天窗型古潜山油气藏形成与盆地深部水动力循环
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮南古潜山油气藏是塔里木盆地的一个大型碳酸盐岩古潜山油气藏,潜山相对高差2000m,面积20000km2,埋深4100m。潜山主要储集空间为奥陶系碳酸盐岩风化壳岩溶裂缝~溶洞系统;潜山周围斜坡由巨厚的上奥陶统泥岩、石炭系泥岩构成披覆盖层,但在潜山顶部有一个80km2的区域为巨厚的三叠系含水砂岩所覆盖,形成古潜山的“天窗”区。由于天窗的存在从而形成了一种新类型的油气藏——天窗型古潜山油气藏。天窗型古潜山油气藏油气主要分布在潜山斜坡部位,而潜山的高部位为水区或含油水区;天窗型古潜山油气藏油水界面是倾斜的,油气藏具有水动力特征。控制油气藏形成的主要因素是储集层、差异溶解作用和水动力作用。储集层控制油气沿潜山表层风化壳聚集;差异聚集作用控制油气平面上差异分布及局部高点中的聚集;水动力作用抑制油气的散失,控制油气沿潜山斜坡聚集,并控制油气藏的形态特征。
     虽然“天窗”的存在不利于油气的保存,但由于逆向水动力的作用,在油气运移的上倾方向上形成了水动力遮挡,使后期充注的油气得以保存,同时也阻止了早期聚集的油气继续逸散,这也可能是轮南古潜山历经劫难仍能够富集油气的主要原因。
     在具有多期成藏历史的油气藏中,后期新来的油气会在老的油藏里发生溶解,新来油气的聚集是以溶解方式进行的。差异溶解观点揭示了叠合盆地普遍存在的一种常见而又常常被忽视的油气聚集现象,即地层条件下油气的相互溶解。差异溶解作用的实质是油气分子之间的溶解不平衡,其表现形式为新生成的油气在原有油藏里边溶解边聚集。差异溶解作用的结果是造成新老油气的差异性混合,使油藏中原有油气的物理性质、地球化学特征发生不均匀变化,从而造成油气分布的复杂而有规律的变化。
     塔里木盆地深部存在着广泛的流体流动,这种流动以浅表层流体循环和深层流体循环形式存在。浅表层流体循环的动力为流体自身重力,深层流体循环的主要动力是盆地深部大地热流分布的差异造成的局部地热异常。盆地水动力结构随大地构造演化而演化,不同水文地质阶段、不同的水文地质结构层次,对于盆地流体流动具有不同的驱动类型。盆地流体循环为盆地深部的物质传输和能量传递提供了必要的载体,为深部油气和其他各类矿床的形成提供了必要的储集空间和成藏动力。
Lunnan buried hill reservoir is a super carbonate reservoir with 2000m high and 20000km2 area and 4100m depth buried under the ground, Tarim basin. The main reservoir space of the reservoir is Ordovician carbonate ancient weathered crust Karst cave-fractures system. Above the hill, there was a giant thick Ordovician or Carboniferous mudstone onlapped on the slopes of the hill as a capping formation, but a more than 80km2 area in the top of the hill covering with a thick Triassic water-bearing sandstone came into being a top-window area for the hill. It is just because of the top window so that a NEW type of reservoir formed, which called Top-opening Buried Hill Reservoir. In this type of reservoir, the oil and gas accumulated mostly in the slopes surrounding the hill. The upper area near the top of the hill was filled with water or water and little oil. The oil-water interface in such a reservoir was tilting, and the oil-gas accumulating has a unique hydrodynamic features. The genesis of the Lunnan super buried hill reservoir would have likely related with the hydrodynamism due to the Top-window. The main factors dominated the reservoir forming were reservoir, differential dissolution and hydrodynamism. The reservoir controlled the oil and gas accumulating in the surface weathered crust of the buried hill, differential dissolution controlled the oil and gas differential distributing in the hill and the hydrodynamism restrained the oil and gas leaking from the hill and controlled it accumulating in the slope of the hill and controlled the shape of the oil and gas reservoir.
     Although the top window was unfavorable to the oil and gas preserving, the inverted water dynamic created a sealed zone at the upper of the slope and prevented the oil and gas escaping through the window, which would be the essential reason that the buried hill richly accumulated oil and gas in despite of broken once and again.
     The hypostasis of differential dissolution is the molecules of oil and gas dissolving and diffusing each other. The differential dissolution made oil and gas mixing and complicated distributing in the reservoir, but in a certain rule:the traps close to the source would be full filled with dry gas or condensate gas, and far away from the source would be oil.
     There were broad fluids flow in the deep of Tarim Basin, and the flows were shown as the shallow fluid circulation and deep hydrothermal circulation. The driving force driven the deep hydrothermal circulation is the local geothermal discrepancy coming from the difference of thermal flux distributing in the deep of the basin. The hydrodynamic texture would be changed followed the tectonic framework changing, and there would be different driving mechanism at a different hydrogeologic stage and a different hydrogeologic frameworks for the basin fluids. The basin fluids circulation flow supplies vital carriers for matter transport and energy convection, and provides necessary spaces and dynamic for oil, gas and other ores accumulating.
引文
[1]李永安,李强,刘玉良等.塔里木陆块晚古生代以来古地磁特征研究[R].1988.
    [2]贾承造,姚慧君.塔里木盆地板块构造演化和主要构造单元地质构造特征[R].1990.
    [3]余华琪.塔里木盆地边缘遥感构造研究[R].国家“八五”成果报告,1991.
    [4]高增海.塔里木盆地地质构造特征与构造演化史[R].国家“八五”成果报告,1994.
    [5]王良书,李成,施小斌等.塔里木盆地大地热流、岩石圈热结构和热演化[R].国家“八五”成果报告,1994.
    [6]谢觉新,周中毅,潘长春等.塔里木盆地古地温、热演化史及油气评价[R].国家“八五”成果报告,1994.
    [7]贾承造,魏国齐,姚慧君.塔里木盆地构造演化史研究[R].“八五”成果报告,1994.
    [8]许炳如.塔里木盆地航磁资料研究报告[R].“八五”成果报告,1994.
    [9]王宜昌.利用重磁资料研究塔里木盆地区域构造及火成岩分布[R].国家“八五”成果报告,1994.
    [10]张光亚,戴春森.塔里木古生代克拉通盆地演化及其对油气分布的控制[R].1995.
    [11]王良书,李成,徐鸣洁等.塔里木盆地基底结构和深部构造特征[R].国家“九五”成果报告,1998.
    [12]杨树锋,陈汉林.塔里木盆地西南边缘构造特征、演化及其与盆地关系研究[R].国家“九五”成果报告,1998.
    [13]贾承造,魏国齐,王良书等.塔里木盆地构造特征与控油作用.国家“九五”成果报告[R],2000.
    [14]王良书,高增海,李成等.塔里木盆地震旦-奥陶纪构造演化和库车前陆盆地热结构及其对油气的控制作用[R].国家“九五”成果报告,2000
    [15]顾家裕,张师本,朱筱敏等.塔里木盆地地层、沉积和储层研究[R].国家“九五”报告,2000.
    [16]黄第藩,梁狄刚.塔里木盆地油气生成与演化[R].国家“八五”成果报告,1995.
    [17]赵靖舟,李启明.塔里木盆地油气分布规律[R].国家“九五”成果报告,2000.
    [18]张宝民,陈建平,边立曾等.塔里木盆地有效烃源层展布及其特征[R].国家“九五”成果报告,2000.
    [19]梁狄刚,张水昌,张宝民.塔里木盆地生油岩和油源研究[R].国家“九五”成果报告,1998.
    [20]梁狄刚,金之钧,张水昌等.塔里木盆地油气源及成藏研究[R].国家“九五”成果报告,2000.
    [21]王廷栋.塔里木盆地凝析气藏油气地化特征及成因[R].国家“八五”成果报告,1994.
    [22]张保民.塔里木盆地油源区的展布及其在地质历史中的演化[R].国家“九五”成果报告,1998.
    [23]赵孟军.塔里木盆地天然气分布规律及勘探方向[R].国家“九五”成果报告,1997.
    [24]周中毅.塔里木盆地生油岩成熟度确定及成烃演化史研究[R].国家“九五”成果报告,1997.
    [25]王廷栋,徐志明.轮南地区油气藏成藏机制研究[R].2002.
    [26]李曰俊,吴浩若,肖安成等.塔里木盆地东部地质构造研究[R].国家“十五”成果报告,2003.
    [27]张水昌,王飞宇等,塔里木盆地大中型气田成气机理研究[R].国家“十五”成果报告,2003.
    [28]梁狄刚,张水昌.塔里木盆地东部地区烃源岩评价与油气源对比[R].国家“十五”成果报告,2003.
    [29]赵靖舟,时保宏,罗继红.塔里木盆地天然气成藏特征与分布规律[R].国家“十五”成果报告,2003.
    [30]吕修祥,鲍志东.牙哈—英买力地区寒武—奥陶系碳酸盐岩油气成藏规律研究[R].2006.
    [31]包建平.塔里木盆地海相原油混源定量研究[R].2008.
    [1]刘池洋.叠合盆地特征及油气赋存条件[J].石油学报,2007,28(2):1-6.
    [2]刘池洋,张复新,高飞.沉积盆地成藏(矿)系统[J].中国地质,2007,34(3):365-374.
    [3]Kukla, P A. Edwards, S C. Reimann, K K,3D Petroleum Systems Modelling:Bridging the Gap Between Basin and Reservoir Scale Modelling-Examples from Offshore Western Australia[C], AAPG BULL. 2000,v.84,no.9,p.1450-1451.
    [4]Powers.S. Reflected buried hills and their importance in petroleum geology[J].Economic Geology,1922, Vol.17,No.4,P.233-259
    [5]Levorsen.A.I..Geology of petroleum[M],San Francisco,W.H.Freeman,1954.
    [6]Landes.K.K.,et al,Petroleum resources in basement rocks[J].AAPG Bull.,1960, Vol.44, No.10, P.1682-1691.
    [7]Pan.Chung-Hsiang.Petroleum in basement rocks[J],AAPG Bull.,1982,Vol.66,No.10, P.1597-1643.
    [8]华北石油勘探开发设计院.潜山油气藏[M].北京:石油工业出版社,1982.
    [9]中国试油学会石油地质委员会编.基岩油气藏[M].北京:石油工业出版社,1987.
    [10]唐智.渤海湾地区古潜山油气田[M].北京:石油工业出版社,1987.
    [11]毛立言.黄骅凹陷古潜山找油前景[M].天津地质学会志.1987,16(1):27-31.
    [12]王国纯.对辽东湾古潜山形成及油气藏类型探讨[J].古潜山,1989,41(4):8-15.
    [13]李耀华.裂谷盆地古潜山油藏与含油气系统[M].成都:四川科学技术出版社,1998.10-119.
    [14]吴永平,杨池银,王喜双.渤海湾盆地北部奥陶系潜山油气藏[J].石油勘探与开发,2000.27(5):1-6.
    [15]谯汉生,袁选俊.中国油气新区勘探第三卷,渤海湾盆地隐蔽油气藏勘探[M].北京:石油工业出版社,2001.
    [16]吴永平,杨池银.渤海湾盆地北部奥陶系潜山[M].北京:地质出版社,2002.
    [17]徐国盛,李国蓉,王志雄.济阳坳陷下古生界潜山储集体特征[J].石油与天然气地质,2002,23(3):248-252.
    [18]杜金虎,邹伟宏,费宝生等.冀中坳陷古潜山复式油气聚集区[M].北京:科学出版社,2002.
    [19]李丕龙,张善文,王永诗等.断陷盆地多样性潜山成因及成藏研究—以济阳坳陷为例[J].石油学报,2004.25(3):28-31
    [20]何登发,贾承造,李德生.塔里木多旋回叠合盆地的形成与演化[J].石油与天然气地质,2005,26(1):55-61.
    [21]何登发,周新源,张朝军.塔里木多旋回叠合盆地地质结构特征[J].中国石油勘探,2006,(1):31-41.
    [22]Gussow, W.C.. Differential entrapment of gas and oil:a fundamental principle[C]. AAPG Bulletin. 1954, vol.38, p.816-853.
    [23]Silverman S R. Migration and segregation of oil and gas in Fluids in Subsurface Environments[J]. AAPG Memoir,1965,4:53-65.
    [24]Thompson K F M. Fractionated aromatic petroleum and the generation of gas-condensates[J]. Org Geochem,1987,11(6):573-590.
    [25]Schwalter, T.T. Mechanics of secondary hydrocarbon migration and entrapment[J]. AAPG Bulletin, 1979,63(5):723-760.
    [26]Dahlberg, E.C. Applied Hydrodynamics in Petroleum Exploration[J].New York, Springer-Verlag,1982, 161p.
    [27]R.E. Chapman. Translated by LI Mingcheng. Petroleum Geology[M]. Beijing:Petroleum Industry Press, 1989 (in Chinese).
    [28]England W.A. Translated by LI Han. Oil and gas secondary migration and entrapment[M]. Beijing: Petroleum Industry Press,1998 (in Chinese).
    [29]Law B E. Basin-centered gas systems[J]. AAPG Bull,2002,86(11):1891-1915.
    [30]吴河勇,梁晓东,向才富,王跃文.松辽盆地向斜油藏特征及成藏机理探讨[J].中国科学D辑:地球科学,2007,37(02):185-191.
    [31]范小林,邱蕴玉,鲍新毅.塔里木盆地轮南—阿克库勒地区地质结构及油气成藏与勘探目标关系[J].石油实验地质,1999,21(2):133-136.
    [32]刘静江,刘池阳,王震亮等.另外一种形式的差异聚集作用:油气的差异溶解作用[J].地学前缘,2009,16(5):264-272.
    [33]旷红伟,彭德堂,李楠.塔里木盆地轮南地区中奥陶统油气富集条件[J].地质力学学报,200],7(2):161-166.
    [34]钱一雄.塔河油田下奥陶统储层中流体包裹体成份[J].地质科学,2002,37(增刊):22-28.
    [35]王建宝,郭汝泰,肖贤明.塔里木盆地轮南低隆起早古生代油气藏形成的期次与时间研究.沉积学报,2002,20(2):320-325.
    [36]武富礼,赵靖舟,吴少波.塔里木北部轮台凸起凝析气藏成藏年代分析[J].地质科学,2002,37(增刊):73-80.
    [37]刘静江,刘池阳,孙红海.塔里木盆地轮南地区奥陶系沉积储层研究新进展[J].中国地质,2007,34(3):189-193.
    [38]夏义平,柴桂林,汪昌贵.塔里木盆地轮南地区下奥陶统碳酸盐岩储层控制因素分析[J].现代地质,2000,14(2):185-190.
    [39]徐杰,李涛,陈国光.塔里木盆地轮南潜山构造特征[J].石油学报,2002,23(5):14-18.
    [40]周东延,周兴熙,顾家裕.轮南地区奥陶系风化壳岩溶系统油气成藏机制[J].新疆石油地质,1999,20(3):199-202.
    [41]周凤英,张水昌.塔里木盆地轮南地区轮南2井油藏的注入史研究——来自流体包裹体的证据[J].岩石学报,2000,6(4):670-676.
    [42]黄第藩,赵孟军,刘宝泉等,1996.塔里木盆地东部天然气的成因类型及其成熟度判识[J].中国科学D辑,1996,26(4):365-372.
    [43]赵宗举,周新源,郑兴平.塔里木盆地主力烃源岩的诸多证据[J].石油学报,2005,26(3):10-15.
    [44]黄成毅,邹胜章,夏日元.古潮湿环境下碳酸盐岩缝洞型油气藏结构模式[J].中国岩溶,2006:25(3):251-255.
    [45]刘静江,李梅,刘慧荣.塔里木盆地轮古东奥陶系凝析气藏成因类型[J].新疆石油地质,2005,
    27(3):181-193.
    [46]刘静江,刘慧荣,谭琳.塔里木盆地轮南奥陶系古潜山油气成藏与分布[J].地质科学,2004,39(4):532-542.
    [47]许效松,刘宝珺,牟传龙等.中国中西部海相盆地分析与油气资源.北京:地质出版社[M],2004.
    [48]刘方槐,颜婉荪.油气田水文地质学原理[M].北京:石油工业出版社,1991
    [49]郝石生,黄志龙.天然气盖层实验研究及评价[J].沉积学报,1991,9(4):20-26.
    [50]付广,陈章明,姜振学.轮南地区石炭系泥岩盖层的压力封闭特征[J].新疆石油地质,1995,1:19-23.
    [51]陈章明,吴元燕.油气藏的保存与破坏[M].北京:石油工业出版社,2003.
    [52]马柯阳,周永红,申建中.塔里木盆地气—液溶解平衡机制下的原油轻烃行为及其地质意义[J].沉积学报,1995,13(04):100-107
    [53]周兴熙.油气田中油气的分异作用—以塔里木盆地牙哈凝析油气田为例[J].地质论评,2003,49(05):507-512.
    [54]佩罗东A.著(1983),冯增模,邬立言等译.石油地质动力学[M].北京:石油工业出版社,1993,82-97.
    [55]田世澄.论成藏动力学系统[J].勘探家,1996,1(2):25-31.
    [56]康永尚,郭黔杰.论油气成藏流体动力系统[J].地球科学——中国地质大学学报,1998,23(3):281-284.
    [57]田世澄.论成藏动力学系统的划分和类型[M].北京:石油工业出版社,1997.
    [58]康永尚,庞雄奇.油气成藏流体动力学系统分析原理及应用[J].沉积学报,1998,16(3):80-84.
    [59]毕研鹏主编.论成藏动力学系统[M].北京:地震出版社,2000.105-128.
    [60]王根久,王桂宏,余国义等.塔河碳酸盐岩油藏地质模型[J].石油勘探与开发,2002,29(1):109-111.
    [61]陈彦华,刘莺,陈伟均等.碳酸盐岩深溶作用动力学模拟实验研究[M].王庭斌.石油与天然气地质文集(第7集)——天然气地质及勘探开发技术.北京:地质出版社,1998.118-128.
    [62]Taylor P. Oxygen and Hydrogen Isotope Constraintsonthe Deep Cireulation of Surface Waters into Zones of Hydrothermal Metamorphism and Melting.Washington DC.the Role of Fluids in Crustal Proeesses[M].National Academy Press,1990.72-95.
    [63]Brace W F. Permeability of Crystalline and Argillaceous Rock:Status and Problems[J]. International journal of Rock Mechanics in Mineral Science and Geomechanical Abstraets,1980,17:876-893.
    [64]郑永飞.跨世纪国际地球科学研究前沿:地壳中流体作用的地球化学研究[J].世界科技研究与发展,1996,12(6):32-39.
    [65]李明诚.地壳中的热流体活动与油气运移[J].地学前缘,1995,2(3-4):155-161.
    [66]李伟源.欧洲共同体国家地壳流体研究的概况和进展[J].地学前缘,1996,3(4):313-323.
    [67]翟晓先,顾忆,钱一雄.塔里木盆地塔深1井寒武系油气地球化学特征[J].石油实验地质,2007,29(4):229-333.
    [68]江元生.流体研究及成矿地质流体体系的主要类型[J].四川地质学报,2002,22(2):90-96.
    [69]程小久,匡耀求.盆地成矿流体系统研究中的几个重要问题[J].华南理工大学学报(自然科学版),1996,24:78-82.
    [70]刘池洋.沉积盆地动力学与盆地成藏(矿)系统[J].地球科学与环境学报,2008,1:
    [71]解习农,王增明.盆地流体动力学及其研究进展[J].沉积学报,2003,21(1):19-23.
    [72]Wood D C, Hewett T A. Forced fluid and diagenesis in porous reservoirs controls on spatial distribution. Roles of organic matter in sediment diagenesis[J]. SEPM,1984,73-83.
    [73]Garven G. Continental scale groundwater flow and geological processes[J]. Annual Review of Earth and Planetary Sciences,1995,23:89-117.
    [74]Corbet T F, Bethke C M. Disequilibrium Fluid Pressures and Groundwater flow in the Western Canada sedimentary basin[J] Journal of Geophysical Research,1992,97:7203-7217.
    [75]康永尚,张一伟.油气成藏流体动力学[M].北京:地质出版社,1999.
    [76]李明诚,李剑,万玉金等.沉积盆地中的流体[J].石油学报,2001,22(4):13-26.
    [77]Schmoker J W, Halley R B. Carbonate porosity versus depth:a predictable relation for south Florida[J]. AAPG Bulletin,1982, (66):2561-2570.
    [78]BJ(?)rlykke K.Fluid-flow processes and diagenesis in sedimentary basins[M]. In:Parnell J, ed. Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Geological Society Special Publication, 1994,78(1):127-140.
    [79]Giles M R-Mass transfer and problems of secondary porosity creation in deeply buried hydrocarbon reservoirs[J].Marine Petrol Geol,1987,(4):188-204.
    [80]冯增昭.沉积岩石学[M].北京:科学技术出版社,1994.
    [81]刘宝珺,冯增昭,余光明等.沉积成岩作用[M].北京:科学出版社,1989.
    [82]查明,陈发景,张一伟.压实流盆地流体势场与油气运聚关系[J].现代地质,1996,10(1):105-108.
    [83]Person M., Raffensperger J. P.,Shemin Ge,et al. Basin-Scale Hydrogeologic Modeling[J]. Reviews of Geophysics,1996,34(1):61-87.
    [84]Giles M R. Mass transfer and problems of secondary porosity creation in deeply buried hydrocarbon reservoirs[J]·Marine Petrol Geol,1987,(4):188-204.
    [85]Wood J R,Heweett T A-Reservoir diagensis and convective fluid flow.In:MeCdonald da, eds. Clasic diagensis[C].AAPG,Memoir37,1984.99-110.
    [86]张宝民,刘静江.中国岩溶储层分类及其特征和相关理论问题浅析[J].石油勘探与开发,2009,36(1):12-29.
    [87]袁见齐,朱上庆,翟裕生等.矿床学[M].北京:地质出版社,1984,72-85.
    [88]Frank van Ruitenbeek. Hydrothermal Processes in the Archean-New Insights from Imaging Spectroscopy[D]. Printed by International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands,2007.
    [89]Bjorlykke K, Mo A, Palm E.Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions[J].Marine and Petroleum Geology,1988, (5):338-350.
    [90]Bj(?)rlukke K. Fluid flow in sedimentary basins[J]. Sediment. Geol.,1993,86:137-158.
    [91]Bj(?)rlukke K.Fluid-flow processes and diagenesis in sedimentary basins[J]. Geological Society, London, Special Publications,1994,78(l):127-140.
    [92]卢焕章.地球中流体研究的一些热点[J].地学前缘,2001,8(4):386-390.
    [93]王震亮.盆地流体动力学及油气运移研究进展[J].石油实验地质,2002,24(2):99-109.
    [94]蔡立国,钱一雄,刘光祥.塔河油田及邻区地层水成因探讨[J].石油实验地质,2002,24(1):57-60.
    [95]夏日元,唐建生,邹胜章等.塔里木盆地北缘古岩溶充填物包裹体特征[J].中国岩溶,2006,25(3):246-250.
    [96]马红强,陈强路,陈红汉.盐水包裹体在成岩作用研究中的应用[J].石油实验地质,2003,25:601-606.
    [97]李纯泉,陈红汉,张希明等.塔河油田奥陶系储层流体包裹体研究[J].石油学报,2005,26(1):42-46.
    [98]程军蕊.塔河油田奥陶系地下流体特征与油气藏形成研究[D].博士论文,2006.
    [99]张鼎.塔中117井储层烃包裹体研究及油气成藏史[J].岩石学报,2005,21(05):1474-1478.
    [100]Christian Berndt. Focused fluid flow in passive continental margins[J]. Phil. Trans. R. Soc. A 2005 363,2855-2871.
    [101]王槐基.莺歌海盆地地震异常体成因机制管窥[J].中国海上油气,1996,10(2):116-121.
    [102]Hubbert M K. Entrapment of petroleum under hydrodynamic conditions[C].AAPG Bulletin,1953, 37:1954-2026.
    [103]许浚远.再论流体势及其与圈闭和油气藏关系[J].地质科技情报,2007,26(1):57-64.
    [104]薛禹群,朱学愚.地下水动力学[M].北京:地质出版社,1979,1-61.
    [105]夏训诚,李崇顺,董光荣等.塔克拉玛干沙漠地区水资源评价与利用[M].北京:科学出版社,1993.
    [106]J.C.Goff.Fluid flow in sedimentary basins and aquifers[J]·Geological Society Special Publication,1987,34:19-30.
    [107]王铁冠,何发岐,李美俊.烷基二苯并噻吩类:示踪油藏充注途径的分子标志物[J].科学通报,2005,2.
    [108]王铁冠,王春江,何发岐.塔河油田奥陶系油藏两期成藏原油充注比率测算方法[J].石油实验地质,2004,26(1):74-79.
    [109]Dickey P A.Possible primary migration of oil from source rocks in oil phase[J].AAPG Bulletin,1975,59(2):337-344.
    [110]Magara K. Compaction and fluid migration-practical petroleum geology[J].Amsterdam:Elsevier, 1978.
    [111]Magara K.,1987. Compaction and fluid migration[M]. Elsevier Scinetific Publishing Company,Amsterdam-Oxford, New York,319.
    [112]McAuliffe C D.Oil and gas migration:Chemical and physical constraints[J].AAPG Bulletin,1979,63(5):761-781.
    [113]郝石生,柳广弟,黄志龙.油气初次运移的模拟模型[J].石油学报,1994,15(2):21-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700