd, M. Hempstead, J. Wang and A.C. Tropper,“Non-photorefractive CW Tm-indiffused Ti:LiNbO3waveguide laser operating atroom temperature,” IEEE Photon. Tech. Lett.8,209-211(1996).
    [69].E. Montoya, J. Capmany, L.E. Bausá, T. Kellner, A. Diening, and G. Huber,“Infraredand self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO,” Appl. Phys.Lett.74,3113-3115(1999).
    [70].Y. Tzuk, A. Tal, S. Goldring, Ya. Glick, E. Lebiush, G. Kaufman, and R. Lavi,“Diamond cooling of high power diode pumped solid state lasers,” IEEE J. QuantumElectron.40,262-269(2004).
    [71].H.P. Chou, I. Sadovnik, E.J. Tammaro, Y.L. Wang, M. Bass, and Y. Chen,“Thermomechanical and optical analysis and modeling for a diamond-cooled solidstate Nd:YAG laser,” Proc. SPIE6216, E1-E15(2006).
    [72].X.D. Cao, H.W. Yu, W.G. Zheng, S.B. He, and X.F. Wang,“Temperature effect ofYb3+:YAG slab laser and diamond window cooling design,” High Power Laser andParticle Beams18,553-558(2006).
    [73].W. Lubeigt, G.M. Bonner, J.E. Hastie, M.D. Dawson, D. Burns, and A.J. Kemp,“Continuous-wave diamond Raman laser,” Opt. Lett.35,2994-2996(2010).
    [1]. W. Kerchner, Solid-State Laser Engineering, sixth revise and updated edition,Springer, Berlin,2006.
    [2]. M. Born, and E. Wolf: Principles of Optics, Pergamon, London,1965.
    [3]. W. Kerchner,“Thermal Lensing in a Nd:YAG Laser Rod,” Appl. Opt.9,2548-2553(1970).
    [4]. O. Svelto, Principles of Lasers, fifth edition, Springer, New York, Dordrecht,Heidelberg, London,2010.
    [5]. W. Streifer, D.R. Scifres, G.L. Harnagel, D.F. Welch, J. Berger, and M. Sakamoto,“Advances in Diode Laser Pumps,” IEEE J. Quantum Electron.24,883-894(1988).
    [6]. T. Y. Fan, and R. L. Byer,"Diode Laser-Pumped Solid-State Laser," IEEE J. QuantumElectron.24,895–912(1988).
    [7]. P. S. Cross, G. L. Harnagel, W. Streifer, D. R. Scifres, and D. F. Welch,"Ultrahigh-Power Semiconductor Diode Laser Arrays," Science237,1305–1309(1987).
    [8]. E. Snitzer,“Proposed fiber cavities for optical masers”, J. Appl. Phys.23,36-39(1961).
    [9]. E. Snitzer,“Optical maser action in Nd3+in a Barium crown glass”, Phys. Rev. Lett.7,444-446(1961).
    [10].M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers,2nd edition., CRCPress, Boca Raton,2001.
    [11].Y. Jeong, J. Sahu, D. Payne, and J. Nilsson,“Ytterbium-doped large-core fiber laserwith1.36kW continuous-wave output power”, Opt. Express12,6088-6092(2004).
    [12].V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak,P.S. Yeh, and E. Zucker,“110W fibre laser”, Electron. Lett.35,1158-1160(1999).
    [13].A. Giesen, H. Hügel, A. Voss, K. Witting, U. Branch, and H. Opower,“Scalableconcept for diode-pumped high-power solid-state lasers”, Appl. Phys. B58,363(1994).
    [14].J.A. Abate, L. Lund, D. Brown, S. Jacobs, S. Refermat, J. Kelly, M. Gavin, J.Waldbillig, and O. Lewis,“Active mirror: a large-aperture medium-repetition rateNd:glass amplifier,” Appl. Opt.20,351-361(1981).
    [15].K. Contag, M. Karszewski, C Stewen, A. Giesen, and H Hugel,“Theoreticalmodelling and experimental investigations of the diode-pumped thin disk Yb:YAGlaser”, Quantum Electron.29,697-703(1999).
    [16].M. J. Weber, Handbook of Optical Materials, CRC Press, Boca Raton, FL,2003.
    [17].N.A. Riza, M. Arain, and F. Perez,“6-H single-crystal silicon carbide thermo-opticcoefficient measurements for ultrahigh temperatures up to1273K in thetelecommunications infrared band,” J. Appl. Phys.98,103512-1–103512-5,(2005).
    [18].W. F. Smith and J. Hashemi, Foundations of Materials Science and Engineering,McGraw-Hill Press, New York,2003.
    [19].M. Bass, C. D. Cusatis, J. Enoch, V. Lakshminarayanan, G. F. Li, C. MacDonald, V.Mahajan, and E. V. Stryland, Handbook of Optics,3rd edition, McGraw-Hill, NewYork,2009.
    [20].D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Machenzie, R. J. Beach, S. C. Mitchell, andH. E. Meissner,“High-power planar dielectric waveguide lasers,” J. Phys. D: Appl.Phys.34,2420–2432(2001)..
    [21].L. Xiao, X. J. Cheng, and J. Xu,“High-power Nd:YAG planar waveguide laser withYAG and Al2O3claddings,” Opt. Commun.281,3781-3785(2008).
    [22].S. Timoshenko, and J.N. Goodier, Theory of Elasticity,3rd edition. McGraw-Hill,Singapore,1982.
    [23].M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields,“Thermal modeling ofcontinuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56,1831-1833(1990).
    [24].M. Tsunekane, N. Taguchi, and T. Kasamatsu,“Analytical and experimental studieson the characteristics of composite solid-state laser rods in diode-end-pumpedgeometry,” IEEE Journal of Selected Topics in Quantum Electronics3,9-18(1996).
    [25].T. Dascalu, T. Taira, and N. Pavel,“100-W quasi-continuous-wave diode radiallypumped microchip composite Yb:YAG laser,” Opt. Lett.27,1791-1793(2002).
    [26].H.C. Lee, and H. Meissner,“AFB CVD diamond composites with laser materials,”Proc. of SPIE6552,652208-1-655208-8(2007).
    [27].I.E. Dzyaloshinskii, E.M. Lifshitz, and L.P. Pitaevskii,“The general theory of van derWaals forces,” Adv. Phys.10,165-209(1961).
    [28].A.W. Adamson, Physical Chemistry of Surface,6th edition, John Wiley and Sons, LosAngeles,1997.
    [29].J. Eggleston, T. Kane, K. Kuhn, J. Unternahrer, and R. Byer,“The slab geometrylaser-Part I: Theory,” IEEE J. Quantum Electron.20,289-301(1984).
    [30].T. Kane, J. Eggleston, and R. Byer,“The slab geometry laser-Part II: Thermal effectsin a finite slab,” IEEE J. Quantum Electron.21,1195(1985).
    [31].J. A. Carlson, B. C. Schwartz, and G. Steving,“Diffusion bonding of crystals,” U.S.patent4,077,558(March7,1978).
    [32].H. E. Meissner and O. R. Meissner,“Solid state lasers with composite crystal or glasscomponents,” U.S. patent5,852,622(December22,1998).
    [33].B. F. Levine and C. J. Pinzone,“Process for bonding crystalline substrates withdifferent crystal lattices,” U.S. patent5,966,622(October12,1999).
    [34].X. J. Cheng, Z. M. Wang, F. Chen, and J. Q. Xu,“Edge-pumped passivelyQ-switched thin Nd:YAG slab lasers,” Chin. Opt. Lett.6,364-366(2008).
    [35].R. Zhang, J. F. Niu, J. Q. Xu, and J. Z. Xu,“High-power air-cooled SiC cladNd:YVO4slab lasers,” Opt. Lett.36,1857-1859(2011).
    [1]. W. Streifer, D.R. Scifres, G.L. Harnagel, D.F. Welch, J. Berger, and M. Sakamoto,“Advances in Diode Laser Pumps,” IEEE J. Quantum Electron.24,883-894(1988).
    [2]. T. Y. Fan, and R. L. Byer,"Diode Laser-Pumped Solid-State Laser," IEEE J. QuantumElectron.24,895–912(1988).
    [3]. P. S. Cross, G. L. Harnagel, W. Streifer, D. R. Scifres, and D. F. Welch,"Ultrahigh-Power Semiconductor Diode Laser Arrays," Science237,1305–1309(1987).
    [4]. E. Snitzer,“Proposed fiber cavities for optical masers”, J. Appl. Phys.23,36-39(1961).
    [5]. E. Snitzer,“Optical maser action in Nd3+in a Barium crown glass”, Phys. Rev. Lett.7,444-446(1961).
    [6]. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers,2nd edition., CRCPress, Boca Raton,2001.
    [7]. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson,“Ytterbium-doped large-core fiber laserwith1.36kW continuous-wave output power”, Opt. Express12,6088-6092(2004).
    [8]. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak,P.S. Yeh, and E. Zucker,“110W fibre laser”, Electron. Lett.35,1158-1160(1999).
    [9]. S.C. Tidwell, J.F. Seamans, M.S. Bowers, and A.K. Cousins,“Scaling CWdiode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. QuantumElectron.28,997-1009(1992).
    [10].S. Konno, S. Fujikawa, and K. Yasui,“80W cw TEM001064nm beam generation byuse of a laser-diode-side-pumped Nd:YAG rod laser,” Appl. Phys. Lett.70,2650-2651(1997).
    [11].Y. Hirano, Y. Koyata, S. Yamamoto, K. Kasahara, and T. Tajime,“208-W TEM00operation of a diode-pumped Nd:YAG rod laser,” Opt. Lett.24,679-681(1999).
    [12].E.C. Honea, R.J. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton,S.A. Payne, P.V. Avizonis, R.S. Monroe, and D.G. Harris,“High-power dual-rodYb:YAG laser,” Opt. Lett.25,805-807(2000).
    [13].J. Eggleston, T. Kane, K. Kuhn, J. Unternahrer, and R. Byer,“The slab geometrylaser-Part I: Theory,” IEEE J. Quantum Electron.20,289-301(1984).
    [14].T. Kane, J. Eggleston, and R. Byer,“The slab geometry laser-Part II: Thermal effectsin a finite slab,” IEEE J. Quantum Electron.21,1195(1985).
    [15].G. F. Albrecht, J.M. Eggleston, and J.J. Ewing,“Design and characterization of a highaverage power slab YAG laser”, IEEE J. Quantum Electron.22,2099-2106(1986)
    [16].T.S. Rutherford, W.M. Tulloch, E.K. Gustafson, and R.L. Byer,“Edge-pumpedquasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron.36,205-219(2000).
    [17].J.A. Abate, L. Lund, D. Brown, S. Jacobs, S. Refermat, J. Kelly, M. Gavin, J.Waldbillig, and O. Lewis,“Active mirror: a large-aperture medium-repetition rateNd:glass amplifier,” Appl. Opt.20,351-361(1981).
    [18].A. Giesen, H. Hügel, A. Voss, K. Witting, U. Branch, and H. Opower,“Scalableconcept for diode-pumped high-power solid-state lasers”, Appl. Phys. B58,363(1994).
    [19].E. Innerhofer, T. Südmeyer, F. Brunner, R. H ring, A. Aschwanden, R. Paschotta, C.H nninger, M. Kumkar, and U. Keller,“60-W average power in810-fs pulses from athin-disk Yb:YAG laser,” Opt. Lett.28,367-369(2003).
    [20].C. Stolzenburg, A. Giesen, F. Butze, P. Heist, and G. Hollemann,“Cavity-dumpedintracavity-frequency-doubled Yb:YAG thin disk laser with100W average power,”Opt. Lett.32,1123-1125(2007).
    [21].J. Vetrovec,“Ultrahigh-average-power solid state laser,” Proc. SPIE,4760,491-505(2002).
    [22].C. Stewen, K. Contag, M. Larionov, and A. Giesen,“A1-kW CW thin disc laser,”IEEE J. Sel. Top. Quantum Electron.6,650-657(2000).
    [23].C.D. Marshall, Proc. Advanced Solid State Laser Conference, Optical SocietyAmerica,Washington, D.C.,1996.
    [24].M. J. Weber, Handbook of Optical Materials, CRC Press, Boca Raton, FL,2003.
    [25].N.A. Riza, M. Arain, and F. Perez,“6-H single-crystal silicon carbide thermo-opticcoefficient measurements for ultrahigh temperatures up to1273K in thetelecommunications infrared band,” J. Appl. Phys.98,103512-1–103512-5,(2005).
    [26].W. F. Smith and J. Hashemi, Foundations of Materials Science and Engineering,McGraw-Hill Press, New York,2003.
    [27].M. Bass, C. D. Cusatis, J. Enoch, V. Lakshminarayanan, G. F. Li, C. MacDonald, V.Mahajan, and E. V. Stryland, Handbook of Optics,3rd edition, McGraw-Hill, NewYork,2009.
    [28].Z. L. Liau,“Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett.77,651–653(2000).
    [29].R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics,Addison-Wesley, Boston, USA,1964, cha.38.
    [30].A. Sommerfeld, Mechanics of Deformable Bodies, Academic, Boston, USA,1950,cha.3.
    [31].A. I. Toryanik and V. G. Porebnyak,“Surface tension of aqueous solutions ofacetone,” J. Struct. Chem.17,464–465(1976).
    [32].W. Kerchner, Solid-State Laser Engineering, sixth revise and updated edition,Springer, Berlin,2006.
    [33].D. Findlay, and R. A. Clay,“The measurement of internal losses in4-level lasers,”Phys. Lett.20,277–278(1966).
    [1]. B. T. Matthias, and J. P. Remeika,“Ferroelectricity in the Ilmenite Structure,” Phys.Rev.76,1886–1887(1949).
    [2]. A. Reisman, and F. Holtzberg,“Heterogeneous Equilibria in the Systems Li2O-,Ag2O-Nb2O5and Oxide-Models,” J. Amer. Chem. Soc.80,6503-6507(1958).
    [3]. A. A. Ballman,“Growth of Piezoelectric and Ferroelectric Materials by theCzochraIski Technique,” J. Am. Ceram. Soc.48,112-113(1965).
    [4]. G. E. Peterson, A. A. Ballman, P. V. Lenzo, and P. M. Bridenbaugh,“Electro-opticsproperties of LiNbO3,” Appl. Phys. Lett.5,62-64(1964).
    [5]. K. Nassau, H.J. Levinstein, and G.M. Loiacono,“Ferroelectric lithium niobate.1.Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids27,983-988(1966).
    [6]. K. Nassau, H.J. Levinstein, and G.M. Loiacono,“Ferroelectric lithium niobate.2.Preparation of single domain crystals,” J. Phys. Chem. Solids27,989-996(1966).
    [7]. S.C. Abrahams, J.M. Reddy, and J.L. Bernstein,“Ferroelectric lithium niobate.3.Single crystal X-ray diffraction study at24°C,” J. Phys. Chem. Solids27,997-1012(1966).
    [8]. S.C. Abrahams, J.M. Reddy, and J.L. Bernstein,“Ferroelectric lithium niobate.4.Single crystal neutron diffraction study at24°C,” J. Phys. Chem. Solids27,1013-1018(1966).
    [9]. S.C. Abrahams, J.M. Reddy, and J.L. Bernstein,“Ferroelectric lithium niobate.5.Single crystal neutron diffraction study at24°C,” J. Phys. Chem. Solids27,1019-1026(1966).
    [10].K.K.Wong, Properties of Lithium Niobate, IET, London,2002.
    [11].Y. Kusminov, Lithium Niobate Crystals, Cambridge International Science, London,1997
    [12].A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein,and K. Nassau,“Optically-Induced refractive index inhomogeneities in LiNbO3andLiTaO3,” Appl. Phys. Lett.9,72-74(1966).
    [13].H. Hermann, Proceedings4th European Conference on Integrated Optics, Glasgow,August1987, pp.194-197.
    [14].M. Lawrence,“Lithium niobate integrated optics,” Rep. Prog. Phys.56,363-429(1993)
    [15].L.F. Johnson, and A.A. Ballman,“Coherent Emission from Rare Earth Ions inElectro-optic Crystals,” J. Appl. Phys.40,297-302(1969).
    [16].R. Brinkmann, W. Sohler, and H. Suche,“Continuous-wave erbium-diffused LiNbO3waveguide laser,” Electron. Lett.27,415–417(1991).
    [17].J.K. Jones, J.P. de Sandro, M.Hempstead, D.P. Shepherd, A.C. Large, A.C. Tropper,and J.S. Wilkinson,“Channel waveguide laser at1μm in Yb-indiffused LiNbO3,”Opt. Lett.20,1477-1479(1995).
    [18].J.P. de Sandro, J.K. Jones, D.P. Shepherd, M. Hempstead, J. Wang and A.C. Tropper,“Non-photorefractive CW Tm-indiffused Ti:LiNbO3waveguide laser operating atroom temperature,” IEEE Photon. Tech. Lett.8,209-211(1996).
    [19].E. Montoya, J. Capmany, L.E. Bausá, T. Kellner, A. Diening, and G. Huber,“Infraredand self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO,” Appl. Phys.Lett.74,3113-3115(1999).
    [20].A.D' Orazio, M. De Sario, V. Petruzzelli, and F. Prudenzano,“Lithium niobateintegrated optical devices,” IEEE3rd Transparent Optical Networks Conference,131-134, June18-21,2001, Cracow, Australia.
    [21].M. Yamada, N. Nada, M. Saitoh, and K. Watanabe,“First-order quasi-phase matchedLiNbO3waveguide periodically poled by applying an external field for efficient bluesecond-harmonic generation,” Appl. Phys. Lett.62,435-437(1993).
    [22].W. Sohler, H. Suche, and R. Wessel,“Er-doped integrated optical devices inLiNbO3,” IEEE J. Sel. Top. Quantum Electron.2,355-366(1996).
    [23].L. Nunez, J.O. Tocho, J.A. Sanz-Garcia, E. Rodriguez, and F. Cusso,“Opticalabsorption and luminescence of Tm3+-doped LiNbO3and LiNbO3(MgO) crystals,”Journal of Luminescence55,253-263(1993).
    [24].T. Makino, M. Jain, D.C. Montros, A. Aggarwal, J. Sterling,B.P. Bosworth, J.W.Milsom, B.D. Robinson, M.M. Shevchuk, K. Kawaguchi, N. Zhang,C.M. Brown,D.R.Rivera,W.O. Williams, C. Xu, A.J.Dannenberg, and S. Mukherjee,“Multiphotontomographic imaging: a potential optical biopsy tool for detecting gastrointestinalinflammation and neoplasia,” Cancer Prev. Res.5,1280-1290(2012).
    [25].W. Denk, J.H. Strickler, and W.W. Webb,“Two-photon laser scanning fluorescencemicroscopy,” Science248,73-76(1990).
    [26].R.Targ, B.C Steakley, J.G. Hawley, L.L. Ames, P. Forney, D. Swanson, R. Stone, R. GOtto, V. Zarifis, P. Brockman, R.S. Calloway, S.H. Klein, and P.A. Robinson,“Coherent lidar airborne wind sensor II: flight-test results at2and10μm,” Appl. Opt.35,1771(1996).
    [27].D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann,“Cwhigh-power IR laser at2micrometers for minimally invasive surgery,” Proc. SPIE5142,96-100(2003).
    [28].S.B. Mirov, V.V. Fedorov, I.S. Moskalev, D. Martyshkin, and C. Kim,“Progress inCr2+and Fe2+Doped Mid-IR Laser Materials,” Laser&Photon. Rev.4,21-41(2010).
    [29].J.F. Wu, S.B. Jiang, T. Luo, J.H. Geng, N. Peyghambarian, and N.P. Barnes,“Efficient Thulium Doped2μm Germanate Fiber Laser,” IEEE Photon. Tech. Lett.18,334-336(2006).
    [30].X.M. Duan, B.Q. Yao. Y.J. Zhang, C.W. Song, Y.L. Ju, and Y.Z. Wang,“Diode-pumped high-efficiency Tm:YLF laser at room temperature,” Chin. Opt. Lett.6,591-593(2008).
    [31].X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang,“High-power diode-end-pumpedTm:LuLiF4slab lasers,” Opt. Express17,14895-14901(2009).
    [32].R.C. Stoneman, and L. Esterowitz,“Efficient, broadly tunable, laser-pumpedTm:YAG and Tm:YSGG cw lasers,” Opt. Lett.15,486-488(1990).
    [33].L.E. Batay, A.A. Demidovich, A.N. Kuzmin, A.N. Titov, M. Mond, and S. Kück,“Efficient tunable laser operation of diode-pumped Yb,Tm:KY(WO4)2around1.9μm,”Appl. Phys. B75,457-461(2002).
    [34].E.C. Honea, R. J. Beach, S.B. Sutton, J.A. Speth, S.C. Mitchell, J.A. Skidmore, M.A.Emanuel, and S.A. Payne,“115-W Tm:YAG diode-pumped solid-state laser,” IEEE J.Quantum Electron.33,1592-1600(1997).
    [35].E. Lallier, J.P. Pocholle, M. Papuchon, M.P. DeMicheli, M.J. Li, Q. He, D.B.Ostrowsky, C. Grezes-Besset, and E. Pelletier,“Nd:MgO:LiNbO3channel waveguidelaser devices,” IEEE J. Quantum Electron.27,618-625(1991).
    [36].S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, and W.F. Krupke,“Infraredcross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEEJournal of Quantum Electron.28,2619-2630(1992).
    [37].A. Dergachev, K.Wall, and P.F. Moulton,“A CW side pumped Tm:YLF laser” Trendsin Optics and Photonics, Advanced Solid-State Lasers, Optical Society of America,Québec City, Canada, February3,2002,68,343-346(2002).
    [38].N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli,“Tm-doped LiLuF4crystal for efficient laser action in the wavelength range from1.82to2.06μm,” Opt. Lett.32,2040-2042(2007).
    [39].R.C. Stoneman, and L. Esterowitz,“Efficient, broadly tunable, laser-pumpedTm:YAG and Tm:YSGG CW lasers,” Opt. Lett.15,486-488(1990).
    [40].R.C. Stoneman, and L. Esterowitz,“Efficient1.94μm Tm:YALO laser,” IEEE J. Sel.Topics Quantum Electron.1,78-80(1995).
    [41].G.M. Hale, and M.R. Querry,“Optical constants of water in the200nm to200μmwavelength region,” Appl. Opt.12,555-563(1973).
    [42].A. Ashkin, G.D. Boyd, J.M. Dziedzic, R. G. Smith, A.A. Ballman, J.J. Levinstein, andK. Nassau,“Optically-induced refractive index inhomogeneities in LiNbO3andLiTaO3,” Appl. Phys. Lett.9,72-74(1966).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700