粘性土工程性质的温度效应试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文紧紧围绕粘性土工程性质的温度效应研究这一中心课题,以南京地区广泛分布的三种粘性土为研究对象,根据南京城区季节性温差和城市热岛效应实测温度数据,选择5-50℃作为本次研究的试验温度范围,对三种粘性土进行了一系列的温度效应试验研究,得到了三种粘性土吸附结合水量、液塑限、渗透性、膨胀性和强度与温度的变化关系,并对其工程性质温度效应的相关机理进行了分析,相关研究成果归纳如下:
     1.采用容重法对三种粘性土烘干试样在不同温度下的吸附结合水量进行了试验分析,结果表明:随着环境温度的升高,三种粘性土的吸附结合水量随温度升高呈线性减少,吸附结合水量随温度的变化率与上中亲水性矿物的含量成正比;升温过程可以加快结合水膜内水分子的热运动,使得扩散层中部分水分子挣脱粘土颗粒表面吸附力的作用,游离出吸附水膜成为自由水,导致吸附结合水含量减少。
     2.随着温度的升高,三种粘性土的塑限变化不大,但液限变化明显。对于不含有机质的粘性土,粘性土中部分结合水转化为自由水,使得粘性土的液限和塑性指数降低,且变化的幅度也与亲水矿物的含量有关;对于含有少量有机质的粘性土而言,升温过程则使有机质活化能增大,吸附能力增强导致液限有所升高。通过试验建立了三种粘性土的界限含水量与温度的关系,证明了结合水膜厚度随温度减小的结论。
     3同一干密度的三种粘性土的渗透系数都随温度升高呈线性增长趋势,渗透系数随温度的变化幅度呈下蜀土(S2)>淤泥质土(S1)>膨胀土(S3);不同密度土样的渗透系数随温度的变化率不同,低密度土样的渗透系数变化率比高密度土样大;粘性土干密度越大,渗透系数越小;粘土颗粒结合水膜变薄,土中水的粘滞阻力降低是粘性土渗透性随温度升高而增大的主要原因:结合粘性土吸附结合水试验,发现土中水以何种形式存在以及其随温度的变化规律,直接影响到粘性土的渗透性。
     4.随着环境温度升高,三种土样的无荷膨胀率均呈线性增大趋势,但增长速率不同,初始膨胀率大的试样反而热膨胀率小。粘性土试样的热膨胀是多种因素共同作用的结果,一方面水和固体颗粒受热膨胀;另一方面,结合水膜厚度的变化是粘性土热膨胀性差异的重要原因。
     5.温度的变化对非饱和粘性土的强度有一定的影响。温度对粘性土的粘聚力的影响较大,而对内摩擦角的影响规律不明显;对于亲水矿物含量较低的粘性土,当含水量较低(w≤17%)时,表现为强度的热硬化现象,且含水量相同,干密度越高的试样,热硬化现象越明显;当含水量较高(w≥22%)时,表现为强度的热软化现象,此时干密度对粘聚力及其温度效应的影响不大;亲水矿物含量较高的粘性土粘聚力随着温度的升高而降低,表现为强度的热软化现象;粘性土中亲水矿物含量越高,粘性土的强度对温度变化越敏感;非饱和粘性土强度的热硬化和热软化的内在机理与结合水膜的厚度和水的粘滞性的变化有关,同时还受到土的矿物成分、饱和度、密实度等多方面的影响。
     6城市热岛效应环境中地温场的变化对粘性土工程性质的影响具有一定的隐蔽性,其影响是缓慢的和长期的。根据本文试验结果和南京城市热岛效应强度的实测数据,当浅层土体中年平均城市热岛效应强度为2.14℃时,如S3的吸附结合水量减少了0.66%,强度降低了0.85kPa;在极端城市热岛效应环境中,浅层土体中城市热岛效应最大强度为3.98℃时,S2的渗透系数增加了1.45×10-7cm/s,城市热岛效应对粘性土工程性质的影响是显著的,应引起高度重视
     由于时间和试验条件的限制,本文对于粘性土工程性质的温度效应研究仅仅是初步的,论文在最后就该研究课题的进一步工作进行了分析和展望。
This thesis focuses on the temperature effect on engineering properties of clayey soils. Taking three types of clayey soils in Nanjing as test samples,5-50℃as the test temperature range that is determined by the urban seasonal temperature difference and urban heat island effect in Nanjing. a series of experimental studies have been done in the temperature effects on the engineering properties of three types of clayey soils, including their adsorbed water content, Atterberg limits, permeability, swelling properties and strength etc. and the related mechanisms of the temperature effect on engineering properties are analyzed and the corresponding findings are presented as follows:
     1. Adsorbed water content of three types of drying clayey soils were tested under various temperatures by unit-weight method. It showed that as the environmental temperature rose, adsorbed water content in the three types of clayey soils decreased linearly and the change rate was proportional to the hydrophilic mineral content. The heating process speeded up the thermal motions of water molecules in bond water. The water molecules in the diffusion layer break away from the adsorptive force and turn into free water, leading to a decrease in adsorbed water content.
     2. As the temperature rose, the plastic limit of three types of clayey soils hardly changed, but the liquid limit changed remarkably. In the clayey soils with no organic matter, some bond water transform into free water, causing the liquid limit and the plastic indexes'reduction, and the reducing rates depends on the hydrophilic mineral content. For the clayey soils containing a small amount of organic matter, the heating process make the organic matter activation energy increase and the adsorption ability enhance, which leads to the liquid limit increase. The relationship between the Atterberg limits and temperature is established through laboratory study, and the conclusion of decreasing of electric double layer thickness is proved.
     3. The permeability coefficients of three soils samples in the same dry density increased linearly with the rise in temperature and, the amplitude of variation showing Xiashu soil(S2)> Silt (Sl)> Bentonite(S3). The change rates of the permeability coefficients under the temperature rise differed among the densities of soil samples. The change rates of the infiltration coefficients of lower-density soil samples were higher than those of higher-density soil samples. The higher density of clayey soils, the lower infiltration coefficients was. The two primary causes of the increase in permeability are the attenuation of the electric double layer thickness and the decrease in water viscous resistance. Combined with the experiment on adsorbed water content, it is proved that the forms and thermal variations of water in soils directly affected the permeability of clayey soils.
     4. As the environment temperature rose, the non-load expansion rates of each sample linearly increased, but the growth rates were distinct. The samples with higher inflation rates had lower thermal expansion rates. Several factors cause the thermal expansion:on one hand, soil particles and water expanded during heating; on the other hand, the changes of electric double layer thickness was a major factor of the thermal inflation rates difference.
     5. The temperature changes influenced the strength of clayey soils. Temperature had great effects on the cohesive force and unobvious influence on internal friction angle. For clayey soils with lower content of hydrophilic minerals, when the moisture content was lower(w<17%), the shear strength showed the thermo-hardening phenomenon. However, the thermal-softening phenomenon was shown when the moisture content was higher(w>22%), and the temperature effect on shear strength was more obvious when the dry density of sample is higher. The cohesive force of clayey soils with higher content of hydrophilic mineral decreased with the temperature rose, showing thermal-softening on strength, and its strength was more sensitive to temperature change. Moreover, the mechanism of thermal hardening and softening of strength of unsaturated clayey soils relate to the change of the electric double layer thickness and viscous resistance of water, but also affected by soil mineral composition, saturation, density, and other aspects.
     6. The influence on the engineering properties of clayey soil caused by the environment geothermal field change in urban heat island environment is complex, slow and long-term. According to the test results and the measured data of Nanjing urban heat island effect intensity, when the annual average urban heat island effect intensity is 2.14℃, the adsorbed water content of S3 decrease 0.66%, the strength reduce 0.85kPa; when extreme urban heat island effect intensity is 3.98'C, the permeability coefficient of S2 even increase 1.45×10-1cm/s. The influence on engineering properties of clayey soils caused by UHI effect is remarkable, and it should be payed higher attention to.
     Due to limits in time and laboratory conditions, this thesis is merely preliminary for the temperature effect research on the engineering properties of clayey soils, and further work on this research topic is analyzed and predicted in the final part of the paper.
引文
[1]施斌,高玮,王宝军,2006.城市地质环境及其评价:地质与地球化学研究进展[M].南京:南京大学出版社,430-439.
    [2]蒋正华等.2005.中国城市发展报告(2005)[M].中国城市出版社.
    [3]雷祥义.2000.协调人与地质环境的关系——人类活动对地质环境的影响[J].西北大学学报(自然科学版).30(4):323-327.
    [4]吴恒,欧孝夺,周东.2003.城市环境下粘性土的热力学行为初探,广西科学,10(3):205-207,215.
    [5]谢庄,崔继良,陈大刚,胡保昆,2006.北京城市热岛效应的昼夜变化特征分析,气候与环境研究,11(1):69-75.
    [6]杨德保,王式功,王玉玺.1994.兰州城市气候变化及热岛效应分析,兰州大学学报(自然科学版),30(4):161-167.
    [7]窦建奇.2001.关于城市“热岛效应”的思考[J].武汉城市建设学院学报,18(3):76-78.
    [8]郭桂香,张东威,布和.1994.认识热污染问题[J].环境保护,5:35-37.
    [9]严平,杨书廷,王相文,等.2000.合肥城市热岛强度及绿化效应[J].合肥工业大学(自然科学版).23(3):318-352.
    [10]Swaid H.N.1990. Themal effects of artificial heat sources and shaded ground areas in the urban canopy layer. Engergy and Buildings,15:253-261.
    [11]丰江红,2003.关注城市热岛效应,南方国土资源, (7):33-34.
    [12]汤连生,王思敬.1999.工程地质地球化学的发展前景及研究内容和思维方法,大自然探索,18(2):34-38.
    [13]Fang H.Y.1997. Introduction to Environmental Geotechnology, CRC Press LLC,23-47, 225-254.
    [14]Reddi L.N.& Inyang H.I.,2000. Geoenvironmental Engineering, Marcel Dekker,INC, 390-393,465-472.
    [15]王宝军,施斌,姜洪涛等.2009.近30年南京市浅层地温场变化规律研究[J].高校地质学报,15(2):199-205.
    [16]施斌,刘春,王宝军等.2008.城市热岛效应对土的工程性质影响及灾害效应分析[J].地球科学进展,23(11):1167-1173.
    [17]施斌,邵玉娴,刘春等.2009.城市”热岛”效应对土体工程性质的影响及其关键科学问题[J].工程地质学报,17(2):180-187.
    [18]吴恒,张信贵,易念平等.1999.城市环境下的水土作用对土强度的影响[J].岩土力学, 20(4):25-30.
    [19]Collins. H.,1993. Impact of the Temperature Inside the Landfill on the Behaviour of Barrier Systems[M], Environmental Sanitary Engineering Center, Cagliari, pp417-432.
    [20]白冰,赵成刚.2003.温度对粘性土介质力学特性的影响[J].岩土力学,24(4)533-537.
    [21]Paaswell R E.,1967.Temperature effects on clay consolidation[J], Soil Mech. and Found. Engrg. Div., ASCE,93 (3):9-21.
    [22]Schiffman RL.1972. A thermoelastic theory of consolidation[J].Environmental and Geophysical Heat.5 (4):78-84.
    [23]Campanella R G, Mitchell J.K.,1968. Influence of temperature variation on soil behavior[J], Soil Mech. And Found. Engrg. Div., ASCE,94(3):709-734.
    [24]Eriksson L G.1989. Temperature effects on consolidation properties of sulphide clays[J]. Proc.12th ICSMFE,3:2087-2090.
    [25]Leroueil S.1996. Compressibility of clays:fundamental andpractical aspects[J]. Geotech. Engrg., ASCE,122 (7):534-543.
    [26]Tidfors M.1989. Temperature effect on preconsolidation pressure[J]. Geotech. Test. J.,12(1):93-97.
    [27]Hueckell T, Borsetto M.1990. Thermoplasticity of saturated clays and shales: constitutive equations[J]. Geotech. Engrg., ASCE,116 (12):1765-1777.
    [28]Hueckell T, Baldi G.1990. Thermoplasticity of saturated clays:experimental constitutive study[J]. Geotech. Engrg. ASCE,116 (12):1778-1795.
    [29]HUECKEL T.1992. Effective stress and water pressure in saturated clays during heating-cooling cycles [J]. Can. Geotech,29:1095-1102.
    [30]Boudali M.1994. Viscous behavior of natural clays[J]. Proc.13th ICSMFE, (1): 411-416.
    [31]Bruyn D.De, Thimus J.F.1996. The influence of temperature on mechanical characteristics of Boom clay:The results of an initial laboratory programme[J].Engineering Geology,41:117-126.
    [32]Burghignoli A, Desideri A, Miliziano S.2000. A laboratory study on the thermomechanical behaviour of clayey soils[J]. Canadian Geotechnical Journal, 37(4):764-780.
    [33]Hossam M. Abuel-Naga, Dennes T. Bergado, Abdelmalek Bouazza.2007. Thermally induced volume change and excess pore water pressure of soft Bangkok clay [J]. Engineering Geology 89:144-154.
    [34]Morin, R., and Silva, A.J..1984. The effects of high pressure and high temperature on some physical properties of ocean sediments[J]. Journal of Geophysical Research, 89(B1):511-526.
    [35]Mitchell, J.K.,1969. Temperature effects on the engineering properties and behaviour of soils[J], Highway Research Board,Washington DC, pp.9-28.
    [36]A.и.库里契茨基等,李生林等编译.1982.土中结合水译文集[M].北京:地质出版社.
    [37]Habibagahi, K.1977. Temperature effect and the concept of effective void ratio[J]. Indian Geotechnical Journal,1:14-34.
    [38]Towhata I, Kuntiwattanakul P, Seko I, et al.1993. Volume change of clays induced by heating as observed in consolidation tests. Soils and Foundations,33 (4): 170-183.(4):170-183.
    [39]Youssef, M.S., Sabry, A., Ramli, A.H.EI..1961. Temperature changes and their effects on some physical properties of soils[J], Mechanics and Foundation Engineering, Paris, Vol. l,pp.419-421.
    [40]Ian Jefferson, Christopher David Foss Rogers,1998. Liquid limit and the temperature sensitivity of clays,engineering geology,49:95-109.
    [41]Bojana Dolinar, Miha Misic, Ludvik Trauner,2007. Correlation between surface area and atterberg limits of fine-grained soils[J]. Clays and Clay Minerals, 55(5]:519-523.
    [42]Demars K R, Charles R.D.,1982. Soil volume change induced by temperature cycling[J]. Canadian GeotechnicalJournal,19 (2):188-194.
    [43]Baldi G, Hueckel T, Pellegrini,1988. Thermal volume changes of mineral-water system in low porosity clay soils[J], Canadian Geotechnical Journal,25 (4): 807-825.
    [44]Cui Y J, Sultan N, Delage P.,2000. A thermomechanical model for saturated clays[J]. Canadian Geotechnical Journal,37(2):607-620.
    [45]Delage P, Sultan N, Cui Y J.2000. On the thermal consolidation of Boom clay, Canadian Geotechnical Journal,37 (4):343-354.
    [46]Pusch, R.,1980. Permeability of highly compacted bentonite. SKB Technical Report, Swedish Nuclear Fuel and Waste Management.
    [47]Mingarro, E., Rivas, P., et al.,1989.Characterization of clay (bentonite)/crushed granite mixtures to build barriers against the migration of radionuclides: diffusion studies and physical properties. Commission of the European Communities Report EUR 13666.
    [48]Peterson, E., Kelkar, S.,1982. Laboratory tests to determine hydraulic and thermal properties of bentonite-based backfill materials[J]. SAND-82-7221, Sandia National Lab., NM.
    [49]Anh-Minh Tang and Yu-Jun Cui.2005. Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay[J]. Can. Geotech,42:287-296.
    [50]Abel Carlos Jacinto, Maria Victoria Villar, Roberto Gomez-Espina, Alberto Ledesma. 2009. Adaptation of the van Genuchten expression to the effects of temperature and density for compacted bentonites[J]. Applied Clay Science 42:575-582.
    [51]Hopmans, J.W and Dane, J.H.,1986. Temperature dependence of soil hydraulic properties[J],Soil Sci. Soc. Am. J.,50:4-9.
    [52]E. ROMERO, A. GENS and A. LLORET,2001. Temperature effects on the hydraulic behaviour of an unsaturated clay[J].Geotechnical and Geological Engineering,19: 311-332.
    [53]Benson, C.H., Trast, J.M.,1995. Hydraulic conductivity of thirteen compacted clays[J], Clays Clay Miner,43 (6],:669-681.
    [54]Bojana Dolinar,2009. Predicting the hydraulic conductivity of saturated clays using plasticity-value correlations[J], Applied Clay Science,45:90-94.
    [55]ENRESA,1998. FEBEX bentonite:origin, properties and fabrication of blocks. Publicacio'nTe'cnica ENRESA 4/98:146.
    [56]Lingnau B.E., j. Graham, D. Yarechewski, N. Tanaka, M.N. Gray.1996. Effects of temperature on strength and compressibility of sand bentonite buffer[J]. Engineering Geology,41:103-115.
    [57]Benjamin Loret, TomaszHueckel, Alessandro Gajo.2002. Chemo-mechanical coupling in saturated porous media:elastic-plastic behaviour of homoionic expansive clays [J]. International Journal of Solids and Structures 39:2773-2806.
    [58]Zhang, Chun-Liang; Rothfuchs, Tilmann; Su, Kun; Hoteit, Nasser.1996. Effects of temperature on strength and compressibility of sand bentonite buffer[J]. Engineering Geology,41:103-115.
    [59]M.V. Villar.1999. Investigation of the behaviour of bentonite by means of suction-controlled oedometer tests [J]. Engineering Geology 54:67-73.
    [60]M.V. Villar, A. Lloret.2004. Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite[J]. Applied Clay Science 26:337-350.
    [61]Romero E., Villar M.V., Lloret A.2005. Thermo-hydro-mechanical behaviour of two heavily overconsolidated clays [J]. Engineering Geology 81:255-268.
    [62]Modaressi H, Laloui L.1997. A thermo-viscoplastic constitutive model for clays, International Journal for Numerical and Analytical Methods in Geomechanics,21 (5):313-315.
    [63]Gatmiri B, Delage P.1997. A formulation of fully coupled thermal-hydraulic-mechanical behavior of saturated porous media, numerical approach, International Journal for Numerical and Analytical Methods in Geomechanics,21 (2):199-225.
    [64]Robinet J-C., Rahbaoui A., Plas F., Lebon p..1996. A constitutive thermomechanical model for saturated clays [J]. Engineering Geology 41:145-169.
    [65]Graham, J, Tanaka, N, Crilly, T, Alfaro, M.2001. Modified Cam-Clay modelling of temperature effects in clays [J]. Can. Geotech. J.38:608-621.
    [66]Thomas H.R., Cleall P.J..1999. Inclusion of expansive clay behaviour in coupled thermo hydraulic mechanical models [J]. Engineering Geology 54:93-108.
    [67]Lloret A., Villar M.V.2007. Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted "FEBEX" bentonite[J]. Physics and Chemistry of the Earth 32:701-715.
    [68]Javier Samper, Liange Zheng, Luis Montenegro, Ana Man'a Ferna'ndez, Pedro Rivas. 2008. Coupled thermo-hydro-chemical models of compacted bentonite after FEBEX in situ test [J]. Applied Geochemistry 23:1186-1201.
    [69]TANG A.-M. andCUI Y.-J.2009. Modelling the thermomechanical volume change behaviour ofcompacted expansive clays [J]. Ge'otechnique 59, No.3,185-195.
    [70]Thomas H.R., He Y., Sansom M.R., Li C.L.W.1996. On the development of a model of the thermo-mechanical-hydraulic behaviour of unsaturated soils [J]. Engineering Geology 41:197-218.
    [71]Bernier F., Volckaert G., Alonso E., Villar M. V.1997. Suction-controlled experiments on Boom clay[J]. Engineering Geology 47:325-338.
    [72]Collin F., Li X.L., Radu, J.P. Charlier R.2002. Thermo-hydro-mechanical coupling in clay barriers [J]. Engineering Geology 64:179-193.
    [73]Mitchell 3 K, Kao T C.1978. Measurement of soil thermal resistivity[J].Journal of the Geotechnical Engineering Division, ASCE,104 (10):1307-1320.
    [74]Salomone L A, Kovacs W D.1984. Thermal resistivity of soils[J] Journal of the Geotechnical Engineering Division, ASCE,110 (3):375-389.
    [75]Gangadhara R, Singh D N. A.1999. Generalized relationship to estimate thermal resistivity of soils[J].Canadian Geotechnical Journal,36 (2):767-773.
    [76]M.V.B.B. Gangadhara Rao, D.N. Singh 1999. A generalized relationship to estimate thermal resistivity of soils [J]. Can. Geotech. J.36:767-773.
    [77]Devendra Narain Singh, Konchenapalli Devid.2000. Generalized relationships for estimating soil thermal resistivity [J]. Experimental Thermal and Fluid Science,22:133-143.
    [78]吴青柏,刘永智,施斌,张建明,童长江,2002.青藏公路多年冻土区冻土工程研究新进展[J],工程地质学报,10(1):55-61.
    [79]吴青柏,施斌,刘永智,2002.青藏公路沿线多年冻土与公路间相互作用过程研究[J],中国科学(D辑),32(6):514-520.
    [80]贾朝霞等,2003.路基温度场、湿度场耦合作用计算模型[J],山东大学学报(工学版),33(2):183-200.
    [81]靳德武等,2003.土体冻融过程中渗流场、应力场、温度场耦合作用机理研究[J],煤田地质与勘探,31(5):40-42.
    [82]李述训,吴通华,2004.冻土温度状况研究方法和应用分析[J],冰川冻土,26(4)377-383.
    [83]祁长青,吴青柏,施斌,徐洪钟,2005.青藏铁路冻土路基温度场随机有限元分析[J],工程地质学报,13(3):330-335.
    [84]刘红军,程显春,马介峰.2005.多年冻土的力学性质[J].东北林业大学学报,33(2):102-103.
    [85]刘亚晨,刘泉声,吴玉山,蔡永庆,2000.核废料贮库围岩介质不可逆过程热力学和热弹性[J],岩石力学与工程学报,19(3):361-365.
    [86]黄涛,2002.裂隙岩体渗流-应力-温度耦合作用研究[J],岩石力学与工程学报,21(1): 77-82.
    [87]姜洪涛,施斌,高玮,2005.人为土的概念及其工程性质特征[J],水文地质工程地质,32(6):79-81.
    [88]吴恒,张信贵,易念平,代志宏,龚琦,1999.城市环境下的水土作用对土强度的影响[J],岩土力学,20(4]:25-30.
    [89]张信贵,2002.城市区域水土作用分析与土的结构强度研究[T],广西大学,博士论文.
    [90]欧孝夺,2004..城市环境下粘性土细观结构的热力学行为研究.[T],广西大学,博士论文.
    [91]吴恒,周东,2005.不同酸碱条件下黏性土的热力学稳定性试验研究[J],土木工程学报,38(10):113-118.
    [92]欧孝夺,吴恒,周东.2005.广西红粘土和膨胀土热力学特性的比较研究[J].岩土力学,26(7):1068-1072.
    [93]武文华,李锡夔.2002.非饱和土的热-水力-力学本构模型及数值模拟[J].岩土工程学报,24(4]:411-416.
    [94]高燕希,冯战,郑健龙.2002.非饱和土抗剪强度的温度性质[J].长沙交通学院学报,18(4):68-71.
    [95]谢云,陈正汉,李刚.2005.温度对非饱和膨胀土抗剪强度和变形特性的影响[J].岩土工程学报,27(9):1082-1085.
    [96]韦立德等,渗流场和温度场引起边坡灾害预报的有限元法,金属矿山,2005,349(7): 17-20.
    [97]蔡国庆,赵成刚.2010.非饱和土渗流和变形强度特性的温度效应[J].力学进展,40(2):147-156.
    [98]王铁行,陆海红.2004.温度影响下的非饱和黄土水分迁移问题探讨[J].岩土力学,25(7):1081-1084.
    [99]蒋腾健.2008.膨胀土胀缩过程中渗流场、温度场、应力场耦合作用机理的研究[J].建筑科技与管理,12:7-9.
    [100]赵剑畏,许家法,王光亚.1997.江苏地温水温场特征及地热异常分布规律与控制条件探讨[J].江苏地质,21(1):27-35.
    [101]于双忠.1995.煤矿区深部粘性土吸附结合水含量测定及其意义[J].水文地质工程地质,3:31-34.
    [102]刘汉湖,林学彬,蔡致中,吴诚寅.1995.巨厚松散层底部含水层水理性质特征及其与开采的关系[J].江苏煤炭,4:18-20.
    [103]何俊,肖树芳.2003.结合水对海积软土流变性质的影响[J].吉林大学学报(地球科学版),33(2):204-207.
    [104]廖义玲,胡世敬,左双英,邵映川.2003.贵州可溶岩层上粘土的水理性质及其环境效应[J].贵州科学,21(4):10-12.
    [105]刘晓红,饶秋华.2004.结合水及游离氧化物对粘性土相关物理指标的影响[J].桂林工学院学报,24(1):55-58.
    [106]柴寿喜,王沛,魏丽,李芳,韩文峰.2006.含盐量对滨海盐渍土物理及水理性质的影响[J].煤田地质与勘探,34(6):47-49.
    [107]黄河,施斌,刘瑾,姜洪涛,高玮.2008.STW型生态土壤稳定剂改性膨胀土水理性质试验研究[J].岩土工程学报,30(8):1236-1240.
    [108]郭永春,谢强,文江泉.2008.红层岩土水理性质工程判别准则试验研究[J].水文地质工程地质,4:71-74.
    [109]李柏乔.2009.结合水能否传递静水压力——与方玉树先生探讨水压率问题[J].岩土工程界,12(12):1-2.
    [110]崔德山,项伟,曹李靖,刘清秉.2010.ISS减小红色黏土结合水膜的试验研究[J].岩土工程学报,32(6]:944-949.
    [111]Fukue, M., Minato, T., Horibe, H., Taya, N.,1999. The micro structures of clay given by resistivity measurements[J], Engineering Geology,54:43-53.
    [112]沈珠江.1996.土体结构性的数学模型—21世纪土力学的核心问题[J].岩土工程学报,18(1):95-97.
    [113]施斌,刘志彬,姜洪涛.2007.论土体结构各层次的功能及其相互关系[J].工程地质学报,15(5]:577-584.
    [114]施斌.1997.粘性土微观结构定量研究中的几个热点课题[JJ.岩土工程学报,2:119-120.
    [115]刘松玉,方磊.1992.试论粘土粒度分布的分形结构[J].工程勘察,2:1-4.
    [116]胡瑞林,李向前,等.1995.粘土微结构定量模型及其工程地质特征研究[M],北京:地质出版社.
    [117]吴恒,张信贵,易念平,等.2000.水土作用与土体细观结构研究[f].岩石力学与工程学报,19(2):199-204.
    [118]谭罗荣.1983.土的微观结构研究概况和发展[[JJ.岩土力学,4(1):73-85.
    [119]王平全.2000.用离子交换法确定粘土表面结合水界限[J].西南石油学院学报,22(1):59-61.
    [120]王平全,熊汉桥.2002.粘土表面结合水定量分析及水合机制研究[M].石油工业出版社.
    [121]王平全,陈地奎.2006.用热失重法确定水合粘土水分含量及存在形式[J].西南石油学院学报,28(1):52-55.
    [122]吴凤彩,1984.粘性土的渗透结合水测量和渗流的某些特点[J],岩土工程学报,6(6):84-93.
    [123]Ctori, P.,1989. The effects of temperature on the physical properties of cohesive soils[J], Ground Engineering,22 (5),:26-27.
    [124]Tippet, T.,1976. An investigation into the effect of temperature upon the Atterberg Limits and mechanical properties of cohesive soils, Undergraduate Project Report, Lanchester Polytechnic, Coventry.
    [125]Reifer, G.H.,1977. The effect of temperature and mineralogy upon the Atterberg Limits and mechanical properties of cohesive soils, Undergraduate Project Report.
    [126]Lanchester Polytechnic, Coventry. Laguros, J.G.,1969. Effect of temperature on some engineering properties of clay soils[J]. Highway Research Board, Washington DC,pp.186-193.
    [127]谭罗荣,孔令伟.2006.特殊岩土工程土质学[M].北京:科学出版社.
    [128]Abdallah I. Husein Malkawi,et.al,1999. Effects of organic matter on the physical and the physico-chemical properties of an illitic soil[J],Applied Clay Science,14:257-278.
    [129]Abidin Kaya and Hsai-Yang Fang,2005.Experimental evidence of reduction in attractive and repulsive forces between clay particles permeated with organic liquids[J],Canadian Geotechnical Journal,42:632-640.
    [130]Agren, G I, Wetterstedt. J A M.2007, What determines the temperature response of soil organic matter decomposition? [J]. Soil Biology & Biochemistry,39: 1794-1798.
    [131]何伟,赵明华,刘小平,2008.双电层对非饱和粘土渗透率的影响,公路交通科技 [J],25(9):47-51.
    [132]姚华彦,吴云刚,黄斌.2010.侧限条件下膨胀土膨胀试验研究[J].水电能源科学,28(7):40-43.
    [133]JTGD30-2004公路路基设计规范[S].
    [134]GBJ112-87.膨胀土地区建筑技术规范[S].
    [135]陈善雄,余颂,孔令伟,郭爱国,刘观仕.2005.膨胀土判别与分类方法探讨[J],26(12):1895-1900.
    [136]姚海林.杨洋.程平等.2004.膨胀土标准吸湿含水率试验研究[[J].岩石力学与工程学报,23(17):3009-3013.
    [137]苗鹏,肖宏彬,范志强.2008.不同初始条件下的南宁膨胀土胀缩应变试验研究[J].公路工程,33(2):38-41.
    [138]刘祖德,王园.1994.膨胀土浸水三向变形研究[J].武汉水利电力大学学报,27(6):616-621.
    [139]詹志雄,文江泉,吴光.1998.等膨胀岩上体湿度本构模型的探讨[J]地质灾害与环境保护,9(2):49-54.
    [140]缪林昌,仲晓晨,殷宗泽.1999,非饱和膨胀上变形规律的试验研究[J]人坝观测与测试,23(3):36-39.
    [141]刘特洪.1997.工程建设中的膨胀土问题[M].北京:中国建筑工业出版社.
    [142]缪协兴.1995.用湿度应力场理论解圆形铜室遇水作用问题[J]岩土工程学报,17(5):86-90.
    [143]Cho, W.J., Lee, J.O., Chun, K.S.,1999. The temperature effects on hydraulic conductivity of compacted bentonite[J], Applid Clay Science,14:47-58.
    [144]孔令伟,郭爱国,赵颖文,陈善雄.2004.荆门膨胀土的水稳定性及其力学效应[J]岩上工程学报,26(6):727-732.
    [145]OUHADI V. R., YONG R. N., GOODARZI A. R., SAFARI-ZANJANI M.2008. Effect of temperature on the re-structuring of the microstructure and geo-environmental behaviour of smectite[J], Applied Clay Science,47:2-9.
    [146]邵玉娴,施斌,高磊,等.2009,温度对非饱和土抗剪强度影响的试验研究[J].高校地质学报,15(2):213-217.
    [147]Mitchell J.K, Kenichi S.2005. Fundamentals of soil behavior[M]. New York:John Wiley &Sons, Inc.
    [148]陈仲颐,周景星,王洪瑾.1994.土力学[M].北京:清华大学出版社.
    [149]Bin Shi, Chao-Sheng Tang.2010. Observation and analysis of the urban heat island effect on soil in Nanjing, China[J].Environmental Earth Sciences, (under review).
    [150]Chun Liu, Bin Shi, Chaosheng Tang, Lei Gao. A numerical and field investigation of underground temperatures under Urban Heat Island[J]. Building and Environment, (under review).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700