热载荷作用下功能梯度材料板壳的静动态响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能梯度材料(FGM)是一种新型的功能材料,通过对材料的合理设计可使构件在热环境中具有优于一般均匀材料的力学性能。由于其物理性质的优点,可用作高速航天器、核工业和化工领域的热防护材料。功能梯度材料板壳结构的力学行为特性已成为固体力学研究的重要内容。本论文研究功能梯度材料板壳在热载荷作用下的静动态响应。包括以下几方面:
     1)FGM圆板在表面周期动态热载荷作用下的强迫振动
     设FGM板材料属性沿板的厚度连续变化,材料属性随组分材料体积分数按幂函数形式分布。首先根据表面热载荷的特点,把板内的温度场设为静态和动态两部分,基于经典热传导理论,采用打靶法数值求解了一维非稳态热传导问题得到了静动态温度场分布和相应的热内力。基于von Karman板理论,建立了FGM薄圆板的轴对称非线性控制方程。通过假设强迫振动的组合谐响应模式,采用Kantorovich时间平均法,把非线性偏微分方程化成了非线性常微分方程组。通过打靶法得到了周边简支FGM圆薄板强迫振动的数值结果。详细讨论了静动态热载荷参数对结构的固有频率的影响,特别分析了共振现象及其特征。
     2)FGM薄壳的几何非线性理论
     均匀材料壳的简化理论不一定适用FGM壳体。为了研究FGM柱壳的力学行为,我们基于Kirchhoff-Love假设采用矢量方法推导了FGM薄壳的几何非线性理论。几何方程推导时考虑了变形前后曲面的变化所引起的坐标方向单位矢量的变化;精确计算了坐标方向上线段的伸长比及壳体内任一点的非线性应变和位移关系。本构方程中考虑了变形引起的应力分布变化。平衡方程建立在变形以后的微元体上。此基本方程适用于壳体的大变形计算。退化得到的薄壳小挠度问题的方程同已有的结果一致。对于圆柱薄壳的小挠度问题,简化得到了Flügge理论的方程。
     3)静态升温场中FGM柱壳的大变形和自由振动
     考虑FGM材料属性对温度的依赖特性,求解了表面静态热载荷作用下FGM圆柱壳体内的温度场分布和静态热内力、热弯矩及高阶热内力。由本文导出的FGM薄壳的精确理论,简化得到了圆柱薄壳的非线性控制方程。利用打靶法求得了三种对称支承条件下FGM短圆柱壳的静态大变形响应,并分析了几何参数、载荷参数,材料体积分数指数对壳体挠度的影响。通过假设自由振动位移的时间模式,采用Hamilton原理得到了在热载荷下简支FGM圆柱壳自由振动的位移形式控制方程,通过数值求解,给出了结构小振幅自由振动的自然频率与各控制参数的关系。
     4)周期动态热场中FGM柱壳的强迫振动
     根据获得的静变形数值结果,利用最小二乘法得到了静弯曲构形的拟合函数。采用三角函数来描述动态响应的空间模态。根据Hamilton原理,得到FGM圆柱壳的非线性振动关于时间的控制方程。对静态热载荷下的小幅自由振动进行分析,其结果与打靶法所得的结果吻合较好。用多尺度法研究了FGM圆柱壳在表面周期热载荷作用下非线性强迫振动的周期解,并分析了振动的动力稳定性。
     本文的研究丰富了FGM板壳结构在动态热载荷作用下力学特性的研究成果,对FGM结构的宏观力学特性的研究有借鉴作用,对于此类结构的工程实际应用具有积极意义。
Functionally graded material (FGM) is a kind of new functional materials. Through optimal of design of the material, the FGM structures can have better mechanical properties in thermal environment than homogenous material structures. Due to its virtue of physical characteristics, FGM can be used as heat-shielding material for the high-speed spacecraft, nuclear reactor and chemical engineering. The studies of mechani€al behaviors of FGM plates and shells have being become one of the important direction in solid mechanics. The present study is focus on study the static and dynamic responses of FGM circular plates and cylindrical shells subjected to thermal loads. The main research results and conclusion are summarized as follows:
     1) Forced vibration of FGM circular plate with surface periodic thermal loads
     The material properties of a FGM plate are graded continuously in the direction of thickness. The variation of the properties followed a simple power-law distribution in the term of the volume fraction of the constituents. In the view of the form of surface thermal loads, the through thickness temperature distribution is assumed to be two parts, static and dynamic. The temperature distributions are solved on the bases of one-dimensional unsteady-state heat conduct equation, the static and dynamic thermal membrane forces and bending moments are obtained numerically by shooting method. On the basis of von Karman's plate theory, the non-linear governing equations of thin FGM circular plate are formulated. Assuming that the vibration is harmonic and using Kantorovich time averaging method, the partial differential equations are converted into a system of nonlinear ordinary differential equations. Numerical results of thin FGM circular plates with simply-supported boundary and subjected to surface periodic thermal loads are obtained by using shooting method. The effects of the static and dynamic thermal load parameters on the natural frequencies are examined in details. Especially, the characteristics of resonance phenomenon are also analyzed.
     2) Geometrical nonlinear theory of thin FGM shells
     In genral, the reduced shell theories of homogenous material structures are not fit for FGM shells. In order to study mechanical behaviors of FGM cylindrical shell, the geometrical nonlinear theory for thin FGM shells is derived based on Kirchhoff-Love assumption by using vector tools. In derivation of the geometrical equations, the variations of deformed curve surface resulting in the direction change of basis vectors are considered, and the elongation ratio of line segment in basis vectors and the nonlinear strain and displacement relations in any point of the shell are obtained. The changes of stress distribution due to deformation are taken into account in constitutive equations. The equilibrium equations are formulated on deformed element. Above mentioned basic equations are applicable to the large deformation problems of shells. The results of degenerative forms of the equations for the thin shell with small deflection are consistent with those in the literature. For the small deflection problem of cylindrical shells, the equations of Flugge's shell theory can be obtain.
     3) Large deformation and free vibration of FGM cylindrical shell under static temperature rise field
     Considering the temperature-dependent properties of FGM, the temperature distribution, the thermal membrane forces, thermal bending moments and high-order thermal forces of the FGM cylindrical shell are evaluated under static thermal loads on the surface. Nonlinear governing equations for thin FGM circular cylindrical shell are reduced from the general ones derived in this dissertation. By using the numerical method, response of the static large deformation of a short FGM cylindrical shell with three kinds of symmetry boundary conditions are investigated. and the effects of the geometric and load parameters, the volume fraction of material on the deflection of the cylindrical shell. By using the time-assumed mode of the free vibration and on the basis of Hamilton principle, the governing equations in terms of displacements for free vibration of FGM cylindrical shell subjected to thermal loads are obtained. By numerical method, the relations between the linear frequencies and the geometrical and material parameters of the structure are presented.
     4) Forced vibration of cylindrical shell under periodic thermal loads
     According to the numerical results of the static deformation obtained in the former analysis, the fitting functions of the static bending configurations can be obtained by least square method, the space mode shape of dynamic responses are assumed by trigonometric functions. By using Hamilton principle, nonlinear ordinary differential equations in the time domain governing the large amplitude vibration of FGM cylindrical shell are derived. By analyzing the free vibration with small amplitude under static thermal loads, we arrived at the results coincided with those by shooting method, which shows that the method is feasible. The periodic solution of nonlinear forced vibration of FGM cylindrical shell under periodic surface thermal loads is investigated by multi-scale method. Further more, the dynamic stability of nonlinear vibration is examined.
     The investigation of this dissertation will enrich the research results of mechanical behavior of the functionally graded structures under dynamic thermal loads, which may be helpful and beneficial in better understanding for such advanced composite material structures in the engineering application.
引文
[1]S.Suresh,A.Mortensen.功能梯度材料基础.李守新译.第一版.北京:国防工业出版社
    [2]王保林,杜善义,韩杰才.功能梯度材料的热机械耦合分析研究进展.力学进展,1999,29(4):528-548
    [3]Yamanouchi M,Koizumi M,Hirai T,et al.Proceedings of the International Symposium on Functionally Gradient Materials.Sendai,Japan,1990.
    [4]Koizumi M.The Concept of FGM.Cerzmic Trans..Functionally Gradient Materials,1993,34:3-10.
    [5]李永,宋健,张志民.梯度功能力学.北京:清华大学出版社,2003.
    [6]M Koizumi,M Niino.Overview of FGM research in Japan.MRS Bull,1995,20:19-21.
    [7]Rdel J,Neubrand A.Proc.Conf.Functionally Graded Materials.Tsukuba,Japan,1996,I.Shiota and Y.Miyamoto,eds,Elsevier,Amsterdam:9-14.
    [8]Lee Y D,Erdogen F.Residual/thermal stresses in functionally graded material and laminated thermal barrier coatings.International Journal of Fracture,1994/1995,69:145-165.
    [9]Fukui Y,Takashimima K,Ponton C B.Measurement of Young's modulus and internal friction of an in site Al-Al3Ni functionally gradient material.J.Mater Sci,1994,29:2281-2288.
    [10]Markworth A J,Saunders J H.A model of structural optimization for a functionally graded material.Mater.Letters,1995,22(1-2):103-107.
    [11]Sumi,N,Sugano,Y.Dynamic thermal stresses in a functionally graded materials with temperature-dependent materials properties.Transactions of the Japan Society of Mechanical Engineerings,Series A,1995,61(590):2296-2301.
    [12]Senthil S Vel,R C Brtra.Three-dimensionalanalysis of transient thermal stresses in functionally graded plates.International Journal of Solids and Structures,2003,40:7181-7196.
    [13]J.N.Reddy,C.D.Chin.Thermomechanical analysis of functionally graded cylinders and plates.Journal of Thermal Stresses.1998,21:593-626
    [14]Fernando Ramirez,Paul R Heyliger,Ernian Pan.Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach.Composites:Part B:Engineering,2006,37:10-20
    [15]J N.Reddy.Analysisof functionally graded plates.International of Journal for Numerical Methods in Engineering,2000,47:663-684
    [16]Shyang-Ho Chi,Yen-Ling Chung.Mechanical.behavior of functionally graded material plates under transverse load-Part Ⅰ Analysis.International Journal of Solids and Structures,2006,43:3657-3674
    [17]Shyang-Ho Chi,Yen-Ling Chung.Mechanical behavior of functionally graded material plates under transverse load-Part Ⅱ Numerical results.International Journal of Solids and Structures,2006,43.3675-3691
    [18]L.S.Ma,Y.J.Wang.Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical.International Journal of Solids and Structures,2004,41:85-101
    [19]L.S.Ma,T.J.Wang.Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings.International Journal of Solids and Structures,2003,40:3311-3330
    [20]马连生,赵永刚.功能梯度材料圆(环)板的屈曲分析.甘肃工业大学学报,2003,29f4):140-143.
    [21]J.N.Reddy,C.M.Wang,G.T.Lim et al.Bending solutions of Levinson beams and plates in terms of the classical theories.International Journal of Solids and Structures,2001,38:4701-4720
    [22]A.M.Zenkour.A comprehensive analysis of functionally graded sandwich plates Part 1-Deflection and stresses.International Journal of Solids and Structures,2005,42:5224-5242
    [23]A.M.Zenkour.A comprehensive analysis of functionally graded sandwich plates Part 2-Buckling and free vibration.International Journal of Solids and Structures,2005,42:5243-5258
    [24]A.M.Zenkour.Generalized shear deformation theory for bending analysis of functionally graded plates.Applied Mathematical Modelling,2005,xx.
    [25]A.J.M.Ferreira,R.C.Batra,C.M.C.Roque et al.Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method.Composite Structures,2005,69:44-457
    [26]杨杰,沈惠申.热机械载荷下功能梯度材料矩形厚板的弯曲行为.固体力学学报,2003,24(1):119-124
    [27]M.M.Najafizadeh,M.R.Eslami.First-Order-Theory-Based Thermoelastic Stability of Functionally Graded Material Circular Plates.AIAA Journal,2002,40(7):1444-1450
    [28]M.M.Najafizadeh,H.R.Heydari.Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory.European Journal of Mechanics A/Solid,2004,23:1085-1110
    [29]M.M.Najafizadeh,M.R.Eslami.Buckling analysis of circular plates of functionally graded materials under uniform radial compression.International Journal of Mechanics Sciences,2002,44:2479-2493
    [30]R.Javaheri,M.R.Eslami.Thermal buckling of functionally graded plates based on higher order theory.Journal of Thermal Stresses,2002,25:603-625
    [31]R.Javaheri,M.R.Eslami.Thermal Buckling of Functionally Graded Plates.AIAA Journal,2002,40(1):162-169
    [32]B.A.Samsam Shariat,R.Javaheri,M.R.Eslami.Buckling of imperfect functionally graded plates under in-plane compressive loading.Thin-Walled Structures,2005,43:1020-1036
    [33]Z.Q.Cheng,R.C.Batra.Three-dimensional thermoelastic deformations of a functionally graded elliptic plate.Composites:Part B:Engineering,2000,31:97-106
    [34]S.R.Li,J.H.Zhang,Y.G.Zhao.Nonlinear thermomechanical post-buckling of circular FGM plate with geomrtric imperfection.Thin-Walled Structures,2007,45:528-536
    [35]Hui-Shen Shen.Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments.Internal Journal of Mechanics Sciences,2002,44:561-584
    [36]J.Yang,Hui-shen Shen.Non-linear analysis of functionally graded plates under transverse and in-plane loads.Internal Journal of Non-linear Mechanics,2003,38:467-482
    [37] J. Yang, H. S. Shen. Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary. Composites: Part B Engineering, 2003, 34: 103-115
    [38] Hui-Shen Shen. Postbuckling of FGM plates with piezoelectric actuators under thermo-electro-mechanical loadings. International Journal of Solids and Structures, 2005, 42: 6101-6121
    [39] J. Woo, S. A. Meguid, J. C. Stranart etal. Thermomechanical postbuckling analysis of moderately thick functionally graded plates and shallow shells. Internal Journal of Mechanics Sciences, 2005, 47: 1147-1171
    [40] Jae-Sang Park, Ji-Hwan Kim. Thermal postbuckling and vibration analyses of functionally graded plates. Journal of Sound and Vibration, 2006, 289: 77-93
    [41] G. N. Praveen, J. N. Reddy. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. Internal Journal of Solids and Structures, 1998,.35(33): 4457-4476
    [42] J. Yang, Hui-shen Shen. Dynamic response of initially stressed functionally graded rectangular thin plates. Composite Structures, 2001, 54: 497-508
    [43] J. Yang, H. S. Shen. Vibration characteristics and transient response of shear-deformable functionally graded plates. Journal of Sound and Vibration, 2002, 255(3): 597-602
    [44] Xiao-Lin Huang, Hui-Shen Shen. Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. Internal Journal of Solids and Structures, 2004, 41: 2403-2427
    [45] Z. H. Jin. An asymptotic solution of temperature field in a strip a functionally graded material. Int. Comm. Heat. Mass. Transfer., 2002, 29(7): 887-895
    [46] Senthil S. Vel, R. C. Batra. Three-dimensional exact solution for the vibration of functionally graded rectangular plates. Journal Sound and Vibration, 2004, 272: 703-730
    [47] A. Bahtui, M. R. Eslami. Coupled thermoelasticity of functionally graded cylindrical shells. Mechanics Research Communications, 2007, 34: 1-18
    [48] Bao-Lin Wang, Yiu-Wing Mai, Xing-Hong Zhang. Thermal shock resistance of functionally graded materials. Acta Materialia, 2004, 52: 4961-4972
    [49] R. C. Batra, J. Jin. Natural frequencies of a functionally graded anisotropic rectangular plate.Journal of Sound and Vibration,2005,282:509-516
    [50]Y.Xiang,J.N.Reddy.Natural vibration of rectangular plates with an internal line hinge using the first order shear deformation plate theory.Journal of Sound and Vibration,2003,263:285-297
    [51]Chun-Sheng Chen.Nonlinear vibration of a shear deformable functionally graded plate.Composite Structures,2005,68:295-302
    [52]J.Woo,S.A.Meguid,L.S.Ong.Nonlinear free vibration behavior of functionally graded plates.Journal Sound and Vibration,2006,289:595-611
    [53]黄小林,沈惠申.热环境下功能梯度材料板的自由振动和动力响应.工程力学,2005,22(3):224-227.
    [54]何福宝,沈亚鹏.板壳理论.西安:西安交通大学出版社,1993年6月
    [55]W.Flügge.Stresses in shells.Berlin:Springer,1973
    [56]DON O.Brush,BO O.Almroth.Buckling of bars,plates,and shells.McGRA W-Hill,1975
    [57]R.Shahsiah,M.R.Eslami.Thermal buckling of functionally graded cylindrical shell.Journal of Thermal Stresses,2003,26:277-294
    [58]Lanhe Wu,ZhiQing Jiang,Jun Liu.Thermoelastic stability of functionally graded cylindrical shells.Composite Structure,2005,70:60-68
    [59]M.R.Eslami,R.Shahsiah.Thermal buckling of imperfect cylindrical shells.Journal of Thermal Stresses,2001,24:71-89
    [60]V.Ungbhakorn,P.Singhanadgid.Similitude and.Physical Modeling for Buckling and Vibration of Symmetric Cross-ply Laminated Circular Cylindrical Shells.Journal of Composite Materials,2003,37(19):1697-1712
    [61]M.Chiba,H.Osumi.Free vibration and buckling of a partially submerged clamped cylindrical tank under compression.Journal Sound and Vibration,1998,209(5):771-796
    [62]A.H.Sofiyev.Thermoelastic stability of functionally graded truncated conical shells.Composite Structures,2005,77,56-65
    [63]M.R.Eslami,R.Javaheri.Buckling of composite cylindrical shells under mechanical and thermal loads.Journal of Thermal Stresses,1999,22:527-545
    [64]Hui-Shen Shen.Postbuckling of axially loaded FGM hybrid cylindrical shells in thermal environments.Composite Sciences and Technology,2005,65: 1675-1690
    [65] Hui-Shen Shen, N. Noda. Postbuckling of FGM cylindrical shells under combined axial and radial mechanical loads in thermal environments. International Journal of Solids and Structures, 2005, 42: 4641-4662
    [66] Hui-Shen Shen. Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties. International Journal of Solids and Structures, 2004, 41: 1961-1974
    [67] H. S. Shen, N. Noda. Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments. Composite Structures, 2007, 77: 546-560
    [68] Hui-Shen Shen. Postbuckling analysis of axially loaded functionally graded cylindrical panels in thermal environments. International Journal of Solids and Structures, 2002, 39: 5991-6010
    [69] Hui-Shen Shen. Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments. Composite Sciences and Tech., 2002, 62: 977-987
    [70] Hui-Shen Shen. Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments. Engineering Structure, 2003, 25: 487-497
    [71] H. S. Shen, Q. S. Li.Thermomechanical postbuckling of shear deformable laminated cylindrical shells with local geometric imperfections. Internal Journal of Solids and Structures, 2002, 39: 4525-4542
    [72] J. L. pelletier, S. S. Vel. An exact solution for the steady-state thermoelastic response of functionally graded orthotropic cylindrical shells. International Journal of Solids and Structures, 2006, 43: 1131-1158
    [73] S. C. Pradhan, C. T. Loy,K. Y. Lam et al. Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Applied Acoistics, 2000, 61: 111-129
    [74] C. T. Loy, K. Y. Lam, J. N. Reddy. Vibration of functionally graded cylindrical shells. International Journal of Mechanics Sciences, 1999, 41: 309-324
    [75] S. C. Pradhan. Vibration suppression of FGM shells using embedded magnetostrictive layers. International Journal of Solids and Structures, 2005, 42: 2465-2488
    [76]S.C.Pradhan,C.T.Loy,K.Y.Lam et al.Vibration characteristics of functionally graded cylindrical shells-under various boundary conditions.Applied Acoustics,2000,61:111-129
    [77]K.M.Liew,J.Yang,Y.F.Wu.Nonlinear vibration of a coating-FGM-substrate cylindrical panel subjected to a temperature gradient.Comput Methods Applied Mechanics Engineering,2006,195,1007-1026
    [78]J.Yang,Hui-shen Shen.Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels.Journal of Sound and Vibration,2003,261:871-893
    [79]P.B.Goncalves,Z.Prado.Nonlinear oscillations and stability of parametrically excited cylindrical shells.Meccanica,2002,37:569-597
    [80]树学锋,兰姣霞,武勇忠.大挠度圆柱壳在温度场中的热弹耦合振动分析.应用数学和力学,2004,25(9):910-916
    [81]S.W.Gong,K.Y.Lam,J.N.Reddy.The elastic response of functionally graded cylindrical shells to low-velocity impact.International Journal of Impact Engineering,1999,22:397-417
    [82]R.K.Bhangale,N.Ganesan,Free vibration studies of simply supported non-homogeneous Functionally graded magneto-electro-elastic finite cylindrical shells.Journal of Sound and Vibration:in press
    [83]马连生.功能梯度板的弯曲、屈曲和振动:线性和非线性分析:西安交通大学博士论文.西安:西安交通大学,2004年9月
    [84]杨杰.功能梯度复合材料板结构的非线性力学行为与动力特性.上海交通大学博士学位论文,2001.12.
    [85]L.F.Qian,R.C.Batra,L.M.Chen.Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method.Composites:Part B:Engineering,2004,35:685-697
    [86]T.Y.Ng,K.Y.Lim,J.N.Reddy.Dynamic stability of cylindrical panels with transverse shear effects.International Journal of Solids and Structures,1999,36:3483-3496
    [87]T.Y.Ng,K.Y.Lam,K.M.Liew.Effects of FGM materials on the parametric resonance of plate structures.Comput Methods Appl Mech Engrg,2000,190:953-962
    [88]T.Y.Ng,K.Y.Lam,K.M.Liew et al.Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading.International Journal of Solids and Structures,2001,38:1295-1309
    [89]N.A.Apetre,B.V.Sankar,D.R.Ambur.Low-velocity impact response of sandwich beams with functionally graded core.Internayional Journal of Solids and Structures,2006,43:2479-2496
    [90]A.H.Sofiyev.The stability of compositionally graded ceramic-metal cylindrical shells under aperiodic axial impulsive loading.Composite.Structures,2005,69:247-257
    [91]Y.G.Zhao,S.R.Li,L.S.Ma.Nonlinear response of Circular plates subjected to in-plane dynamic thermal loadings,in:Proceedings of the International Conference on Mechanical Engineering and Mechanics 2005.Naijing:Science Press,2005:1092-1095
    [92]Y.G.Zhao,W.D.Zhao,S.R.Li etal.Nonlinear Response of Clamped Circular Plates Subjected to Transverse Excitation Load.Key Engineering Mateerials,2007,353-358:2720-2723
    [93]Y.G.Zhao,S.R.Li,L.S.Ma.Nonlinear response of FGM circular plates subjected to periodic surface thermal loadings.Proceedings.of the 5rd International Conference on Nonlinear Mechanics,Shanghai:Shanghai University Press,2007:571-577
    [94]A.H.Sofiyev,E.Schnack.The stability of functionally graded cylindrical shells under linearly increasing dynamic torsional loading.Engineering Structures,2004,26:1321-1331
    [95]A.H.Sofiyev.The stability of functionally graded truncated conical shells subjected to aperiodic impulsive loading.International Journal of Solids and Structures,2004,41:3411-3424
    [96]沈惠申.功能梯度复合材料板壳结构的弯曲屈曲和振动.力学进展,2004,34(1):53-60
    [97]何光渝,高永利.Visual Fortran常用数值算法集,北京:科学出版社,2002
    [98]杨世铭.传热学.第二版.北京:高等教育出版社,1987年
    [99]严宗达.王洪礼.热应力.北京:高等教育出版社,1993年10月
    [100]S.R.Li and Y.H.Zhou.Shooting Method For Non-Linear Vibration And Thermal Buckling Of Heated Orthotropic Circular Plates.Journal of Sound and Vibration,2001,248(2):379-386
    [101]B.L.Wang Y.W.Mai.Transient one-dimensional heat conduction problem solved by finite element.Mechanical Sciences,2005,47:303-317
    [102]赵永刚,马连生,李世荣.激振力下周边夹紧圆板过屈曲构形附近的非线性振动.兰州理工大学学报,2005,31(2):137-140.
    [103]薛大为.板壳理论.北京:北京工业学院出版社,1988年6月
    [104]T.von kármán,H.Tsien.The buckling of thin cylindrical shells under axial compression.Journal of Spacecraft and Rockets,2003,40(6):303-312
    [105]Sang-Yong Oh,Liviu Librescu,Ohseop Song.Vibration and instability of functionally graded circular cylindrical spinning thin-walled beams.Journal of Sound and Vibration,2005,285:1071-1091
    [106]Ravikiran Kadoli,N.Ganesan.Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition.Journal of Sound and Vibration,2005,xx:
    [107]J.N.Reddy,C.M.Wang,S.Kitipornchai.Axisymmetric bending of functionally graded circular and annular plates.European Journal of Mechanics A/Solid,1999,18:185-199
    [108]Junqiang Zhu,Changqing Chen,Yapeng Shen et al.Dynamic stability of functionally graded piezoelectric circular cylindrical shells.Materials Letters,2005,59:477-485
    [109]徐芝纶.弹性力学.第二版.北京:高等教育出版社,1988年2月
    [110]陈予恕,唐云.非线性动力学中的分析方法.北京:科学出版社,2000年9月
    [111]周纪卿,朱因远.非线性振动.西安:西安交通大学出版社,2001年10月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700