铝电解槽多物理场数学建模及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝电解槽是炼铝的核心设备,其发展与进步代表了电解铝工艺的革新。多物理场在铝电解槽内产生、演变并相互作用,影响铝电解生产的能耗、效率、槽寿命等技术经济指标。因此,建立可靠、灵活、易用的铝电解槽多场耦合仿真模型对开发高效率、高产率、低能耗与长寿命的先进槽型具有重要意义。
     铝电解槽的多场耦合仿真计算非常复杂。铝电解槽内外分布着形状各异的几十种媒质材料,这使得数值计算的前期准备工作如网格剖分、边界条件施加等非常繁杂。单个物理场或耦合场求解的实施步骤难易程度不同,耦合关系、接触现象、磁场开域及收敛性等问题进一步增加了计算的难度。
     本文以铝电解槽内电、磁、热、流、力五个物理场为对象,在使用少量假设条件、合理分割场域、多场共享模型信息和结果的前提下,建立起了较为完整的铝电解槽多物理场仿真模型。在大型预焙槽、特大型预焙槽及导流槽等不同槽型上应用该模型进行了各种仿真研究。
     论文主要创新点如下:
     (1)从降低方法误差的角度出发,把接触方程引入至电磁场模型,消除水平电流及垂直磁场计算误差;建立了槽内导体与复杂母线系统组成的多槽电磁场模型及母线磁场转换模型。研究表明,接触模型的运用使电力线分布更平缓,水平电流明显降低;在电场分布较均匀的情况下降低垂直磁场计算误差的幅度较小,但在电场分布不均的情况下降低垂直磁场计算误差达0.6 mT;无论电场分布是否均匀,与单一面积常数母线模型相比,考虑母线截面变化可降低垂直磁场计算误差0.3~0.4 mT。
     (2)基于VOF自由面跟踪法和自定义的电磁力离散插值函数建立了单一求解域内的电解质—铝液两相流模型,并进行稳态流场的求解。研究表明,在2 000~3 000次迭代后流场计算的最大残差水平低于1×10~(-4)。在河南某电解铝厂350 kA槽上进行了电—磁—流场模型的验证,结果说明了仿真模型的可行性和准确性。
     (3)以现代大面进电铝电解槽为对象,深入研究了槽内导体及母线配置对电、磁、流场分布的影响,总结了磁场分布特征、母线设计思路,获得了场量分布的协调一致性规律,即电场分布越均匀,磁场分布亦越均匀,界面变形越小。
     (4)针对垂直磁场数据多、分布离散的特点,建立了正交最小二乘法曲面拟合函数,突破了常量或线性函数给波动稳定性分析造成的应用局限,同时提高了计算精度。将不同长宽比下的磁场计算结果耦合到波动方程中,计算得到了槽稳定性随长宽比的变化趋势。研究表明,槽内导体产生的磁场分布规律相似,数值随长宽比增加而减小,从而槽子稳定性变好;附加母线产生的磁场后,槽子稳定性变差。
     (5)开发了瞬态焙烧启动热场与应力场模型,对河南某电解铝试验厂300 kA槽上进行了热场及应力场计算。研究表明,设计的非均匀电阻率焦粒层铺设方法分别使内衬温差降低8.0%~30.0%、升温速度降低4.5%~12.5%,从而有效避免早期槽破损;根据线弹性理论,在热膨胀阶段采用半石墨质炭块时槽体位移与热应力最大,采用石墨化炭块时最小,而在随后30 d的热钠膨胀阶段,采用无烟煤炭块时槽体位移与应力最大,采用石墨化炭块时电解槽应力最小。
     (6)针对导流槽和特大型槽开发必须解决的热平衡和磁场分布优化设计问题,获得了一种维持良好热平衡的导流槽结构与工艺方案,以及一种垂直磁场在3.5 mT以下的特大型槽及母线结构方案。
Aluminum reduction cell is the core equipment for industrial electrowinning of aluminum. Its developments and advancements represent up-to-date improvements of aluminum reduction technologies. In aluminum reduction cells multiple physical fields take place, develop and interact with each other inside the cell and affect economic indexes e.g. energy consumption, current efficiency and pot life time during production. Therefore to build up the liable, versatile and easy-to-use multiple physical coupled simulation models are of great significance to develop advanced reduction cells with higher current efficiency, higher labor productivity, lower energy cost and longer pot life.
     The coupled simulations of aluminum reduction cells are very complicated. That tens of media materials with different shapes distribute inside and outside the cell makes some preparation work for numerical calculation so complex including grid meshing, boundary conditions applying and etc. Solution procedures or difficulties for individual field or coupled fields are quite different. Some problems such as coupled relations, contact phenomena, magnetic open boundary and convergence are much difficult to deal with.
     The paper focuses on five physical fields in the aluminum reduction cell, which are the electric, magnetic, thermal, flow and stress fields respectively. The integrated simulation models for the multiple physical fields were set up based on less boundary condition, reasonable partitions of field domains and shared model data and result data between different physical fields. These models were employed in simulation researches on large-scale, super-scale and drained cells.
     The main achievements are summarized as follows:
     (1) From the point of view to decrease method errors, contact equations were incorporated into the electro-magnetic model to eliminate calculation errors of the horizontal current and vertical magnetic component. The multi-cell model including inside inductors and outside busbar circuits and the electro-to-magnetic transfer model for busbar circuits were built up. Results indicate that using the contact model makes electric fluxes distributed smoothly and horizontal current decreased greatly. With the use of contact equations calculation error of vertical magnetic component was decreased to a less extent for the case with the uniform distributions of the electric field, but by 0.6 mT for the case with the nonuniform distributions of the electric field. The changeable cross-section busbar model makes calculation error decreased by 0.3-0.4 mT than the constant one no matter how the electric field distributes.
     (2) The single-domain electrolyte-aluminum two phase flow model was built up based on Volume of Fluid (VOF) interface tracking and user-defined interpolation functions for discrete electromagnetic forces to simulate the static flow filed. The model was observed to achieve convergence with the maximum residual level less than 1×10~(-4) after 2 000-3 000 iterations. The electro-magneto-flow model was applied on the 350 kA prebake cell of one plant located at Henan and well validated for feasibility and accuracy.
     (3) As the modern prebake anode cell with side risers is concerned, impacts of inside conductors and outside busbars on distributions of the electric, magnetic and flow field were systematically studied. Characteristics of the magnetic distribution and methods to design busbar were summarized. The general relation was obtained that the distribution of one field coordinates with those of other fields. Namely if electric field distributes more smoothly, so does the magnetic field. The electrolyte-aluminum interface distortion also becomes much flatter.
     (4) Surface fitting function based on orthogonal least square method was established to deal with thousands of discrete data of magnetic vertical component from the magnetic model. This function can make a breakthrough of the limits of the constant or linear expression in the wave stability analysis and improve accuracy. Magnetic results under a range of aspect ratio of pots were calculated and imported into the MHD model to find out how instability varies with the aspect ratio. The results show that magnetic fields distribute similarly for the cells with different aspect ratios and reduce with increasing aspect ratio, which therefore cause the pots more stable. Instability analysis also show that total magnetic field after appended by busbar circuits makes the pots become less stable.
     (5) The transient heating-up thermal and stress models during bake-out and start-up periods were developed. They were used on 300 kA pot at one pilot smelter in Henan. It is found that the designed coke bed laying method with non-uniform resistivity reduces temperature difference by 8.0%-30.0% and heating-up rate by 4.5%-12.5% respectively in the lining, and decreases the risk of early failure of the cell effectively. Suppose all materials are linear elastic, pot displacement and thermal stress are the largest with semi-graphitic blocks as cathodes and the smallest with graphitized blocks as cathodes respectively at the end of the bake-out. Howerer after 30 d thermal and sodium expansion stage displacement and stress become largest with anthracitic blocks and smallest with graphitized blocks respectively.
     (6) As required by the drained reduction cell and the super-scale reduction cell fundamental design issues are to keep thermal balance and design optimized magnetic field. One reasonable technical and structure scheme with good thermal balance for drained cells, and one structure and busbar design configuration with vertical magnetic component under 3.5 mT for super-scale cells were found out finally.
引文
[1]Φye H A,Mason N,Peterson R D,et al.Aluminum:approaching the new millennium.JOM,1999,51(2):29-42
    [2]Evans J W.Yesterday,today,and tomorrow:The evolution of technology for light metals over the last 50 years:Al,Mg,and Li.JOM,2007,59(2):30-38
    [3]康义.中国电解铝工业发展战略的几点思考.轻金属,2001,(12):3-6
    [4]邱竹贤.预焙槽炼铝(第3版).北京:冶金工业出版社,2005
    [5]席灿明.中国原铝工业现状与竞争力分析.见:论文集编辑委员会,编.北京:冶金工业出版社,2007.143-148
    [6]田应甫.大型预焙铝电解槽生产实践.长沙:中南工业大学出版社,1997
    [7]Dupuis M,Bojarevics V.Weakly coupled thermo-electric and MHD mathematical models of an aluminium electrolysis cell.In:Kvande H,eds.Light Metals 2005.San Francisco,CA:TMS(The Minerals,Metals & Materials Society),2005.449-454
    [8]河野照哉,宅間董.电场数值计算法.北京:高等教育出版社,1985
    [9]Ziegler D P.Current distribution modeling for novel alumina electrolysis.In:Rooy E L,eds.New Orleans,LA:TMS(The Minerals,Metals & Materials Society),1991.363-374
    [10]Hyland W W.Current efficiency of a shorted anode in a prebake cell.In:McGeer J P,eds.Light Metals 1984.Los Angeles,CA:Metallurgical Soc of AIME,1984.711-720
    [11]Zoric J,Rousar I,Kuang Z,et al.Current distribution in aluminium electrolysis cells with SΦderberg anodes Part Ⅱ:Mathematical modelling.Journal of Applied Electrochemistry,1996,26(8):795-802
    [12]Zoric J,Rousar I,Thonstad J.Mathematical modelling of industrial aluminium cells with prebaked anodes:Part Ⅰ:Current distribution and anode shape.Journal of Applied Electrochemistry,1997,27(8):916-927
    [13]Haupin W E.Cathode voltage loss in aluminum smelting cells.In:Lourie D,eds.New York City,NY:Metall Soc of AIME,New York,NY,1975.339-349
    [14]Michel C J.Evolution of the cathodic ohmic drop during the electrolysis in the aluminium cell.In:Bohner H O,eds.Light Metals 1985.New York,NY:Metallurgical Soc of AIME,1985.989-1003
    [15]SΦrlie M,Gran H.Cathode collector bar-to-carbon contact resistance.In: Cutshall E R,eds.Light Metals 1992.San Diego,CA:TMS(The Minerals,Metals & Materials Society),1992.779-787
    [16]Jolas J M,Bos J.Cathode drop comparisons on aluminium Pechiney modern cells.In:Mannweiler U,eds.Light Metals 1994.San Francisco,CA:TMS,1994.403-411
    [17]Beeler R.An analytical model for cathode voltage drop in aluminum reduction cells.In:Crepeau P N,eds.Light Metals 2003.San Diego,CA:TMS(The Minerals,Metals & Materials Society),2003.241-245
    [18]李景江,邱竹贤.铝电解槽阴极电场的计算机仿真.东北工学院学报,1989,10(6):591-597
    [19]Evans J W,Zundelevich Y,Sharma D.Mathematical model for prediction of currents,magnetic fields,melt velocities,melt topography and current efficiency in Hall-H(?)roult cells.Metallurgical Transactions B(Process Metallurgy),1981,12B(2):353-360
    [20]贺志辉,陶光绪,陈世玉.铝电解槽槽膛内形对电流分布的影响.轻金属,1987,(6):28-30
    [21]贺志辉,陈世玉,武威.铝电解槽槽膛内形的研究.轻金属,1988,(10):31-34
    [22]Fraser K J,Billinghurst D,Chen K L,et al.Some applications of mathematical modelling of electric current distributions in Hall-H(?)roult cells.In:Campbell P G;eds.Light Metals 1989.Las Vegas,NV:Metallurgical Soc of AIME,1989.219-226
    [23]曾水平.铝电解槽内电磁场计算及电流效率连续监测的研究:[博士学位论文].长沙:中南工业大学,1996
    [24]Tabsh I,Dupuis M.Modeling of aluminum reduction cells using finite element analysis techniques.In:Evans J W,eds.Light Metals 1995.Las Vegas,NV:TMS (The Minerals,Metals & Materials Society),1995.295-299
    [25]Dupuis M.Computation of aluminum reduction cell energy balance using ANSYS finite element models.In:Welch B J,eds.Light Metals 1998.San Antonio,TX:TMS(The Minerals,Metals & Materials Society),1998.409-417
    [26]李劫,程迎军,赖延清,等.大型预焙槽电解槽电、热场的有限元计算.计算物理,2003,20(4):351-355
    [27]周乃君,崔大光,周正明,等.铝电解槽电热场1/4槽模型有限元解析方法及应用.轻金属,2006,(11):37-40
    [28]Begunov A I,Kulkov V N.Electric fields in the electrolytes of aluminium cells. In:Hale W,eds.Light Metals 1996.Anaheim,CA:TMS(The Minerals,Metals & Materials Society),1996.369-374
    [29]Tvedt T,Nebell H G.Newbus,a simulation program for calculation of the current distribution in the bus bar system of alumina reduction cells.In:Boxall L G,eds.Light Metals 1988.Phoenix,AZ:Metallurgical Soc of AIME,1988.567-573
    [30]Buiza J I.Electromagnetic optimization of the V-350 cell.In:Campbell P G,eds.Light Metals 1989.Las Vegas,NV:Metallurgical Soc ofAIME,1989.211-214
    [31]Yao Shihuan,He Zhihui.Selection of bus bar optimum section in high amperage reduction cells.In:Blckert C M,eds.Anaheim,CA:TMS(The Minerals,Metals & Materials Society),1990.453-458
    [32]姜昌伟.预焙阳极铝电解槽电场、磁场、流场的耦合仿真方法及应用研究:[博士学位论文].长沙:中南大学,2003
    [33]Kacprzak D,Gustafsson M,Li L,et al.Numerical analysis of the collector bar current distribution of a reduction cell.In:Galloway T J,eds.Light Metals 2006.San Antonio,TX:Minerals,Metals and Materials Society(TMS),2006.367-369
    [34]Dupuis M,Bojarevics V.Busbar sizing modeling tools:Comparing an ANSYS based 3D model with the versatile 1D model part of MHD-Valdis.In:Galloway T J,eds.Light Metals 2006.San Antonio,TX:TMS,2006.341-346
    [35]Vanvoren C,Homsi P,Basquin J L,et al.AP 50:The Pechiney 500 kA cell.In:Anjier J L,eds.Light Metals 2001.New Orleans,LA:TMS(The Minerals,Metals & Materials Society),2001.221-226
    [36]张榴晨,徐松.有限元法在电磁计算中的应用.北京:中国铁道出版社,1996
    [37]孙阳.大型预焙阳极铝电解槽的磁场及其对铝液流动影响的研究:[博士学位论文].沈阳:东北大学,2000
    [38]Segatz M,Vogelsang D.Effect of steel parts on magnetic fields in aluminum reduction cells.In:Rooy E L,eds.New Orleans,LA:TMS(The Minerals,Metals & Materials Society),1991.393-398
    [39]邱捷,钱秀英.铝电解槽中非线性磁场的计算.有色金属,1992,44(3):55-58
    [40]Dupuis M,Bojarevics V,Freibergs J.Demonstration thermo-electric and MHD mathematical models of a 500 KA aluminum electrolysis cell:Part 2.In:Tabereaux A T,eds.Light Metals 2004.Carlotte,NC:TMS(The Minerals,Metals & Materials Society),2004.453-459
    [41]刘志珍,陈红艳,安琳.铝电解槽三维磁场的计算与优化(Ⅰ)一样条积分方程法计算三维磁场.山东大学学报(工学版),2007,37(1):27-30
    [42]刘志珍,陈红艳,安琳.铝电解槽三维磁场的计算与优化(Ⅱ)-改进的遗传算法优化三维磁场.山东大学学报(工学版),2007,37(2):47-51
    [43]Sele T.Computer model for magnetic fields in electrolytic cells including the effect of steel parts.Metallurgical Transactions,1974,5:2145-2150
    [44]Simkin J,Trowbridge C W.On the use of the total scalar potential in the numerical solution of field problems in electromagnetics.International Journal for Numerical Methods in Engineering,1979,14(3):423-440
    [45]Mayergoyz I D,Chari M V K,D'Angelo J.A new scalar potential formulation for three-dimensional magnetostatic problems.IEEE Transactions on Magnetics,1987,MAG-23(6):3889-3894
    [46]Gyimesi M,Lavers J D.Generalized potential formulation for 3-D magnetostatic problems.IEEE Transactions on Magnetics,1992,28(4):1924-1929
    [47]Gyimesi M,Lavers D,Pawlak T,et al.Application of the general potential formulation.IEEE Transactions on Magnetics,1993,29(2):1345-1347
    [48]Dupuis M,Tabsh I.Thermo-electro-magnetic modeling of a Hall-H(?)roult cell[EB/OL],http://www.genisim.qc.ca/website/ansy94.htm,1994
    [49]Severo D S,Schneider A F,Pinto E C V,et al.Modeling magnetohydrodynamics of aluminum electrolysis cells with ANSYS and CFX.In:Kvande H,eds.Light Metals 2005.San Francisco,CA:TMS(The Minerals,Metals & Materials Society),2005.475-480
    [50]姜昌伟,梅炽,周乃君,等.用标量电位法与双标量磁位法计算铝电解槽三维磁场.中国有色金属学报,2003,13(4):1021-1025
    [51]杨溢,黄祖琨,姚世焕,等.利用有限元法计算铝电解槽电磁场.有色冶炼,2002,(6):21-24
    [52]杨溢,李朗如.大型铝电解槽磁场的有限元法综合分析.有色金属,2002,54(3):66-69
    [53]闫照文,汪友生,苏东林,等.大型铝电解槽三维电磁场的数值模拟.电工技术学报,2003,18(5):23-26
    [54]闫照文,苏东林,李朗如,等.基于ANSYS分析的铝电解槽电磁场计算方法.电机与控制学报,2005,9(4):326-329
    [55]Ziegler D P,Kozarek R L.Hall-H(?)roult cell magnetics measurements and comparison with calculations.In:Rooy E L,eds.New Orleans,LA:TMS(The Minerals,Metals & Materials Society),1991.381-391
    [56]Kacprzak D,Gustafsson M J,Taylor M E A finite element analysis of busbars and magnetic field of an aluminum reduction cell.IEEE Transactions on Magnetics,2006,42(10):3192-3194
    [57]李国华,李德祥,邱竹贤.用双标量法计算铝电解槽的磁场.有色金属,1993,45(4):55-59
    [58]Li Guohua,Li Dexiang,Li Dianfeng.Further studies on calculation method of magnetic field in aluminium reduction cell.In:Hale W,eds.Light Metals 1996.Anaheim,CA:TMS(The Minerals,Metals & Materials Society),1996.389-396
    [59]王群京,戴维·汤普森.三相电力变压器漏磁分析的研究.哈尔滨电工学院学报,1990,13(4):337-345
    [60]李琳,崔翔,范津莎,等.双标量磁位法的表面阻抗法.中国电机工程学报,1996,16(2):87-91
    [61]Robl R F.Influence by shell steel on magnetic fields.In:Miller J J,eds.Light Metals 1978.Denver,CO:Metallurgical Society of AIME,1978.1-13
    [62]Arkhipov G V.The mathematical modeling of aluminum reduction cells.JOM,2006,58(2):54-56
    [63]Martin O,Benkahla B,Ttomasino T,et al.The latest developments of Alcan's AP3X and ALPSYS technologies.In:Sφrlie M,eds.Light Metals 2007.Orlando,FL:TMS(The Minerals,Metals and Materials Society),2007.253-258
    [64]Ai D K.Hydrodynamics of the Hall-H(?)roult cell.In:Bohner H O,eds.Light Metals 1985.New York,NY:Metallurgical Society of AIME,1985.593-607
    [65]周萍.铝电解槽内电磁流动模型及铝液流动数值仿真的研究:[博士学位论文].长沙:中南大学,2002
    [66]陶建华.水波的数值模拟.天津:天津大学出版社,2005
    [67]Tarapore E D.Magnetic fields in aluminum reduction cells and their influence on metal pad circulation.In:Peterso W S,eds.Light Metals 1979.New Orleans,LA:Metallurgical Soc of AIME,1979.541-550
    [68]Blanc J M,Entner P.Application of computer calculations to improve electromagnetic behaviour of pots.In:McMinn C J eds.Light Metals 1980.Las Vegas,NV:Metallurgical Society of AIME,1980.285-295
    [69]Arita Y,Ikeuchi H.Numerical calculation of bath and metal convection patterns and their interface profile in al reduction cells.In:Gordon M B,eds.Light Metals 1981.Chicago,IL:Metallurgical Society of AIME,1981.357-371
    [70]Robl R F.Metal flow dependence on ledging in Hall-H(?)roult cells.In:Adkins E M,eds.Light Metals 1983.Atlanta,GA:Metallurgical Society of AIME,1983.449-456
    [71]黄兆林,杨志峰,吴江航.铝电解槽内湍流流动与界面波动的数值模拟.计 算物理,1994,11(2):179-184
    [72]冯乃祥,孙阳,刘刚.铝电解槽热场、磁场和流场及其数值计算.沈阳:东北大学出版社,2001
    [73]Echelini M,Cobo O,Lacunza M,et al.Expansion of a pot line with the aid of mathematical modeling.In:Boxall L G,eds.Light Metals 1988.Phoenix,AZ:The Metallurgical Society of AIME,1988.557-566
    [74]Wahnsiedler W E.Hydrodynamic modeling of commercial Hall-H(?)roult cells.In:Zabreznik R D,eds.Light Metals 1987.Denver,CO:Metallurgical Society of AIME,1987.26-287
    [75]黄俊,吴建康,姚世焕.铝电解槽磁流体流动的数值计算.有色冶炼,2002,(6):25-26
    [76]吴建康,黄珉,黄俊,等.铝电解槽电解质-铝液流动及铝液表面变形计算.中国有色金属学报,2003,13(1):241-244
    [77]Zhou Ping,Zhou Naijun,Mei Chi,et al.Numerical calculation and industrial measurements of metal pad velocities in Hall-H(?)roult cells.Transactions of the Nonferrous Metals Society of China,2003,13(1):208-212
    [78]周萍,梅炽,周乃君,等.三种湍流模型对Al电解槽内Al液流场预测的比较及工业测试.金属学报,2004,40(1):77-82
    [79]LeBlanc R,Potocnik V,Stockman G E,et al.Magnetohydrodynamic analysis of VS soderberg cells.In:Boxall L G,eds.Light Metals 1988.Phoenix,AZ:The Metallurgical Society of AIME,1988.575-582
    [80]吴建康,黄珉,陈波.铝电解槽磁流体稳定性有限元分析.水动力学研究与进展,2002,17(2):230-237
    [81]Sele T.Instabilities of the metal surface in electrolytic alumina reduction cells.Metallurgical Transactions B(Process Metallurgy),1977,8B(4):613-618
    [82]Mori K,Shiota K,Urata N,et al.The surface of oscillation of liquid metal in aluminum reduction cells.In:Leavitt S R,eds.Light Metals 1976.Metallurigical Society of AIME,1976.77-95
    [83]Urata N.Magnetics and metal pad instability.In:Bohner H O,eds.Light Metals 1985.New York,NY:Metallurgical Society of AIME,1985.581-591
    [84]Moreau R J,Ziegler D.Stability of aluminum cells - a new approach.In:Miller R E,eds.Light Metals 1986.New Orleans,LA:Metallurgical Society of AIME,1986.359-364
    [85]Ziegler D P.Stability of metal/electrolyte interface in Hall-H(?)roult cells:effect of the steady velocity.Metallurgical Transactions B,1993,24B:899-906
    [86] Potocnik V. Modelling of metal-bath interface waves in Hall-H(?)roult cells using Ester/Phoenics. In: Campbell P G, eds. Light Metals 1989. Las Vegas, NV: Metallurgical Society of AIME, 1989. 227-235
    [87] Segatz M, Droste Ch. Analysis of magnetohydrodynamic instabilities in aluminum reduction cells. In: Mannweiler U, eds. Light Metals 1994. San Francisco, CA: TMS (The Minerals, Metals & Materials Society), 1994. 313-322
    [88] Sneyd A D, Wang A. Interfacial instability due to MHD mode coupling in aluminum reduction cells. Journal of Fluid Mechanics, 1994,263: 343-359
    [89] Urata N. Wave mode coupling and instability in the internal wave in aluminum reduction cells. In: Kvande H, eds. Light Metals 2005. San Francisco, CA: TMS, 2005. 455-460
    [90] Sun H, Zikanov O, Ziegler D P. Non-linear two-dimensional model of melt flows and interface instability in aluminum reduction cells. Fluid Dynamics Research, 2004, 35(4): 255-274
    [91] Bojarevics V, Pericleous K. Comparison of MHD models for aluminium reduction cells. In: Galloway T J, eds. Light Metals 2006. San Antonio, TX: TMS (The Minerals, Metals & Materials Society), 2006. 347-352
    [92] Bojarevics V, Romerio M V. Long waves instability of liquid metal-electrolyte interface in aluminum electrolysis cells: A generalization of Sele's criteria. European Journal of Mechanics B, 1994,13: 33-56
    [93] Kohno H, Molokov S. Interfacial instability in aluminium reduction cell in a vertical magnetic field with a transverse gradient to the sidewall. Physics Letters A, 2007, 366: 600-605
    [94] El-Demerdash M F, El-Raghy S M, Bassuny Z. Estimation of aluminium cell stability for a given bus-bar design. In: Evans J W, eds. Light Metals 1995. Las Vegas, NV: TMS (The Minerals, Metals & Materials Society), 1995. 289-294
    [95] Droste Ch, Segatz M, Vogelsang D. Improved 2-dimensional model for magnetohydrodynamic stability analysis in reduction cells. In: Welch B J, eds. Light Metals 1998. San Antonio, TX: TMS (The Minerals, Metals & Materials Society), 1998. 419-428
    [96] Gusberti V, Severo D S, Schneider A F, et al. Modeling the effect of the anode change sequence with a non-linear shallow water stability model. In: S(?))rlie M, eds. Light Metals 2007. Orlando, FL: TMS (The Minerals, Metals and Materials Society), 2007. 317-22
    [97] Shin D, Sneyd A D. Metal pad instabilities in aluminium reduction cells. In: Peterson R D,eds.Light Metals 2000.Nashville,TN:TMS(The Minerals,Metals & Materials Society),2000.279-283
    [98]Zikanov O,Thess A,Davidson P A,et al.New approach to numerical simulation of melt flows and interface instability in Hall-H(?)roult cells.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,2000,31(6):1541-1550
    [99]Kadkhodabeigi M,Saboohi Y.A new wave equation for MHD instabilities in aluminum reduction cells.In:Sφrlie M,eds.Light Metals 2007.Orlando,FL:TMS(The Minerals,Metals and Materials Society),2007.345-349
    [100]Boivin R,Martel S.Effect of an instability of the metal surface on the magnetic field inside a cell.In:Blckert C M,eds.Anaheim,CA:TMS(The Minerals,Metals & Materials Society),1990.233-241
    [101]Wu Jiankang,Huang Ming,Huang Jun,et al.Finite element analysis of magnetohydrodynamics stability of an aluminum reduction cell.In:Schneider W,eds.Light Metals 2002.Seattle,WA:TMS(The Minerals,Metals & Materials Society),2002.511-514
    [102]梁汉.铝电解槽磁流体稳定性判据.轻金属,2005,(8):40-45
    [103]李贺松.大型铝电解槽非稳态非均一模型及关键极节能技术研究:[博士学位论文].长沙:中南大学,2006
    [104]霍庆发.电解铝工业技术与装备.沈阳:辽海出版社,2002
    [105]Haupin W E.Calculating thickness of containing walls frozen from melt.In:Edgeworth T C,eds.Light Metals 1971.New York,NY:The Metallurgical Society of AIME,1971.188-194
    [106]Kryukovsky V A,Scherbinin S A.Mathematical modelling of heat transfer in pots lining materials for production of non-ferrous metals.In:Rooy E L,eds.San Diego,CA:TMS(The Minerals,Metals & Materials Society),1991.557-562
    [107]李景江,邱竹贤.铝电解槽槽帮结壳形状的计算机模拟.东北工学院学报,1989,10(3):232-237
    [108]Pfundt H,Vogelsang D,Gerling U.Calculation of the crust profile in aluminium reduction cells by thermal computer modelling.In:Campbell P G,eds.Light Metals 1989.Las Vegas,NV:Metallurgical Society of AIME,1989.371-377
    [109]Valles A,Lenis V,Rao M.Prediction of ledge profile in Hall-H(?)roult cells.In:Evans J W,eds.Light Metals 1995.Las Vegas,NV:TMS(The Minerals,Metals & Materials Society),1995.309-313
    [110]Ali M M,Mostafa A A.Improvement of the aluminum cell lining behaviour by using SiC.In:Huglen R,eds.Light Metals 1997.Orlando,FL:TMS(The Minerals,Metals & Materials Society),1997.273-278
    [111]Kaseb S,Ahmed H A,El-Refaie F A,et al.Thermal behavior of prebaked aluminum reduction cells:Modeling and experimental analysis.In:Huglen R,eds.Light Metals 1997.Orlando,FL:TMS(The Minerals,Metals & Materials Society),1997.395-401
    [112]Bruggeman J N,Danka D J.Two-dimensional thermal modeling of the Hall-H(?)roult cell.In:Blckert C M,eds.Anaheim,CA:TMS(The Minerals,Metals & Materials Society),1990.203-209
    [113]梅炽,汤洪清,孟柏庭,等.铝电解槽电、热解析数学模型及数值仿真试验.中南矿冶学院学报,1986,(6):29-37
    [114]李劫,邓星球,赖延清,等.160kA预焙铝电解槽在低分子比和低温条件下的三维电热场.中南大学学报(自然科学版),2004,35(6):875-879
    [115]王长宏.300kA石墨化阴极铝电解槽工业试验与数值仿真研究:[硕士学位论文].长沙:中南大学,2006
    [116]陶沙,陆继东,罗海岩.铝电解槽阳极覆盖料散热特性模拟研究.轻金属,2005,(2):24-27
    [117]Antille J P,Givord M,Kraehenbuehl Y,et al.Effects of current increase on aluminum reduction cells.In:Evans J W,eds.Light Metals 1995.Las Vegas,NV:TMS(The Minerals,Metals & Materials Society),1995.315-321
    [118]游旺.大型预焙铝电解槽槽膛内形在线动态仿真研究:[博士学位论文].长沙:中南工业大学,1997
    [119]Chen J J J,Wei C C,Thomson S,et al.Study of cell ledge heat transfer using an analogue ice-water model.In:Mannweiler U,eds.Light Metals 1994.San Francisco,CA:TMS(The Minerals,Metals & Materials Society),1994.285-293
    [120]Chen J J J,Wei C C,Ackland A D.Water-model study of the ledge heat transfer in an aluminium cell.In:Hale W,eds.Light Metals 1996.Anaheim,CA:TMS (The Minerals,Metals & Materials Society),1996.357-364
    [121]Khokhlov V A,Filatov E S,Solheim A,et al.Thermal conductivity in cryolitic melts-new data and its influence on heat transfer in aluminum cells.In:Welch B J,eds.Light Metals 1998.San Antonio,TX:TMS(The Minerals,Metals &Materials Society),1998.501-506
    [122]Hatem G,Llavona M,Log T,et al.Thermal conductivity of some alumina powders and synthetic Hall-H(?)roult crusts.In:Campbell P G,eds.Light Metals 1989.Las Vegas,NV:Metallurgical Society of AIME,1989.365-370
    [123]李景江,邱竹贤.铝电解槽碳素材料的高温电阻率.轻金属,1989,(5):31-35
    [124]Pawlek R P.SiC in aluminium electrolysis cells.In:Evans J W,eds.Light Metals 1995.Las Vegas,NV:TMS(The Minerals,Metals & Materials Society),1995.527-533
    [125]沈时英.关于铝电解阳极过电压的性质及其在能量平衡中的作用问题.轻金属,1989,(7):22-25
    [126]Mohammed S A,Abdulwahab M M,Arif A A,et al.Mathematical modelling for coke bed preheating of aluminum reduction cell.In:Huglen R,eds.Light Metals 1997.Orlando,FL:TMS(The Minerals,Metals & Materials Society),1997.457-461
    [127]Dupuis M.Usage of a full 3D transient thermo-electric F.E.model to study the thermal gradient generated in the lining during a coke preheat.In:Anjier J L,eds.Light Metals 2001.New Orleans,LA:TMS(The Minerals,Metals & Materials Society),2001.757-761
    [128]张钦菘.160kA预焙铝电解槽焦粒焙烧过程电-热-应力场计算机仿真研究:[硕士学位论文].长沙:中南大学,2005
    [129]Sφdie M,(?)ye H A.Cathodes in aluminium electrolysis(2nd edition).Dusseldorf:Aluminium-Verlag,1994
    [130]Mittag J,Bernhauser E,Friedli H.Sodium,its influence on cathode life in theory and practice.In:Cutshall E R,eds.Light Metals 1991.San Diego,CA:TMS(The Minerals,Metals & Materials Society),1991.789-793
    [131]伍洪泽,文丕华.180 kA级铝电解槽槽壳应力数值计算方法.中国有色金属学报,1995,5(1):30-33
    [132]Sayed H S,Megahed M M,Omar H H,et al.Assessment of cathode swelling pressure using nonlinear finite element technique.In:Hale W,eds.Light Metals 1996.Anaheim,CA:TMS(The Minerals,Metals & Materials Society),1996.383-388
    [133]Sayed H S,Megahed M M,Dawi F M,et al.Identification of the nonlinear swelling pressure distribution of the aluminum reduction cell.In:Huglen R,eds.Light Metals 1997.Orlando,FL:TMS(The Minerals,Metals & Materials Society),1997.303-308
    [134]曹国法.大型铝电解槽槽壳热应力分析和上部结构设计.铝镁通讯,1991,(1):23-30
    [135]Wu Youwei,Yao Shihuan.Optimum investigation on structure of aluminum reduction cell potshell.In:Rooy E L,eds.New Orleans,LA:TMS(The Minerals,Metals & Materials Society),1991.431-434
    [136]Megahed M M,Sayed H S,Hasan M S,et al.Finite element modeling for structural analysis of shells of reduction cells.In:Hale W,eds.Light Metals 1996.Anaheim,CA:TMS(The Minerals,Metals & Materials Society),1996.375-381
    [137]霍岱明,朱丹青.浅谈摇篮式铝电解槽槽壳的设计及结构改进.轻金属,2002,(10):46-50
    [138]Dupuis M,Asadi G V,Read C M,et al.Cathode shell stress modelling.In:Blckert C M,eds.New Orleans,LA:TMS(The Minerals,Metals & Materials Society),1990.427-430
    [139]梁利.200kA铝电解槽非线性有限元结构分析:[硕士学位论文].武汉:华中科技大学,2003
    [140]王长成,蒙培生.铝电解槽焙烧启动过程热应力有限元分析.华中科技大学学报(城市科学版),2006,23(增刊2):55-58
    [141]王泽武,蒙培生,曾青,等.铝电解槽三维热应力场非线性有限元分析.北京科技大学学报,2007,29(9):948-952
    [142]霍庆发.推广280kA大型预焙槽技术带动铝电解工业发展的探讨.轻金属,1997,(3):25-30
    [143]席灿明.180kA预焙槽的开发.轻金属,1997,(2):28-32
    [144]张超英,孟荣光,沈玖珩.大型铝电解槽超静定约束反力、变形及摇兰架刚度的工程测试研究.机械,2000,27(1):3-4
    [145]Larsen B,Sφrlie M.Stress analysis of cathode bottom blocks.In:Campbell P G,eds.Light Metals 1989.Las Vegas,NV:Metallurgical Society of AIME,1989.641-646
    [146]Dupuis M,Tabsh I.Evaluation of thermal stress due to coke preheat of a Hall-H(?)roult.Proceeding of the ANSYS 6th International Conference,1994:3.15-3.23
    [147]Arkhipov G V,Pingin V V.Investigating thermoelectric fields and cathode bottom integrity during cell preheating,start-up and initial operating period.In:Schneider W,eds.Light Metals 2002.Seattle,WA:TMS(The Minerals,Metals & Materials Society),2002.347-354
    [148]邓星球.160 kA预焙阳极铝电解槽阴极内衬电-热-应力计算机仿真研究:[硕士学位论文].长沙:中南大学,2004
    [149]Arkhipov G,Pingin V.Investigating cathode strained-stressed state in the aluminum electrolysis cell.In:Anjier J L,eds.Light Metals 2001.New Orleans, LA:TMS(The Minerals,Metals & Materials Society),2001.763-769
    [150]Sun Y,Wang Q,Rye K A,et al.Modelling of thermal and sodium expansion in prebaked aluminium reduction cells.In:Crepeau P N,eds.Light Metals 2003.San Diego,CA:TMS(The Minerals,Metals & Materials Society),2003.603-610
    [151]Sun Y,Forslund K G,Sφdie M,et al.3-D Modelling of thermal and sodium expansion in Soderberg aluminium reduction cells.In:eds.Light Metals 2004.Carlotte,NC:TMS(The Minerals,Metals & Materials Society),2004.587-592
    [152]Peyneau J M,Gaspard J R,Dumas D,et al.Laboratory testing of the expansion under pressure due to sodium intercalation in carbon cathode materials for aluminum smelters.In:Cutshall E R,eds.Light Metals 1992.San Diego,CA:TMS(The Minerals,Metals & Materials Society),1992.801-808
    [153]Mikhalev Y,(?)ye H A.Absorption of metallic sodium in carbon cathode materials.Carbon,1996,34(1):37-41
    [154]Zolochevsky A,Hop J G,Servant G,et al.Rapoport-Samoilenko test for cathode carbon materials:Ⅰ.Experimental results and constitutive modelling.Carbon,2003,41(3):497-505
    [155]Zolochevsky A,Hop J G,Foosnaes T,et al.Rapoport-Samoilenko test for cathode carbon materials-Ⅱ.Swelling with external pressure and effect of creep.Carbon,2005,43(6):1222-1230
    [156]Johnson A R,Guelfo G R.Applying new technology in plant retrofit programs.In:Boxall L G,eds.Light Metals 1988.Phoenix,AZ:The Metallurgical Soc.of AIME,1988.617-621
    [157]Ferreira J A.Retrofit of Soderberg smelter at Alusaf Bayside plant Part 2-start-up and operation of pilot plant.In:Hale W,eds.Light Metals 1996.Anaheim,CA:TMS(The Minerals,Metals & Materials Society),1996.335-338
    [158]Vogelsang D,Droste Ch,Segatz M,et al.Retrofit of Soderberg smelter at Alusaf Bayside plant Part 1 - conceptual design and engineering.In:Hale W,eds.Light Metals 1996.Anaheim,CA:TMS(The Minerals,Metals & Materials Society),1996.327-333
    [159]成庚.铝电解槽经济性改造时的磁场问题研究.轻金属,2000,(7):34-37
    [160]Dupuis M.Thermo-electric analysis of the grande-baie aluminum reduction cell.In:Mannweiler U,eds.Light Metals 1994.San Francisco,CA:TMS(The Minerals,Metals & Materials Society),1994.339-342
    [161]孙阳,冯乃祥,崔建忠.186kA大型预焙阳极铝电解槽磁场的三维数值计算. 金属学报,2001,37(3):332-336
    [162]李茂,周孑民,王长宏.300 kA铝电解槽电、磁、流多物理场耦合仿真.过程工程学报,2007,7(2):354-359
    [163]Cifuentes A O,Kalbag A.A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis.Finite Elements in Analysis and Design,1992,12(3-4):313-318
    [164]李庆龄.ANSYS中网格划分方法研究.上海电机学院学报,2006,9(5):28-30
    [165]Richard D,Fafard M,Lacroix R,et al.Aluminum reduction cell anode stub hole design using weakly coupled thermo-electro-mechanical finite element models.Finite Elements in Analysis and Design,2001,37(4):287-304
    [166]Sφrlie M,Gran H,(?)ye H A.Property changes of cathode lining materials during cell operation.In:Evans J W,eds.Light Metals 1995.Las Vegas,NV:TMS(The Minerals,Metals & Materials Society),1995.497-505
    [167]于军,王凤宝,冯乃祥.铝电解槽阴极碳块的分类、评价与质量保证.世界有色金属,1996,(5):19-23
    [168]廖贤安,韦涵光.铝电解槽炭素内衬材料的性能要求和发展趋势.轻金属,2001,(6):51-53
    [169]ANSYS Modeling and Meshing Guide.
    [170]刘涛,杨凤鹏.精通ANSYS.北京:清华大学出版社,2002
    [171]ANSYS Inc.Theory Reference,Chapter 5.
    [172]唐兴伦,范群波,张朝辉,等.ANSYS工程应用教程-热与电磁学篇.北京:中国铁道出版社,2003
    [173]Li J,Liu W,Lai Y Q,et al.Coupled simulation of 3D electro-magneto-flow field in Hall-H(?)roult cells using finite element method.Acta Metallurgica Sinica (English Letters),2006,19(2):105-116
    [174]Haarberg T,Olsen E,Solheim A,et al.Bath-metal interfacial deformation due to gas induced flow in aluminium cells.In:Anjier J L,eds.Light Metals 2001.New Orleans,LA:TMS(The Minerals,Metals & Materials Society),2001.475-479
    [175]Bojarvics V,Romerio M V.Long waves instability of liquid metal-electrolyte interface in aluminum electrolysis cells:A generalization of Sele's criteria.European Journal of Mechanics B,1994,13:33-56
    [176]郭玉翠.数学物理方法(研究生用书).北京:北京邮电大学出版社,2002
    [177]史万明,杨骅飞,吴裕树,等.数值分析(第二版).北京:北京理工大学出版社,2004
    [178]曾清红,卢德唐.基于移动最小二乘法的曲线曲面拟合.工程图学学报,2004,(1):84-89
    [179]张铮,杨文平,石博强,等.MATLAB程序设计与实例应用.北京:中国铁道出版社,2003
    [180]郭宽良.计算传热学.合肥:中国科学技术大学出版社,1988
    [181]陶文铨.数值传热学.西安:西安交通大学出版社,1988
    [182]薛守义.弹塑性力学.北京:中国建材工业出版社,2005
    [183]Haugland E,Borset H,Gikling H,et al.Effects of ambient temperature and ventilation on shell temperature,heat balance and side ledge of an alumina reduction cell.In:Crepeau P N,eds.Light Metals 2003.San Diego,CA:TMS (The Minerals,Metals & Materials Society),2003.269-276
    [184]李景江,邱竹贤.铝电解槽阴极电场的计算机仿真.东北工学院学报,1988,10(6):591-597
    [185]Tarapore E D.Effect of some operating variables on flow in aluminum reduction cells.In:Bell G M,eds.Light Metals 1981.Chicago,IL:Metallurgical Soc of AIME,1981.341-355
    [186]赵无畏,赵群,谢雁丽等.现代预焙铝电解槽焦粒焙烧预热焙烧启动研究.轻金属,2003,(2):34-39
    [187]姚士焕.铝电解理论与实践在近代大型预焙槽上的应用[EB/OL].http://www.gami.com.cn,2007
    [188]Beran P,Von Kaenel R,Lange H P,et al.Impact of current increase on specific energy consumption.In:Anjier J L,eds.Light Metals 2001.New Orleans,LA:TMS(The Minerals,Metals & Materials Society),2001.179-184
    [189]蒋振本,吕增旭.分析探讨铝电解槽早期破损原因及其改进预防措施.世界有色金属,2002,(6):52-53
    [190]柴永成.铝电解槽焦粒焙烧工艺评价和认识.有色金属,1993,(8):37-40
    [191]Stedman I G,Houston G J,Shaw R W,et al.Aluminum smelting cells.US,5043047,1991-08-27
    [192]Townsend D W.Supersaturation plating of aluminum wettable cathode coatings during aluminum smelting in drained cathode cells.US,5028301,1991-07-02
    [193]de NORA V.Cell for aluminium electrowinning employing a cathode cell bottom made of carbon blocks which have parallel channels therein.US,5683559,1997-11-04
    [194]Berclaz G,de NORA V.Aluminum production cell and cathode.US,6358393,2002-03-19
    [195]Brown C W.Wettability of TiB_2-based cathodes in low-temperature slurry-electrolyte reduction cells.JOM,1998,50(5):38-40
    [196]李相鹏.75kA导流型铝电解槽物理场仿真与优化:[博士学位论文].长沙:中南大学,2004
    [197]Thonstad J.Are inert anodes for aluminum electrolysis close to a technological breakthrough.In:Committee Editorial,eds.Proceedings of 2007 China International Conference on Aluminum Metallurgy.Beijing:Metallurgical Industry Press,2007.15-19
    [198]裴海灵,周乃君,周正明.导流型铝电解槽抗热扰动能力研究.轻金属,2005,(3):26-29
    [199]周正明.导流型铝电解槽的电热场仿真与优化研究:[硕士学位论文].长沙:中南大学,2004
    [200]Li X P,Li J,Lai Y Q,et al.Freeze profile heat balance calculation of the 160kA drained cell.Acta Metallurgica Sinica(English Letters),2004,17(2):215-220
    [201]周萍.铝电解槽槽膛内形的连续监测:[硕士学位论文].长沙:中南大学,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700