重载齿轮性能分析及结构优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重载齿轮在大型工程机械中得到广泛应用。为满足大型工程的重载需求,减速器的齿轮需要在保持原有渐开线齿轮传动平稳、振动小等优点的同时,进一步提高其承载能力,减小在复杂工况中承受的冲击。这需要在了解齿轮重载传动性能的基础上,对轮齿进行优化设计。目前,诸多学者的研究偏向于齿轮的瞬态冲击或稳态的接触,这对于了解全齿面的动态接触性能是不全面的。
     本文以轮边减速器的齿轮为研究对象,以提高齿轮承载能力和齿轮传动运动平稳性为目的,在已进行的课题组动力学分析基础上,进一步深入研究重载齿轮副接触分析技术和基于接触的热固耦合分析技术,对太阳轮进行了齿向和齿廓的修形,并验证了修形方法的可行性。因此,本文的主要工作归纳如下:
     1、建立了圆柱齿轮接触的数学模型和物理模型。主要是应用齿轮空间啮合的数学理论,建立直角坐标系下的齿轮接触模型;将经典接触力学中圆柱面接触的基础理论扩展到齿轮接触分析中。
     2、在有限元分析软件ABAQUS的支持下,研究研究重载齿轮对的接触分析技术和基于接触的热固耦合分析技术。包括:离散齿轮实体模型:然后,对离散后的实体模型按照有限元的思路不断判断接触的状态;最后,在求解接触状态平衡方程的同时,应用接触力学的方法,求解接触应力和位移。而基于接触的热固耦合分析,在前述计算的同时,还要不断的求解温度场。另外,本文在保证边界和载荷不变的前提下,采用加密网格多次计算的方式,来验证有限元计算的准确性。
     3、提取了有限元计算结果的变形量、全齿面接触线应力曲线图,以了解全齿面在整个接触过程中的应力分布情况,确定修形的主要区域。并以单双齿交替啮合时的最大变形量为主要参数,确定最大修形量。
     4、总结已有的修形方案,结合有限元计算的结果,对太阳轮进行齿向和齿廓修形。最后给出了一组针对重载工况的修形参数,创建了修形后的太阳轮实体模型。
     本文应用有限元的方法进行了全齿面的接触分析和基于接触的热固耦合分析:依据AGMA标准确定了用于反映全齿面接触应力情况的五条接触线;以性能分析为基础指导了重载齿轮的修形,并给出了针对该模型使用的一组修形参数。
Heavy-duty gear is widely used in various engineering machinery. In order to meet the demand of heavy load in large-scale projects, the original advantages of involute gear need to be maintained, carrying capacity need to be further improved, and dynamic load and impact in the complex condition is minimized. On the basis of understanding the heavy load gear transmission performance, optimizing the gear structure is suggested. At present, many scholars tend to study transient impact or steady-state gear contact. It is not comprehensive to understand the whole tooth surface dynamic contact performance.
     In this paper, by taking hub reducer gear in a certain type of excavator as the research object, in order to improve gear carrying capacity and transmission stability, combined with the result of dynamic analysis, contact analysis and thermal-structure coupled analysis, profile modification and longitudinal correction is done. Then operating the thermal contact analysis again is used to verify the feasibility of the modification. Thus, the main work of this paper is summarized as follows.
     1. The mathematical model and physical model of cylindrical gear contact are established. The gear space mesh mathematical theory is applied, and obtaining the gear contact model in rectangular coordinate system. Furthermore the basic theory of contact mechanics is used in gear contact.
     2. Based on the finite element analysis software ABAQUS, the technology of contact analysis and thermal-structure coupled analysis are implemented. First of all, to discrete the gear model; then, to judge the contact state constantly on the discrete entity model according to FEM; finally, to solve the contact state equation, the contact stress and displacement. In addition to this, thermal-structure coupled analysis need to solve temperature field. And then, in the same boundary and load, using the way of refined grids and calculation, the accuracy of finite element calculation is verified.
     3. The amount of deformation and tooth contact line stress curves are extracted from the finite element calculation results. That is used to understand the contact stress distribution of the whole tooth surface in the process of contact. And the main areas of modification are determined. Using the maximum amount of deformation in odd teeth alternately engaging as the main parameters, the maximum amount of modification is determined.
     4. Summarizing the existing modification programs, combining with the results of the finite element calculation, profile modification and longitudinal correction is applied to the sun gear tooth. Finally, a set of modification parameters for heavy load working conditions are proposed. And the modification sun gear model is created.
     In this paper, the whole tooth surface contact analysis and thermal-structural coupled analysis based on contact are practiced by FEM. Five contact lines are determined according to the AGMA standard, which are used to reflect the whole tooth surface contact stress distribution. The results of performance analysis give directions to heavy duty gear modification. And a set of modification parameters used for the very model are proposed.
引文
[1]武斌.低速重载齿轮传动微观热弹流润滑数值分析及齿面抛光实验研究[D].重庆大学,2010,5.
    [2]宋乐民.齿形与齿轮强度[M].国防工业出版社,1987,7:1-4,105-149,331-341.
    [3]K.L.Johnson(著),徐秉业,罗学富,刘信声,宋国华,孙学伟(译).Contact mechanics[M].北京:高等教育出版社,1992,5:1,12-23,32-35,103-122,425-450.
    [4]李华敏,韩元莹,王知行.渐开线齿轮的几何原理与计算[M].机械工业出版社1985,11:198-217.
    [5]会田俊夫(主编),金公望(译).圆柱齿轮的设计[M].中国农业机械出版社1983,4:120-130.
    [6]吴序堂.齿轮啮合原理[M].西安交通大学出版社,2009:11-13,42-45,131-133,145-147.
    [7]G.M.L.Gladwell(著),范天佑(译).经典弹性理论中的接触问题[M].北京理工大学出版社,1991:118-142,200-214.
    [8]朱孝录,鄂中凯.齿轮承载能力分析[M].河北:高等教育出版社,1992:70-93,153-181,193-232.
    [9]汗明民.基于接触有限元分析的渐开线齿轮齿廓修形的研究[D].大连理工大学,2007.12.
    [10]尚振国.风力发电机增速器齿轮修形技术研究[D].大连理工大学,2010.7.
    [11]魏小霞.斜齿轮接触问题的形状优化研究[D].太原理工大学,2002.
    [12]杨凡,孙首群,于建华,满微微.齿轮啮合过程中接触应力精确分析[J].机械传动2010:56-59.
    [13]尹长城.不同加载方式的斜齿轮接触分析[J].湖北汽车工业学院学报2011:29-31.
    [14]唐进元,周炜,陈思雨.齿轮传动啮合接触冲击分析[J].机械工程学报2011:22-30.
    [15]孟东阁.锥蜗杆传动副啮合曲面造型与接触有限元分析研究[D].南京理工大学2011.
    [16]Faydor L.Litvin, Alfonso Fuentes. Gear Geometry and Applied Theory[M].2004.
    [17]李润方,龚剑霞.接触问题数值方法及其在机械设计中的应用[M].重庆大学出版社,1991:6-52,112-177.
    [18]S.H.Chang, R.L.Huston, J.J.Coy. A Finite Element Stress Analysis of Spur Gears Including Fillet Radii and Rim Thickness Effects[J]. ASME Journal of Mechanisms, Transmissions, and Automation in Design,1983.
    [19]M.Kubur, A.Kahraman, D.M.Zini, K.Kienzle. Dynamic Analysis of Multi-mesh Helical Gear Sets by Finite Elements[J]. Proceedings of the 2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
    [20]M.Guingand, J.P.de Vaujany, Y.Icard. Fast Three-Dimensional Quasi-Static Analysis of Helical Gears Using the Finite Prism Method[J]. Journal of Mechanical Design, Transactions of the ASME, v126,1082-1088,2004.
    [21]V.Abousleiman, P.Velex, S.Becquerelle. Modeling of Spur and Helical Gear Planetary Drives with Flexible Ring Gears and Planet Carriers[J]. Journal of Mechanical Design, Transactions of the ASME, v126,95-106,2007.
    [22]Li-Chi Chao, Chung-Biau Tsay. Stress Analysis of Spherical Gear Sets[J]. Proceedings of the 2009 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2009.
    [23]Andrzej Kawalec, Jerzy Wiktor, Dariusz Ceglarek. Comparative Analysis of Tooth-Root Strength Using ISO and AGMA Standards in Spur and Helical Gears with FEM-based Verification[J]. Journal of Mechanical Design, Transactions of the ASME, v128, 1141-1158,2006.
    [24]董春锋.基于热流耦合的齿轮对流换热及温度场分析[D].2011.
    [25]李维特,黄保海,毕仲波.热应力理论分析及应用[M].北京:中国电力出版社,2004:59-73,109-111,194-199.
    [26]叶秀汉(等编).动力机械热应力理论和应用[M].上海:上海交通大学出版社,1987:1-7,64-76,135-156.
    [27]孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社,1999:6-119,150-159.
    [28]汝艳.低速重载齿轮本体温度场的研究[D].合肥工业大学,2007.
    [29]黄智勇.高速列车传动齿轮箱的热平衡计算分析[D].上海交通大学,2007.
    [30]武斌.低速重载齿轮传动微观热弹流润滑数值分析及齿面抛光实验研究[D].重庆大学,2010.
    [31]李润方,黎豫生.耦合热弹性接触有限元法及其在齿轮传动中的应用[J].重庆大学学报,1993.
    [32]李绍彬,李润方,林腾蛟.行星齿轮传动装置内齿轮轮齿热有限元分析[J].机械传动,2003.
    [33]王优强,衣雪鹃,杨沛然.渐开线直齿轮瞬态微观热弹流润滑分析[J].机械工程学报,2007.
    [34]朱才朝,陆波,徐向阳,刘伟辉,宁杰.大功率船用齿轮箱系统热弹耦合分析[J].船舶力学,2011.8.
    [35]石万凯,姜宏伟,秦大同,何爱民.燃气轮机用人字齿轮副接触应力及稳态热分析[J].重庆大学学报,2008.
    [36]Karoly Varadi, Zoltan Neder, Klaus Friedrich. Evaluation of the real contact areas, pressure distributions and contact temperatures during sliding contact between real metal surfaces[J]. Wear, v200,55-62,1996.
    [37]Karoly Varadi, Zoltan Neder, Klaus Friedrich, Joachim Flock. Numerical and finite element contact temperature analysis of real composite-steel surfaces in sliding contact[J]. Tribology International, v31,669-686,1998.
    [38]Ebubekir Atan. On the prediction of the design criteria for modification of contact stresses due to thermal stresses in the gear mesh[J]. Tribology International, v38, 227-233,2005, Boundary Lubrication.
    [39]G Koffel, F Ville, C Changenet, P Velex. Investigations on the power losses and thermal effects in gear transmissions[J]. Proceedings of the Institution of Mechanical Engineers: Journal of Engineering Tribology, v223,469-479,2009.
    [40]Zhao Xin, Jin Xuesong, Zhai Wanming. Analysis of thermal-elastic stress of wheel-rail in rolling-sliding contact[J]. Chinese Journal of Mechanical Engineering, v20,18-23,2007.
    [41]孙锐.边界表示实体模型表示方法研究[D].浙江:浙江大学计算机科学与技术学院,2010.
    [42]夏盛来,何景武.基于工程应用的有限元网格划分研究[J].飞机设计,2008.
    [43]李涛,左正兴,廖日东.结构仿真高精度有限元网格划分方法[J].机械工程学报,2009.
    [44]李润方.齿轮传动的刚度分析和修形方法[M].重庆:重庆大学出版社,1998.
    [45]李永康.渐开线斜齿圆柱齿轮齿向修形的研究[D].太原理工大学,2010.
    [46]吴忠鸣.轿车直齿圆锥齿轮的修形技术研究[D].华中科技大学,2005.
    [47]唐增宝,钟毅芳,陈久荣.修行齿轮的最佳修形量和修形长度的确定[J].华中理工大学学报,1995.
    [48]龙慧.高速齿轮传动轮齿的温度模拟及过程参数的敏感度性分析[D].重庆大学机械传动国家重点实验室,2001.
    [49]V.Simon. Optimal Tooth Modifications for Spur and Helical Gears[J]. Journal of Mechanisms, Transmissions, and Automation in Design,1989.
    [50]Ignacio Gonzalez-Perez Alfonso Fuentes, Faydor L.Litvin, Kenichi Hayasaka Kenji Yukishima. Application and Investigation of Modified Helical Gears with Several Types of Geometry[J]. International Design Engineering Technical Conferences & Computers and Information in Engineering Conference,2007.
    [51]Raynald Guilbault, Claude Gosselin, Louis Cloutier. Helical Gears, Effects of Tooth Deviations and Tooth Modifications on Load Sharing and Fillet Stress[J]. Transcations of the ASME, v128,2006.
    [52]张磊.变速器齿轮承载能力分析方法的研究及应用[D].吉林:汽车工程学院,2011.
    [53](美)J.N.Reddy著,邹仲康等译.有限元法概论[M].湖南:湖南科学技术出版社,1988:78,130-200.
    [54]郝东升.齿轮啮合数值分析建模方法及其应用研究[D].大连:机械设计及理论,2012.
    [55]陈一栋.渐开线圆柱齿轮接触分析和修形设计[D].国防科技大学,2007.
    [56]曾正明(主编).机械工程材料手册[M].北京:机械工业出版社,2009:170,177,190.
    [57]机械设计手册编委会.机械设计手册第3卷[M].北京:机械工业出版社,2008:44-52.
    [58]赵疼伦.ABAQUS6.6在机械工程中的应用[M].中国水利水电出版社,2007:2-11.
    [59]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2010.
    [60]庄茁,张帆,岑松,由小川,于旭光,牟全臣,徐明,白锐.ABAQUS分线性有限元分析与实例[M].北京:科学出版社,2005:4-9.
    [61]AMERICAN GEAR MANUFACTURERS ASSOCIATION. Method for Specifying the Geometry of Spur and Helical Gears[M].1998:7-9.
    [62]American National Standards Institute. Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical[M].1995.
    [63]曹金凤,王旭春,孔亮.Python语言在Abaqus中的应用[M].北京:机械工业出版社,2011.7:2-10,118-173,203-280.
    [64]陈学义.基于ABAQUS二次开发的多管火箭炮参数化建模与仿真研究[D].南京理工大学,2012.3.
    [65]周兰.ABAQUS二次开发技术在编织型材料微结构设计中的应用[D].兰州理工大学,2010.6.
    [66]李绍彬.高速重载齿轮传动热弹变形及非线性耦合动力学研究[D].重庆大学,2004.
    [67]陈润霖.1.5MW风电增速箱斜齿轮动力学分析及齿廓修形[D].西安理工大学,2010.
    [68]董学朱.环面蜗杆传动设计和修形[M].北京:机械工业出版社2004:12-13,102-130,210-234.
    [69]辛经纬.精梳机行星齿轮齿形修形及其实现方法[D].东华大学,2009.
    [70]杨艳.修形齿轮数字化设计方法与技术[D].中南大学,2011.
    [71]徐香翠,宋爱平,张礼峰,黄建伟.齿轮综合修形方法的研究[J].机械传动:2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700