新型Half-Heusler化合物基热电材料计算设计及其热电效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高热电材料的热电转换效率,进一步提高其热电性能,满足热电材料高电导率、高Seebeck系数和低热导率的要求,本文采用材料计算设计的方法对新型Half-Heusler化合物基热电材料体系进行了优化设计,并对所设计的材料体系进行了制备和表征,从实验上验证了优化结论的正确性。
     基于第一性原理方法,使用Material Studio4.0计算软件的CASTEP模块首先计算了19种Half-Heusler化合物的晶体结构与电子结构,根据费米能级附近态密度的大小和能带分布规律,通过分析比较确定了TiFeSb化合物作为新型Half-Heusler化合物基热电材料的基体。随后,从掺杂体系的原子占位、弹性性质、电子输运性质和声子输运性质等角度出发,考察了掺杂量为8.33at%的46种掺杂元素对TiFeSb基热电材料体系的影响,并选择了其中一种掺杂体系(Ti_(0.75)Mn_(0.25))FeSb进行实验验证。
     根据优化设计的结果,对Mn掺杂的TiFeSb体系进行了实验研究。利用固相反应合成和放电等离子体烧结的方法制备了TiFeSb和(Ti_(0.75)Mn_(0.25))FeSb两种块体材料。利用金相显微镜、扫描电子显微镜、X射线衍射仪等测试手段对其微观组织结构进行了表征,使用ZEM-3热电性能测量装置和激光热导分析仪对材料的热电性能进行了测试。
     由于目前尚未有TiFeSb相和(Ti_(0.75)Mn_(0.25))FeSb相的标准粉末衍射卡片的相关报道,所以利用Material Studio4.0软件的REFLEX模块首先计算了这两种相的理论X射线衍射谱。实验研究结果表明,采用850℃固相反应144h的前驱体粉末在800℃、40MPa的压力下进行放电等离子体烧结,可以获得TiFeSb和(Ti_(0.75)Mn_(0.25))FeSb块体材料。实验测得的X射线衍射谱与模拟计算的理论衍射谱可以获得很好的对应,且晶格常数实验值与计算值的相对误差小于0.3%,说明计算模型和参数选择合理。组织结构分析表明TiFeSb和(Ti_(0.75)Mn_(0.25))FeSb相的晶粒内部组织呈板条结构,且成分分析结果与设计成分相吻合,说明所制备材料达到了成分设计要求。热电性能测试结果表明,TiFeSb和(Ti_(0.75)Mn_(0.25))FeSb的Seebeck系数均为正值,都是p型热电材料;50℃时,Mn掺杂的(Ti_(0.75)Mn_(0.25))FeSb的热电优值ZT为0.047,与未掺杂的TiFeSb体系的ZT值(0.011)相比,提高了4.27倍。该结果证实了理论计算过程中所得出的结论,说明所提出的新型Half-Heusler化合物热电材料计算设计方法是可行的。
In order to further improve the electrical conductivity, the Seebeck coefficient and the thermal conductivity of thermoelectric materials, in the present thesis, a novel Half-Heusler based thermoelectric compounds materials system was designed by the calculation method. Basing on the calculation, the optimized material system was prepared and the related experimental characterization has been performed. The calculation method is verified by the good agreement with the experimental results.
     Firstly, the crystal structure and electronic structure of the 19 species of Half-Heusler compounds were calculated by the CASTEP module of Material Studio4.0 software, which is based on the first-principles theory. And the TiFeSb was adopted as the matrix of the new designed Half-Heusler compounds according to the comparing and analyzing. Furthermore, in order to study the influences of the doped elements, the atoms space occupying, elastic properties, electronic transport properties and phonon transport properties of 8.33at% doped system for 46 kinds of elements were calculated. And chose one of the doped system (Ti_(0.75)Mn_(0.25))FeSb to validate the computational model.
     Basing on the result of the optimal calculation, Mn doped TiFeSb system was studied by experiments. The TiFeSb and (Ti_(0.75)Mn_(0.25))FeSb bulk material were prepared by solid state reaction and spark plasma sintering method, respectively. Their microstructures were characterized by optical microscopy, scanning electron microscopy and X-ray diffraction tests. The material resistivity and Seebeck coefficient were measured by ZEM-3 thermoelectric properties device. The thermal conductivity coefficient was measured by LFA-427 laser thermal conductivity analyzer. Because there were no related standard powder diffraction cards about TiFeSb phase and (Ti_(0.75)Mn_(0.25))FeSb phase, the X-ray diffraction spectrum of these two phases were calculated by Material Studio4.0 software REFLEX module.
     Experimental results indicate that: TiFeSb and (Ti_(0.75)Mn_(0.25))FeSb bulk materials can be obtained by the process of solid-state reaction at 850℃, 144h, and spark plasma sintering under the 40MPa precursor at 800℃. The XRD patterns of the experimentally synthesized TiFeSb and (Ti_(0.75)Mn_(0.25))FeSb bulk materials could get a good correspondence with the theoretical calculation results. And the relative errors of lattice constant between the experimental data and calculated were less than 0.3%. Those results indicate that the model building and parameter selecting are reasonable. The SEM observation shows that TiFeSb and (Ti_(0.75)Mn_(0.25))FeSb phases have lath morphology. Further EDS analyzing indicates that the chemical composition of lath is the same as the designed. Thermoelectric properties results showed that, the Seebeck coefficient values of TiFeSb and (Ti_(0.75)Mn_(0.25))FeSb are positive, which means that they were p-type thermoelectric material. The ZT value of (Ti_(0.75)Mn_(0.25))FeSb reached 0.047 at 50℃, which was 4.27 times improved comparing with the undoped matrix (0.011). The theoretical calculation results are confirmed by experimental characterization and the goal of designing a new Half-Heusler compound thermoelectric materials system was reached. Those results indicate that the calculation method to design a new Half-Heusler compounds materials system is feasible.
引文
[1] Joseph R S, Duck Y C, Mercouri G K. New and Old Concepts in Thermoelectric Materials[J]. Angew Chem Int Ed, 2009, 48:8616-8639.
    [2]王婵,周泽广,区煜广.温差发电器的研究进展[J].电测与仪表,2010,47(532):41-44.
    [3] Mathe K, Odry P. Thermopile Battery, Thermoelectric Generator as the Only Possible Alternative for Future[C]. Exploitation of Renewable Energy Sources (EXPRES), 2011 IEEE 3rd International Symposium, 2011:67-69.
    [4] Nidhi D, Mario L. Conducting Polymers: Efficient Thermoelectric Materials [J]. Journal of Polymer Science Part B: Polymer Physics, 2011, 49:467-475.
    [5] Lon E B. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems[J]. Science, 2008, 321:1457-1461.
    [6] Bhattacharya S, Pope A L, Littleton R T. Grain Structure Effects on the Lattice Thermal Conductivity of Ti-based Half-Heusler Alloys[J]. Appl Phys Lett, 2000, 77:2476.
    [7]苗伟.新型Fe-Cr-Mo-F-Nb系热强耐蚀钢的成分设计与组织控制[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009:8-10.
    [8]闵新民. Ca-Co-O体系热电材料的量子化学计算[D].武汉:武汉理工大学硕士学位论文,2004:1-3.
    [9] Rowe D M, Ph D, Sc D. Thermoelectrics Handbook:Macro to Nano[M]. US:CRC Press, 2006:1-5.
    [10] Miroslav O, Sanja Z, Mile I. Thermoelectric Materials: Problems and Perspectives[C]. MIPRO 2010. May 24-28, Opatija, Croatia, 2010:16-21.
    [11] Disalvo F J. Thermoelectric Cooling and Power Generation[J]. Science, 1999, 285:703-706.
    [12] Bresehi R, Fano V. The Sintering of Lead Telluride[J]. J Master Sci, 1985, 20:2990-2996.
    [13] Nugraha T W, Itoh O. Growth and Crystal ProPerties of Tl-doped PbTe Crystals Grown by Bridgman Method under Pb and Te Vapor Pressure[J]. Crystal Growth, 2001, 222:38-43.
    [14] Orihashi M, Noda Y, Chen L D, et al. Effect of Tin Thermoelectric Properties of P-type Lead Tin Telluride[J]. Phys Chem Solids, 2000, 61:919-923.
    [15]靳鹏,彭辉,郭孔辉.热电技术在汽车上的应用综述[J].汽车技术,2010,5:1-4.
    [16]崔教林.宽温区叠层热电材料的设计、制作与性能研究[D].浙江:浙江大学博士学位论文,2002:1-2.
    [17]王国文,王秀峰,于成龙等.梯度热电材料的研究进展[J].材料导报, 2007,21(7):115-118.
    [18] Kuei F H, Sim L, Fu G, et al. Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit [J]. Science, 2004, 303:818-821.
    [19] Jose P H, Vladimir J, Eric S T. Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States[J]. Science, 2008, 321:554-557.
    [20] Harman T C, Taylor P J, Walsh M P, et al. Quantum Dot Superlattice Thermoelectric Materials and Devices[J]. Science, 2002, 297:2229-2232.
    [21] Hanman T C, Taloy P J. Quantum Dot Superlattice Thermoelectric Materials[C]. 18th International Conference on Thermoelectrics, ICT Proceedings, 1999:280-289.
    [22]孙霆,朱铁军,赵新兵.纳米结构Bi2Te3化合物的低温湿化学合成[J].化学学报,2005,63:1515-1517.
    [23] Venkata R, Siivola E, Colpitts T. Thin-film Thermoelectric Devices with High Room-Temperature Figures of Merit[J]. Nuture, 2001, 413:597-563.
    [24]徐国栋,陈哲,严有为等.高优值系数热电材料研究[J].材料导报:综述篇,2010,24(2):60-64.
    [25] Ohta T, Kajikawa T. PIES Method of Preparing Bismuth Alloys. Handbook on Thermoelectrics[M]. US:CRC Press, 1995:109-210.
    [26] Bed P, Qing H, Yi M. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys[J]. Science, 2008, 320:634-638.
    [27] Slack G A. New Material and Performance Limits of Thermoelectrics[M]. US:CRC Press, 1995:407-412.
    [28] Nolas G S, Cohn J L, Sales G A. Effect of Partial Void Filling on the Lattice Thermal Conductivity of Skutterudites[J]. Phys Rev B, 1998, 58(1):164-168.
    [29]唐新峰,陈立东等. Ce填充分数对P型CeyFe_(1.5)Co_(2.5)Sb_(12)化合物热电传输特性的影响[J].物理学报,2000,49(12):2461-2465.
    [30] Kirihara K, Kimura K. Porous Structure and High Electrical Resistivity of AlPdRe Icosahedral Phase[J]. Sci and Eng of Advanced Materials, 2000, 1:227.
    [31] Nakayama T, Shimizu J, Kimura K. Thermoelectric Properties of Metal-Doped Rhombohedral Boron[J]. Solid State Chem, 2000, 154:13-17.
    [32]李晓光,霍德璇,何才君等.稀土掺杂对锡基Half-Heusler合金热电特性的影响[J].无机材料学报,2010,25(6):573-576.
    [33] Wu X Y, Zhang J, Yuan H K, et al. Effect of Nb Doping on Electronic and Magnetic Properties of Half-metallic CoMnSb Semi-Heusler Compound from First-principles Calculations[J]. Phys Status Solidi B, 2010, 247(4):945-949.
    [34] Yang J, Li H M, Wu T. Evaluation of Half-Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties[J]. Adv Funct Mater, 2008, 18:2880-2888.
    [35] Hohl H, Ramirez A P, Goldmann C, et al. Efficient Dopants for ZrNiSn-based Thermoelectric Materials[J]. J Phys, 1999, 11:1697-1709.
    [36] Cahill D G, Wstson S K, Pohl R O. Lower Limit to Thermal Conductivity of Disordered Crystal[J]. Physical Review, 1992, 46:6131-6140.
    [37] Joshi G, Yan X, Wang H Z, et al. Enhancement in Thermoelectric Figure-Of-Merit of an N-Type Half-Heusler Compound by the Nanocomposite Approach[J]. Adv Energy Mater, 2011, 5:1-5.
    [38]刘海强. Ti基Half-Heusler热电化合物的制备及其热电性能的研究[D].武汉:武汉理工大学博士学位论文,2006:55-65.
    [39] Qiu P F, Yang J, Huang X Y, et al. Effect of Antisite Defects on Band Structure and Thermoelectric Performance of ZrNiSn Half-Heusler Alloys[J]. Applied Physics Letters, 2010, 06(15105):1-3.
    [40] Shen Q, Chen L, Goto T. Effects of Partial Substitution of Ni by Pd on the Thermoelectric Properties of ZrNiSn-based Half-Heusler Compounds[J]. Applied Physics Letter, 2001, 79:4165-4167.
    [41] Sakurada S, Shutoh N. Effect of Ti Substitution on the Thermoelectric Properties of (Zr,Hf)NiSn Half-Heusler Compounds[J]. Applied Physics Letters, 2005, 86(082105):1-3.
    [42] Zhou M, Chen L D, Feng C D, et al. Moderate-temperature Thermoelectric Properties of TiCoSb-based Half-Heusler Compounds Ti_(1-x)Ta_xCoSb[J]. Journal Of Applied Physics, 2007, 101(113714):1-5.
    [43] Wu T, Jiang W, Li X Y, et al. Thermoelectric Properties of p-type Fe-doped TiCoSb Half-Heusler Compounds[J]. Journal Of Applied Physics, 2007, 102(103705):1-5.
    [44] Wang L L, Miao L, Wang Z Y, Thermoelectric Performance of Half-Heusler Compounds TiNiSn and TiCoSb[J]. Journal Of Applied Physics, 2009, 105 (013709):1-5.
    [45]常丽君.半赫斯勒热电材料性能显著提高[N].科技日报,2011-01-27(2).
    [46]熊家炯.材料设计[M].天津:天津大学出版社,2000:367.
    [47] Ekholm M, Larsson P, Alling B. Ab Initio Calculations and Synthesis of the Off-Stoichiometric Half-Heusler Phase Ni_(1-x)Mn_(1+x)Sb[J]. Jounal Of AppliedPhysics, 2010, 108(093712):1-8.
    [48] Fumiyuki I, Masatoshi O, Tamio O. First-principles Study of Electronic Structure and Thermoelectric Properties of CeRhAs and Related Compounds[J]. Physical B, 2004, 351:316–318.
    [49]安继明. Bi_2Te_3系、Ca_3Co_2O_6系热电材料的电子结构计算与热电陶瓷制备[D].武汉:武汉理工大学博士学位论文,2004:1-10.
    [50]周楠.层状钙钛矿型氧化物热电材料的制备及输运性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:1-2.
    [51] Born M, Huang K. Dynamical Theory of Crystal Lattices[M]. UK:Oxford Clarendon Press, 1954:141.
    [52]姚强.若干新材料相稳定性及力学性能的第一性原理研究[D].上海:上海交通大学博士学位论文,2008:80-81.
    [53] Ledbetter H M. Estimation of Debye Temperature by Averaging Elastic Coefficients[J]. J Appl Phys, 1973, 44:1451-1454.
    [54] Pugh S F. Relation Between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals Philos Mag, 1954, 45:823-843.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700