一维热扩散系统及相关模型解的整体适定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热扩散系统描述的是固体介质中热扩散的过程,是根据固体介质中热扩散的基本理论所建立的一类数学模型。在本文中,我们主要研究一维热扩散系统及相关模型初边值问题解的整体适定性,包括第Ⅰ型的热扩散系统,带有第二声的热扩散系统和第Ⅲ型的热扩散系统等,得到了它们解的整体存在性、渐近稳定性和整体(一致)吸引子的存在性。
     本文共分为五章:
     第一章是绪论,主要介绍了所研究问题的相关研究背景、研究进展、本文的主要工作、本文研究中经常用到的半群方法基本理论、吸引子存在性基本理论和一些常用的不等式。
     第二章研究了第Ⅰ型热扩散系统解的整体适定性,首先利用半群方法得到了自治系统解的整体存在性和指数稳定性,其次利用半群方法得到了非自治系统和半线性系统解的整体存在性,利用多乘子方法得到了非自治系统解的渐近稳定性,并讨论了其它几种边界条件的情况,给出了相关结论,最后利用压缩函数的方法得到过程族的一致渐近紧性,从而得到了非自治系统一致吸引子的存在性。该方法的主要优点在于我们可以利用在建立吸收集时所需要的能量估计,来直接验证紧性条件。
     第三章我们讨论了带有第二声的热扩散系统解的整体适定性,分别考察了两端固定且无热扩散流的边界条件情形和两端固定且温度和化学势恒定的边界条件情形,首先利用半群方法得到了系统解的整体存在性,其次利用能量方法、多乘子方法和边界控制技巧得到了解的指数稳定性,最后利用压缩函数的方法得到半群的渐近紧性,从而得到了系统整体吸引子的存在性。
     第四章我们讨论了第Ⅲ型热扩散系统解的整体适定性,首先利用半群方法得到了系统解的整体存在性,其次利用能量方法和多乘子方法得到了解的指数稳定性,最后利用压缩函数的方法得到半群的渐近紧性,从而得到了系统整体吸引子的存在性。
     第五章总结了本文的主要工作,并对未来的研究方向作了展望。
Thermodiffusion system describes the process of thermodiffusion in a solid body, such a system is established based on the fundamental theories of thermodiffusion. This dissertation is concerned with the initial-boundary value problems for the global well-posedness of the one-dimensional thermodiffusion system and related models. We obtain the existence of global solutions, asymptotic stability and the global(uniform) attractors for the thermodiffusion system of type I, the thermodiffusion system with second sound, and the thermodiffusion system of type Ⅲ.
     This dissertation is divided into five chapters.
     Chapter1is preface, in which we mainly introduce the background and the pre-vious results, our main work, the fundamental theories for semigroup approaches, the fundamental concepts and existence theorems for global(uniform) attractors, and some classic inequalities.
     In Chapter2, we consider the initial-boundary value problems for the one-dimensional thermodiffusion system in a bounded region. Using the semigroup approaches and the multiplier methods, we obtain the global existence and asymptotic behavior of so-lutions for homogeneous, nonhomogeneous and semilinear thermodiffusion system subject to various boundary conditions, respectively. At the end, we get the existence of uniform attractors for the one-dimensional non-autonomous thermodiffusion sys-tem in a bounded region by establishing the uniformly asymptotic compactness of the family of processes generated by the global solutions. The main advantage of this method is that we only need to verify compactness condition with the type of energy estimates same as those for establishing the absorbing set.
     In Chapter3, we consider the initial-boundary value problem for a one-dimensional linear model of thermodiffusion with second sound in a bounded region. Using the semigroup approached and the energy methods we obtain the global existence and exponential stability, subject to two boundary conditions (i.e., the rigidly clamped medium with zero heat and diffusion flux; the rigidly clamped medium with tem-perature and chemical potential held on the boundary), respectively. Moreover, the existence of global attractors is established by using the method of contractive func-tions.
     In Chapter4, we first establish the global existence and exponential stability for the solutions to the initial-boundary value problem for the one-dimensional model of thermodiffusion of type III by the semigroup approach and the energy method. Fur-thermore, we prove the existence of global attractors by the method of contractive functions.
     In Chapter5, we summarize of the results of the dissertation, and predict the work in the future.
引文
[1]E. M. Ait Benhassi, K. Ammari, S. Boulite and L. Maniar, Feedback stabilization of a class of evolution equations with delay[J], J. Evol. Equ.,9 (2009),103-121.
    [2]C. Abdallah, P. Dorato, J. Benitez-Read and R. Byrne, Delayed positive feedback can stabilize oscillatory system[J], Proc. Amer. Control Conf.,1993,3106-3107.
    [3]R. A. Adams, Sobolev Spaces, Academic Press[M], New York,1975.
    [4]A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations[M], Studies in Mathematics and Its Applications,25, North-Holland, Amesterdam, London, New York, Tokyo,1992.
    [5]J. A. Burns, Y. Z. Liu and S. Zheng, On the energy decay of a linear thermoelastic bar[J], J. Math. Anal. Appl.,179 (1993),574-591.
    [6]T. Caraballo, J. Real and L. Shaikhet, Method of Lyapunov functionals construction in stability of delay evolution equations[J], J. Math. Anal. Appl.,334(2)(2007),1130-1145.
    [7]V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics[M], Provi-dence, RI:American Mathematical Society,2002.
    [8]V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of 2D Navier-Stokes equations with sin-gularly oscillating external forces, Nonlinearity,22(2009),351-370.
    [9]I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems[M], Orig-inally published 1999 by ACTA Scientific Publishing House, Kharkov, Ukraine, ISBN 966-7021-64-5 (in Russian),2002 (in English).
    [10]C. M. Dafermos, On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity[J], Arch. Ration. Mech. Anal.,29(4)1968,241-271.
    [11]R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[J], SIAM J. Control Optim.,26(3)(1988),697-713.
    [12]R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations[J], SIAM J. Control Optim.,24(1)(1986),152-156.
    [13]B. Ducomet and E. Feireisl, On the dynamics of gaseous stars[J], Arch. Ration. Mech. Anal., 174(2)(2004),221-266.
    [14]J. C. M. Duhamel, Memoire sur le calcul des actions moleculaires developpe'es par les change-ments de temperature dans les corps solides[J], Memoirs par Divers Savans (Acad. Sci. Paris), 5(1838),440-498.
    [15]M. Dreher and Y Wang, Decay estimates for a thermoelastic system in waveguides[J]. J. Diff. Equ.,248 (2010),2368-2398.
    [16]L. C. Evans, Partial Differencial Equations[M], Providence, RI:American Mathematical Society, 1998.
    [17]E. Feifeisl, Dynamics of Viscous Compressible Fluids[M], Oxford Univ. Press,2004.
    [18]G. Fichera, Uniqueness, existence and estimate of the solution in the dynamical problem of thermodiffusion in an elastic solid[J], Arch. Ration. Mech. Anal.,26 (1974),903-920.
    [19]E. Fridman and Y. Orlov, On stability of linear parabolic distributed parameter systems with time-varying delays[M], Proceedings of the CDC., New Orleans,2007.
    [20]J. A. Gawinecki, N. Ortner and P. Wagner, On the fundamential solution of the operator of dynamic linear thermodiffusion[J], Z. Anal. Anwe.,15 (1996),149-158.
    [21]J. A. Gawinecki and K. Sierpinski, Existence, uniqueness and regularity of the solution of the first boundary-initial value problem for the equation of the thermodiffusion in a solid body[J], Bull. Acad. Pol. Sci., Ser. Sci. Tech.,30 (1982),541-547.
    [22]J. A. Gawinecki and P. Wagner, On the fundamental matric of the system describing linear ther-modiffusion in the theory of thermal stresses[J], Bull. Acad. Pol. Sci., Ser. Sci. Tech.,39 (1991), 609-615.
    [23]D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order[M], Springer, Berlin,1994.
    [24]A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics[J], Proc. R. Soc. Lond.A,432(1991),171-194.
    [25]A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation[J], J. Elasticity, 31(1993),189-208.
    [26]J. K. Hale, Asymptotic Behavior of Dissipative Systems[M], Providence, RI:American Mathe-matical Society,1988.
    [27]S. W. Hansen, Exponential energy decay in a linear thermoelastic rod[J], J. Math. Anal. Appl., 167 (1992),429-442.
    [28]C. Huang and S. Vandewalle, An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays[J], SIAM J. Sci. Comput,25(5) (2004), 1608-1632.
    [29]F. Huang, Z. Xin and T. Yang, Contact discontinuity with general perturbations for gas mo-tions[J], Adv. Math.,219(2008),1246-1297.
    [30]K. Jachmann, A Unified Treatment of Models of Thermoelasticity[M], Doctoral Thesis, TU Bergakademie Freiberg,2008.
    [31]S. Jiang, On initial boundary value problems for a viscous heat-conducting one-dimensional real gas[J], J. Diff. Equ.,110(1994),157-181.
    [32]S. Jiang and R. Racke, Evolution Equations in Thermoelasticity[M],π Monogr. Surveys Pure Appl. Math., Vol.112, Chapman & Hall/CRC, Boca Raton,2000.
    [33]S. Jiang and P. Zhang, Global spherically symmetric solutions of the compressible isentropic Navier-Stokes equations[J], Comm. Math. Phys.,215(2001),339-374.
    [34]S. Jiang, J. E. Muftoz Rivera and R. Racke, Asymptotic stability and global existence in thermoe-lasticity with symmetry[J], Quart. Appl. Math.,56(2) (1998),259-275.
    [35]S. Jiang, Exponential decay and global existence of spherically symmetric solutions in thermoe-lasticity[J], Chin. Ann. Math.,19A(5)1998,629-640.
    [36]D. D. Joseph and L. Preziosi, Heat waves[J], Rev. Mod. Phys.,61(1989),41-73.
    [37]V. K. Kalantarov, Attractors for some nonlinear problems of mathematical physicsQ], Zap. Nauchn. Sem. LOMI,152(1986),50-54.
    [38]T. Kato, Linear and quasilinear equations of evolution of hyperbolic type[J], C. I. M. E. II, (1976), 125-191.
    [39]T. Kato, Linear evolution equations of "hyperbolic" type[J], J. Fac. Sc. Univ. Tokyo,25 (1970), 241-258.
    [40]T. Kato, Linear evolution equations of "hyperbolic" type, II[J], J. Math. Soc. Japan.25 (1973), 648-666.
    [41]V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equa-tion[J], J. Math. Pures Appl.,69 (1990),33-54.
    [42]P. Krejci and J. Sprekels, On a system of nonlinear PDEs with temperature-dependent hysteresis in one-dimensional thermoplasticit[J], J. Math. Anal. Appl.,209(1)1997,25-46.
    [43]O. A. Ladyzhenskaya, Attractors for Semigroup and Evolution Equations[M], Cambridge Univ. Press, Cambridge; 1991.
    [44]L. D. Landau and E. M. Lifshitz, Mechanics of Continuous Media (2nd Russian edition)[M], Gostekhisdat, Moscow,1953.
    [45]I. Lasiecka, Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary[J], J. Diff. Equ.,79 (1989),340-381.
    [46]G. Lebeau and E. Zuazua, Sur la decrroissance non uniforme de l'ergie dans le systeme de la thermoelasticite linire[J], C. R. Math. Acad. Sci. Paris Ser.I,324 (1997),409-415.
    [47]Z. Li and Y. Wang, Asymptotic behavior of reflection of discontinuities in thermoelasticity with second sound in one space variable[J], Z. Angew. Math. Phys.,61 (2010),1033-1051.
    [48]Z. Li and Y. Wang, Asymptotic behavior of discontinuities in thermoelasticity with second sound variable coefficients[J], J. Shanghai Jiaotong Univ.,44 (2010),849-854.
    [49]H. Ling and L. Tao, Large time behaviour of solutions to the equations of one-dimensional nonlinear thermoviscoelasticity[J], Quart. Appl. Math.,56(2)1998,201-219.
    [50]李大潜,秦钬虎,物理学与偏微分方程[M],上下册,高等教育出版社。
    [51]P. L. Lions, Mathematical Topics in Fluid Dynamics[M], Incompressible Models, Oxford Science Publication, Oxford,1998.
    [52]K. Liu and Z. Liu, On the type of Co-semigroup associated with the abstract linear viscoelastic system[J], Z. Angew. Math. Phys.,47(1996),1-15.
    [53]Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system[J], Z. Angew. Math. Phys.,60(2009),54-69.
    [54]Y. Liu and M. Reissig, Models of thermodiffusion in 1D[J]. Math. Meth. Appl. Sd. (2013). doi: 10.1002/mma.2839.
    [55]Z. Liu and S. Zheng, Exponential stability of the semigroup associated with a thermoelastic system[J], Quart. Appl. Math.,51 (1993),535-545.
    [56]Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems[M], Research Notes in Mathematics,389, Chapman & Hall/CRC, Boca Raton, FL,1999.
    [57]W. J. Liu, Partial exact controllability and exponential stability of the higher-dimensional linear thermoelasticity[J], ESAIM Control Optim. Calc. Var.,3 (1998),23-48.
    [58]W. J. Liu and E. Zuazua, Uniform stabilization of the higher dimensional system of thermoelas-ticity with a nonlinear boundary feedback[J], Quart. Appl.Math.,59(2) (2001),269-314.
    [59]Q. Ma, S. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications[J], Indiana University Math. J., Vol.51,6(2002),1541-1557.
    [60]S. Ma and C. K. Zhong, The attractors for weakly damped non-autonomous hyperbolic equa-tions with a new class of external force[J], Disc. Conti. Dyna. Syst.,18(1)(2007),53-70.
    [61]马志勇,热弹方程组及相关模型整体适定性的研究[M],东华大学博士论文,2009。
    [62]I. Moise, R. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations[J], Nonlinearity,11(1998),1369-1393.
    [63]J. E. Mufloz Rivera, Energy decay rate in linear thermoelascity[J], Funkcial Ekvac.,35(1992),19-30.
    [64]J. E. Munoz Rivera, Decomposition of the displacement vector field and decay rates in linear thermoelasticity[J], SIAM J. Math. Anal.,24(2)(1993),390-406.
    [65]M. I. Mustafa, Exponential decay in thermoelastic systems with boundary delay[J], J. Abstr. Diff. Equ. Appl.,2(1) (2011),1-13.
    [66]M. I. Mustafa, Uniform stability for thermoelastic systems with boundary time-varying delay[J], J. Math. Anal. Appl.,383 (2011),490-498.
    [67]K. E. Neumann, Die gesetze der doppelbrechung des lichts in comprimirten oder ungleichformig erwarmten unkrystallinischen Korpern[J], Pogg. Ann. Phys. Chem.,54(1841), 449-476.
    [68]S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[J], SIAM J. Control Optim.,45(5) (2006),1561-1585.
    [69]S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal dis-tributed delay[J], Diff. Int. Equ.,21 (2008),935-958.
    [70]S. Nicaise, C. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay[J], Disc. Conti. Dyna. Syst., Ser. S,4(3) (2011),693-722.
    [71]S. Nicaise, J. Valein and E. Fridman, Stability of the heat and the wave equations with boundary time-varying delays[J], Disc. Conti. Dyna. Syst., Ser. S,2(3) (2009),559-581.
    [72]W. Nowacki, Certain problem of thermodiffusion in solids[J], Arch. Mech.,23 (1971),731-754.
    [73]W. Nowacki, Dynamical problem of thermodiffusion in solids Ⅱ[J], Bull. Acad. Polon. Sci. Ser. Sci. Tech.,22 (1974),205-211.
    [74]J. C. Oliveira and R. C. Charao, Stabilization of a locally damped thermoelastic system[J], Com-put. Appl. Math.,27(3) (2008),319-357.
    [75]R. O'Neil, Convolution operators and Ip,q spaces[J], Duke Math. J.,30 (1963),129-142.
    [76]V. Pata and S. Zelik, A result on existence of global attractors for semigroups of closed opera-tors[J], Comm. Pure Appl. Anal.,6(2)2007,481-486.
    [77]A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations[M], Springer-Verlag, New York, Berlin, Heidelbery, Tokyo,1983.
    [78]J. Pedlosky, Geophysical Fluid Dynamics[M], New-York:Springer Verlag,1987.
    [79]D. C. Pereira and G. P. Menzala, Exponential stability in linear thermoelasticity:the inhomoge-neous case[J], Appl. Anal.,44 (1992),21-36.
    [80]Ya. S. Podstrigach, Differential equations of the problem of thermodiffusion in an isotropic de-formable solid[J], Dopov. Akad. Nank. Ukr. RSR 1961,162-172.
    [81]Y. Qin, Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors[M], Operator Theory, Advances and Applications, Vol.184, Birkhauser, Basel-Boston-Berlin.
    [82]Y. Qin, Universal attractor in H4 for the nonlinear one-dimensional compressible Navier-Stokes equations[J], J. Diff. Equ.,207(l)(2004),21-72.
    [83]Y. Qin and T. Lii, Global attractor for a nonlinear viscoelasticity[J], J. Math. Anal. Appl., 341(2)(2008),975-997.
    [84]Y. Qin, X. Liu and X. Yang, Global existence and exponential stability of solutions to the one-dimensional full non-Newtonian fluids[J], Nonlinear Anal., RWA,13 (2012),607-633.
    [85]Y. Qin and J. E. M. Rivera, Universal attractors for a nonlinear one-dimensional heat-conductive viscous real gas[J], Proc. Roy. Soc. Edinburgh,132 A(2002),685-709.
    [86]Y. Qin and Z. Ma, Global existence of the higher-dimensional linear system of thermoviscoelas-ticity[J], Int. J. Diff. Equ.,2011(2011).
    [87]Y. Qin, Z. Ma and L Huang, Global existence of solutions in H4 for a nonlinear thermoviscoelas-tic equations with non-monotone pressure[J], J. Elast.,94 (2009),15-31.
    [88]R. Quintanilla and R. Racke, Stability in thermoelasticity of type Ⅲ[J], Disc. Conti. Dyn. Syst., Ser. B,3 (3) (2003),383-400.
    [89]R. Racke, Thermoelasticity with second sound-exponential stability in linear and non-linear 1-d[J], Math. Meth. Appl. Sci.,25 (2002),409-441.
    [90]R. Racke, C. M. Dafermos and M. Pokovny, Thermoelasticity, Handbook of Differential Equa-tions:Evolutionary Equations[M], Vol.5. Elsevier B.V.,2009. Chapter 4,317-420.
    [91]R. Racke, Y. Shibata and S. Zheng, Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity[J], Quart. Appl. Math.,51(4)1993,751-763.
    [92]R. Racke and Y. Wang, Asymptotic behavior of discontinuous solutions in 3-d thermoelasticity with second sound[J], Quart. Appl. Math.,66 (2008),707-724.
    [93]R. Racke and Y. Wang, Nonlinear well-posedness and rates of decay in thermoelasticity with second sound[J], Hyperbolic Differ. Equ.5 (2008),25-43.
    [94]R. Racke and Y. Wang, Propagation of singularities in one-dimensional thermoelasticity[J], J. Math. Anal. Appl.,223 (1998),216-247.
    [95]J. E. Munoz Rivera, Energy decay rates in linear thermoelasticity[J], Funkcialaj Ekvaciog,35 (1992),19-30.
    [96]M. Reissig and Y. Wang, Cauchy problems for linear thermoelastic systems of type Ⅲ in one space variable[J], Math. Methods Appl. Sci.,28 (2005),1359-1381.
    [97]M. Reissig and J. Wirth, Anisotropic thermoelasticity in 2D, Part Ⅰ:A unified treatment[J], Asymp. Anal.,57 (2008),1-27.
    [98]J. C. Robinson, Infinite-Dimensional Dynamics Systems[M], Cambridge Univ. Press, Cam-bridge,2001.
    [99]I. H. Suh and Z. Bien, Use of time delay action in the controller design[J], IEEE Trans. Automat. Control,25 (1980),600-603.
    [100]B. Schmalfuβ, Attractors for nonautonomous and random dynamical systems perturbed by impulses[J], Disc. Conti. Dyn. Syst.,9(2003),727-744.
    [101]G. R. Sell and Y. You, Dynamics of Evolutionary Equations[M], Springer, New York,2002.
    [102]J.A. Smoller:Shock Waves and Reaction-Diffusion Equations[M]. Springer-Verlag,1980
    [103]E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces[M], Princeton, NJ:Princeton University Press,1971.
    [104]C. Sun, D. Cao, J. Q. Duan, Uniform attractors for nonautonomous wave equations with non-linear damping[J], SIAM J. Appl. Dyn. Syst.,62007,293-318.
    [105]C. Sun, M. Yang, C. K. Zhong, Global attractors for the wave equation with nonlinear damp-], J. Diff. Equ.,227(2006),427-443.
    [106]A. Szymaniec, Global solution to the initial-value problem to the nonlinear thermodiffusion in a solid body[M], Doctoral Thesis, Warsaw Univ. Technology, Warsaw,2003.
    [107]A. Szymaniec, Lp-Lg time decay estimates for the solution of the linear partial differential equa-tions of thermodiffusion[J], Appl. Math.,37 (2010),143-170.
    [108]A. Szymaniec, Global solution to the Cauchy problem of nonlinear thermodiffusion in a solid body[J], Appl. Math.,37 (2010),437-458.
    [109]M. E. Taylor, Partial Differential Equations[M], Vol.Ⅰ-Ⅲ, Springer Verlag.
    [110]R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics[M], Berlin: Springer,1997.
    [111]W. Thomson, On the thermo-elastic and thermo-magnetic properties of matter[J], Quart. J. Math.,1(1857),57-77.
    [112]H. Triebel, Theory of Function Spaces[M], Birkhauser, Boston,1983.
    [113]A. Yagi, On a class of linear evolution equations of "hyperbolic" type in reflexive Banach spaces[J], Osaka J. Math.16(2)(1979),301-315.
    [114]L. Yang and Y. Wang, Well-posedness and decay estimates for Cauchy problems of linear ther-moelastic systems of type Ⅲ in 3-D[J], Indiana Univ. Math. J.55 (2006),1333-1362.
    [115]L. Yang and Y. Wang, IP-Lq decay estimates for the Cauchy problem of linear thermoelastic systems with second sound in one space variable[J], Quart. Appl. Math.,64 (2006),1-15.
    [116]L. Yang and Y. Wang, Propagation of singularities in Cauchy problems for quasilinear thermoe-lastic systems in three space variables[J], J. Math. Anal. Appl.,291 (2004),638-652.
    [117]B. Wang, Strong attractors for the Benjamin-Bona-Mahony equation[J], Appl. Math. Lett., 10(1997),23-28.
    [118]T. Wang, Exponential stability and inequalities of solutions of abstract functional differential equations[J], J. Math. Anal. Appl.,324 (2006),982-991.
    [119]Y. Wang, Remarks on propagation of singularities in thermoelasticity[J], J. Math. Anal. Appl., 266 (2002),169-185.
    [120]Y. Wang and L. Yang, LP-Lq decay estimates for Cauchy problems of linear thermoelastic systems with second sound in 3-D[J]. Proc. Roy. Soc. Edinburgh, A,136(2006),189-207.
    [121]S. Y. Wang, D. S. Li and C. K. Zhong, On the dynamics of a class of nonclassical parabolic equations[J], J. Math. Anal. Appl,317(2006),565-582.
    [122]W. Wang and T. Yang, Existence and stability of planar diffusion waves for 2-D Euler equations with damping[J], J. Diff. Equ.,242(2007),40-71.
    [123]S. J. Watson, Unique global solvability for initial-boundary value problems in one-dimensional nonlinear thermoviscoelasticity[J], Arch. Ration. Mech. Anal.,153(1) (2000),1-37.
    [124]J. Wirth, Anisotropic thermoelasticity in 2D, Part Ⅱ:Application[J], Asymp. Anal.,57 (2008), 29-40.
    [125]J. Wirth, Thermoelasticity for anisotropic media in higher dimensions[J], Progr. Part. Diff. Equ., 44 (2013),367-407,
    [126]A. Wyler, Stability of wave equations with dissipative boundary conditions in a bounded do-main[J], Diff. Intel. Equ.,7 (1994),345-366.
    [127]G. Xu, S. Yung and L. Li, Stabilization of the wave system with input delay in the boundary control[J], ESAIM Control Optim. Calc. Var.,12 (2006),770-785.
    [128]张恭庆,林源渠,泛函分析[M],北京大学出版社。
    [129]X. Zhang and E. Zuazua, Decay of solutions of the system of thermoelasticity of type Ⅲ[J], Comm. Contemp. Math.,5(2003),25-83.
    [130]S. Zheng, Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems[M], Pit-man Monogr. Survey. Pure Appl. Math, Vol.76, Longman,1995.
    [131]S. Zheng, Nonlinear Evolution Equations[M], Pitman Monogr. Survey. Pure Appl. Math, Vol. 133, CRC Press, USA,2004.
    [132]S. Zheng and Y. Chen, Global existence for nonlinear parabolic equations[J], Chinese Ann. Math.,7B(1)(1986),57-73.
    [133]S. Zheng and Y. Qin, Universal attractors for the Navier-Stokes equations of compressible and heat-conductive fluid in bounded annular domains in Rn[J], Arch. Ration. Mech. Anal., 160(2)(2001),153-179.
    [134]C. K. Zhong, C. Y. Sun and M. F. Niu, On the existence of global attractor of a class of infinite dimensional nonlinear dissipative dynamical systems[J], Chinese Ann. Math.,26B(3)(2005),1-8.
    [135]E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback[J], SIAM J. Control Optim.,28(2) (1990),466-477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700