波形板汽水分离器的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高品质的蒸汽是保证核动力装置安全和经济运行的重要条件。波形板汽水分离器由于其分离效率较高,广泛应用于核动力装置中,并且作为汽水分离系统最后一级分离器,在核电站中占有重要的地位。同时鉴于气液分离过程是两相流中的一个普遍现象,所涉及的液膜破裂和液滴碰壁飞溅等也是工程热物理领域中一个常见的问题,因此对波形板汽水分离器的分离过程进行深入的理论和实验研究有利于设计和改造分离装置使之高效化、紧凑化,对于核潜艇一体化蒸汽发生器的设计也有现实的军事意义。
     波形板汽水分离器的流道内是极其复杂的两相流流动,其形成的流场为两相三流场,这给分离器的数值模拟和实验测量带来了一定的困难。针对分离器内部的这种复杂气-液两相湍流运动,本文通过开展冷态和热态不同工况条件下的分离器工作机理研究,分析二次液滴产生的原因,建立描述分离器流动过程的数学模型,采用流体计算软件实现了对流场、液滴运动轨迹、二次携带现象等的数值模拟,同时,采用自主设计的冷态试验台架和外协单位的热态试验台架进行了实验研究,对模型及计算结果进行验证。论文的研究结果有助于了解气液分离装置特别是波形板精细分离器性能和提高其分离效率,同时也为寻求高效波形板结构的奠定了基础。
     本论文主要完成了以下几个方面的工作:完成了国内外波形板汽水分离器研究资料的收集,对汽水分离装置的分离原理进行了介绍;分析了蒸汽发生器中液滴产生的过程,得到了不同机制下形成的液滴直径的计算公式,并研究了冷态和热态工况下二次液滴产生的原因;通过借鉴环状流的经验关系式,建立了波形板汽水分离器的两相三流场数学模型,为了使方程封闭,补充了界面处的摩擦力方程以及液滴密度数方程;利用FLUENT软件,针对冷态和热态工况,完成了波形板汽水分离器中汽相流场的数值模拟,得到了各种板型的汽流场特征;对波形板流道内的液滴行为进行了模拟计算,分析了湍流效应对液滴行为的影响,指出大液滴的分离机理主要是依靠惯性力,而细小液滴的分离机理主要是依靠湍流效应;对各种板型的分离效率进行了计算对比,指出2h板型在热态工况下要优于1h型波形板;采用壁面液膜模型来模拟二次携带现象,分析了它对分离效率的影响,指出1h型板型更容易发生二次携带,在入口流速较高时,分离效率很快下降;对波形板汽水分离器进行了冷态和热态实验研究,主要针对压降和分离效率这两个主要指标参数与数值模拟结果进行了对比,验证了数值模拟方法的可靠性;论文最后还为波形板汽水分离器的进一步深入研究提出了建议。
     本文的研究成果,无论是理论上还是实践上,都对波形板汽水分离器的推广应用、优化设计具有积极的指导意义。
     本文研究的课题受到了国防预研基金的资助。
The high quality steam is important to the safety and economical work of nuclear-powered equipments. Due to the high separating efficiency, steam-water separator with corrugated plates is used to nuclear-powered equipments widely as the last stage of the steam separation system. At the same time, the steam-water separating process relating to breake of film and splash of droplets is a universal phenomenon in the two-phase flow, and the field of Engineering Thermophysics. So an improved understanding of the behavior of steam-water separation could benefit the design and optimization of steam separation system and is significant in the incorporated design of steam generator in nuclear submarine.
     The complicatedl turbulent two-phase flow in corrugated plates which comes into being the two–phase and three-flow-field caused major difficulties in modeling and experimentally simulating their internal flows. In this thesis, the separating mechanism of steam-water separator with corrugated plates is researched under the different work status including cold state and actual state. The mathematic equations describing the flow process are founded and the flow field and disperse are numerically simulated by FLUENT software. Then, the test-beds of cold and actual state are manufactured by indoor and 105 graduate school respectively. The tests are complished and the results are compared with the numerical value of the simulation. The research benefits to the understanding of the mechanism of separating process and increasing greatly the system efficiency, which is the base to optimize the structure.
     The main characteristics of the research in the thesis are as follows: A wide range of documentations about the steam-water separator with corrugated plates are reviewed worldwidely and the separating mechanism is introduced. The formation process of injected droplet is analysed and the diameter distribution resulted from different mechanisms are obtained. The mechanism of second droplets generation is analyzied; The two–phase and three-flow-field mathmatics model of separation process in corrugated plates considering about secondary droplets is built up by using the experiential correlations attained in annular two phase flow experiment; The separation process in the condition of cold and actual operation state of steam-water separator with corrugated plates is simulatd by the FLUENT computation code, the turbulent effect on the droplet trajectories is discussed expecailly due to its importance to separated the fine droplets. The pressure drop and separation efficiency, which varies with the geometric parameters and flow parameters in theseparator, are discussed. It could be concluded that the 2h type corrugated plate outperform the 1h type in the actual operation condition. The experiments under the cold and actual operation state of steam-water separator with corrugated plates are performed, and the experiment results agreed well with the numerical results.
     The bringouts in this thesis are very helpful to spreading and optimizing the application of steam-water separator with corrugated plates.
引文
[1]黄素逸,能源与节能技术,北京:中国电力出版社,2004
    [2]黄素逸,能源概论,北京:高等教育出版社,2004
    [3]欧阳予主编,核能-无穷的能源,北京:清华大学出版社,2002
    [4]程萍,核电发展技术路线的建议,中国核工业,2004(2):10-13
    [5]陈军亮,高效汽水分离器和干燥器的理论分析与实验研究,博士论文开题报告,2004
    [6]蒸汽发生器编写组,蒸汽发生器,北京:原子能出版社,1982
    [7]广东核电培训中心编,900MW压水堆核电站系统与设备,北京:原子能出版社,2005
    [8]陈韶华,PWR蒸汽发生器高效紧凑汽水分离系统的理论及试验研究,博士学位论文,华中理工大学,1996
    [9]陈军亮,核电站蒸汽发生器干燥器结构优化理论与实验研究,博士学位论文,哈尔滨工程大学,2006
    [10]吴洪涛,压水堆蒸汽发生器和汽水分离器发展概况,核动力运行研究,8(2):32-40,1995
    [11]王晓墨,波形板汽水分离器的二次携带现象研究,博士学位论文,华中科技大学,2004
    [12]周帼彦,螺旋片导流式分离器气液两相流的数值模拟与试验研究,硕士学位论文,南京工业大学,2003
    [13] Kitron,A., Elperin,T., Tamir,A., Stochastic modeling of the effects of the liquid droplet collisions in impinging streams absorbers and combustor, Int J Multiphase Flow,17 (2): 274-282, 1991
    [14] Marion,G., Dicharry,C., Mendibourne,B., Contribution of the modelization of the surfactant concentration influence on droplet size distribution in oil/ water emulsion, Progress in Collid & Polymer Science, 21 (25): 307-311, 1993
    [15]蒋勇,廖光煊,王清安等,喷雾过程液滴碰撞-聚合模型研究,火灾科学, 9(2):27-30,2000
    [16] Engel,O.G., Waterdrop collisions with solid surface. J. Res. Bur. Standard, 54(5): 281-298, 1995
    [17] Bussmann,M., Chandra,S., Mostaghimi,J., Modeling the splash of a droplet impacting a solid surface, Physics of Fluids, 12 (12): 3121-3132, 2000
    [18] Jepsen R.A., Yoon S.S., Demosthenous B., Effects of air on splashing during a large droplet impact: Experimental and numerical investigations, Atomization and Sprays, 16(8): 981-996, 2006
    [19] Josserand C., Zaleski S., Droplet splashing on a thin liquid film, Physics of Fluids, 15(6):1650-1657, 2003
    [20] Howison, S.D., Ockendon, J.R., Oliver, J.M., Droplet impact on a thin fluid layer, Journal of Fluid Mechanics, 54(2): 1-23, 2005
    [21] Vander,W., Randy,L., Berger,G.M., Mozes,S.D., The splash/non-splash boundary upon a dry surface and thin fluid film, Experiments in Fluid, 40(1): 53-59, 2006
    [22] Bernardin,J.D., Stebbins,C.J., Mudawar,I., Effect of surface roughness on water droplet impact history ad heat transfer regimes, Int. J. Heat Mass Transfer, 40(1): 73-88,1997
    [23] Tropea,C., Marengo,M., The impact of drops on walls and films. In Proceedings of the 3rd int. conference on multiphase flow, ICMF’98, Lyon, France, 8-12 June 1998
    [24] Samenfink,W., Elsaber,A., Dullenkopf,K., Wittig,S., Droplet interaction with shear-driven liquid films: analysis of deposition and secondary droplet characteristics. Int. J. Heat and Fluid Flow. 20: 462-469, 1999
    [25] Wachters,L. H. J., Wasterling,N. A. J., The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chem. Eng. Sci.,21:1047-1056,1966
    [26] Berthoumieu,P., Carentz,H., Villedieu,P., Lavergne,G.., Contribution to droplet breakup analysis. Int. J. Heat and Fluid Flow. 20: 492-498, 1999
    [27] Rein,M., Phenomena of liquid drops on solid and liquid surfaces. Fluid Dynamics research.12:61-93,1993
    [28] Vander,W., Randy,L., Berger,G.M., Mozes,S.D., Droplets splashing upon films of the same fluid of various depths, Experiments in Fluids, 40(1): 33-52, 2006
    [29] Xie,H., Koshizuka,S., Oka,Y., Modeling the wetting effects in droplet impingement using particle method, CMES - Computer Modeling in Engineering and Sciences, 18(1): 1-16, 2007
    [30] Amada,S., Ohyagi,T., Haruyama,M., Evaluation of splat profile for droplet impingement,Surface and Coatings Technology, 115(2): 184-192, 1999
    [31] Reley,D.J., Small,J., Re-entrainment of Drop Deposited Liquid from Simulated Steam Turbine Fixed Blades, Proc, inst. Mech. enfr., Conf. Publ. 3: 9-18, 1973
    [32]王新军,汽流切力作用下沿水平固体表面运动的液膜表面特性的研究,硕士学位论文,西安交通大学,1989
    [33] Chengxin,B., Gosman,A.D., Mathematical Modeling of Wall Films Formed by Impinging Sprays, International Congress&Expositior Detroit, Michigan, 1996
    [34] Hamitt,F.G., Krzecekowski,S., Krzyvanowski,J., Liquid film and Droplet Stability Consideration as Applied to WetSteam Flow, Int. J. Therm. Sci., 3(1): 1-14, 1981
    [35] Akio,M., Numerical simulation of wavy liquid film flowing down on a vertical wall and an inclined wall, Int. J. Therm. Sci., 39(11): 1015-1027, 2000
    [36] Seong,H.K., Sang,S.K., Seung,K.L., Wave characteristics of falling liquid film on a vertical circular tube, International Journal of Refrigeration, 24: 500-509, 2001
    [37] Azzopardi,B.J., Interaction between a falling liquid film and a gas stream, Ph.D. thesis, University of Exeter, 1977
    [38] Verlaan,C. C. J., Performance of novel mist eliminators, Ph.D. thesis, Delft University of Technology, 1991
    [39] Wang,X.M., Huang,S.Y., Numerical Simulation on Corrugated Plate Separator With Reentrained Droplet, 5th International Symposium on Multiphase Flow, Xian, 2005
    [40]王晓墨,黄素逸等,波形板二次携带的数值分析,上海理工大学学报, 25:6-8,2003
    [41]王晓墨,黄素逸等,波形板分离器中二次携带的模型建立,华中科技大学学报, 31:41-43,2003
    [42]王晓墨,黄素逸等,波形板分离器中液滴轨迹的数值模拟,核动力工程,24:582-585,2003
    [43] Wang,X.M., Huang,S.Y., Experimental study on the steam-water separator with corrugated plates, 3rd International Symposium On Two-Phase Flow Modelling And Experimentation, Italy, 2004
    [44] Steininger,D.A., Method of Reducing Carry-over and Reducing Pressure Drop Through Steam Separators and Dryers, EPRI Project Reports:122-1,1980
    [45] Franks,D.J., Steam-water Separation in a Swirl-Vane Centrifugal Separator, EPRIProject Reports:173-1,1983
    [46] Peter,F.S., Formed Vane Elements for Liquid-vapor Separators, Unite States Patent 3805496,1974
    [47] Horton,W.E., Apparatus for Separating liquid from Liquid Entrained Gas, Unite States Patent 3490210,1970
    [48]吴洪涛,意大利核电站蒸发器试验研究概况,核动力工程,1985,6(1):20-26
    [49]丁训慎,法国压水堆核电站的蒸汽发生器,核电工程与技术,1988,1(1):38-44
    [50]丁训慎,崔保元,薛运奎等,同心立式波形板汽水分离器的试验研究,核动力工程,1984,5(1):22-28
    [51]薛运奎,刘世勋,解官道,带钩波形板汽水分离器的试验研究,核动力工程,1989,10(2):109-114
    [52]朱东琦,波形板汽水分离器中流场的数值模拟,硕士学位论文,哈尔滨工程大学,2004
    [53]李守恒,杨励丹等,电站锅炉汽水分离装置的原理和设计,北京:水利电力出版社,1986.
    [54] Ueda,T., Study on Entrainment Rate and Droplet Size in Annular Two-phase Flow, JSME, 45(389): 127, 1979
    [55] Toshitsugu N., Development of Simplified Wave-type Vane in BWR Steam Dryer and Assessment of Vane Droplet Removal Characteristics, Journal of nuclear Science and Technology, 36(5): 424-432, 1999
    [56] Nakao,T., Nagase,N., Development of simplified wave-type vane in BWR steam dryer and assessment of vane droplet removal characteristics, J. Nucl. Sci. Tech., 36: 424-432, 1999
    [57] Samenfink,W., Elsaber,A., Droplet Interaction with Shear-driven Liquid Films: Analysis of Deposition and Secondary Droplet Characteristics, Int. J. Heat and Fluid Flow, 20: 462-469, 1999
    [58] Sinai,L., A model of interfacial stress and spray generation by gas flowing over a deep wavy pool, J. Fluid Mech., 179: 327-344, 1987
    [59] Ishii,M., Grolems,M.A., Inception Criteria for Droplet Entrainment in Two-phase Concurrent Film Flow, AICHE J., 21: 308-318, 1975
    [60] Nakagawa,T., On Characteristics of the Water-particle Velocity in a Plunging Breaker, J. Fluid Mech., 126: 251-268, 1983
    [61] Longuet-Higgins,M.S., Bubble Breaking Waves and Hyperbolic Jet at a Free Surface, J. Fluid Mech., 126: 251-268, 1983
    [62]林宗虎编著,汽液两相流和沸腾换热,西安:西安交通大学出版社,1987
    [63]毛靖儒,王壁玉,汽水分离器分离效率的实验研究,化工机械,17(1):13-17,1990
    [64]陈庆龙,刘环,湿蒸汽透平的汽水分离器的实验研究,热能动力工程,12(1):48-51,1997
    [65] Alipchenkov,V.M., Nigmatulin,R.I., Soloviev,S.L., A three-fluid model of two-phase dispersed-annular flow, Int. J. heat and mass transfer, 47: 5323-5338, 2004
    [66] Sugawara,S., Droplet deposition and entrainment modeling based on the three-fluid model, Nucl. Eng. Des, 122: 67–84, 1990
    [67] Stevanovic,V., Studovic,M.A., Simple model for vertical annular and horizontal stratified two-phase flows with liquid entrainment and phase transitions: one-dimensional steady state conditions, Nucl. Eng. Des, 154: 357–379, 1995
    [68] King,S.H.K., Piar,G.., Effects of entrainment and deposition mechanism on annular dispersed two-phase flow in a converging nozzle, Int. J. Multiphase Flow, 25: 321–347, 1999
    [69] Kocamustafaogullari,G., Ishii,M., Foundation of the interfacial area transport equation and its closure relations, Int. J. Heat Mass Transfer, 38: 481–493, 1995
    [70] Hibilki,T., Ishii,M., One-group interfacial area transport of bubbly flows in vertical round tubes, Int. J. Heat Mass Transfer, 43: 2711–2726, 2000
    [71] Wallis,G.B., One-Dimensional Two-Phase Flow, New York, McGraw-Hill, 1969
    [72] Henstock,W.H., Hanratty,T.J., The interfacial drag and the height of the wall layer in annular flows, AIChE J., 22: 990–1000, 1976
    [73] Asali,J.C., Hanratty,T.J., Andreussi,P., Interfacial drag and film height for vertical annular flow, AIChE J., 31: 895–902, 1985
    [74] Ambrosini,W., Andreussi,P., Azzopardi,B.J., A physically based correlation for drop size in annular flow, Int. J. Multiphase Flow, 17: 497–507, 1991
    [75] Fukano,T., Furukawa,T., Prediction of the effects of liquid viscosity on interfacial shear stress and frictional pressure drop in vertical upward gas–liquid annular flow, Int. J. Multiphase Flow, 24: 587–603, 1998
    [76] Fore,L.B., Beus,S.G., Bauer,R.C., Interfacial friction in gas–liquid annular flow: analogies to full and transition roughness, Int. J. Multiphase Flow, 26: 1755–1769,2000
    [77] Hinze,J.O., Turbulence, New York, McGraw-Hill, 1975
    [78] Zaichik,L.I., Alipchenkov,V.M., Interaction time of turbulent eddies and colliding particles, Thermophys. Aeromech, 6: 493–501, 1999
    [79] Zaichik,L.I., Alipchenkov,V.M., A statistical model for transport and deposition of high-inertia colliding particles in turbulent flow, Int. J. Heat Fluid Flow, 22: 365–371, 2001
    [80] Andreussi,P., Droplet transfer in two-phase annual flow, Int. J. Multiphase Flow, 9: 697–713, 1983
    [81] Schadel,S.A., Leman,G.W., Binder,J.L., Hanratty,T.J., Rates of atomization and deposition in vertical annular flow, Int. J. Multiphase Flow, 16: 363–374, 1990
    [82] Hay,K.J., Liu,Z.C., Hanratty,T.J., Relation of deposition to drop size when the rate law is nonlinear, Int. J. Multiphase Flow, 22: 829–848, 1996
    [83] Hewitt,G.F., Govan,A.H., Phenomenological modeling of non-equilibrium flows with phase change, Int. J. Heat Mass Transfer, 33: 229–242, 1990
    [84] Nigmatulin,R.I., Nigmatulin,B.I., Khodzhaev,Ya.D., Kroshilin,V.E., Entrainment and deposition rates in a dispersed-film flow, Int. J. Multiphase Flow, 22: 19–30, 1996
    [85] Nigmatulin,B.I., Netunaev,S.B., Gorjunova,M.Z., Investigation of moisture entrainment processes from the liquid film surface in air–water upflow, Thermophys. High Temp, 20: 195–197, 1982
    [86] Ishii,M., Grolmes,M.A., Inception criteria for droplet entrainment in two-phase concurrent film flow, AIChE J., 21: 308–318, 1975
    [87] Lopez de Bertodano,M.A., Assad,A., Entrainment rate of droplets in the ripple-annular regime for small vertical ducts, Nucl. Sci. Eng., 129:72–80, 1998
    [88] Hanratty,T.J., Dykhno,L.A., Physical Issues in Analyzing Gas-Liquid Annular Flows, Proceedings of the 4th World Conference on Experimental Heat Transfer, Brussels, 2: 1101-0012, 1997
    [89] Azzopardi,B.J., Drops in annular two-phase flow, Int. J. Multiphase Flow, 23: 1–53, 1997
    [90] Hinze,J.O., Fundamentals of the hydrodynamics mechanisms of splitting in dispersion process, AIChE J., 1: 289–295, 1955
    [91] Kataoka,I., Ishii,M., Mishima,K., Generation and size distribution of droplets in annular two-phase flow, Trans. ASME J. Fluids Eng., 105: 230–238, 1983
    [92] Sevik,M., Park,S.H., The splitting of drops and bubbles by turbulent fluid flow, Trans. ASME J. Fluids Eng., 95: 53–60, 1973
    [93] Martinez-Bazan,C., Montanes,J.L., Lasheras,J.C., On the breakup of an air bubble injected into a fully developed turbulent flow, Part 1, Breakup frequency, J. Fluid Mech., 401: 157–182, 1999
    [94] Fluent Inc., Fluent Version 6.3, Users’Guid, Centerra Resource Park, Lebanon, NH, USA, 2006
    [95]周力行,湍流两相流动与燃烧的数值模拟,北京:清华大学出版社,1991
    [96]岑可法,樊建人,工程气固多相流动的理论与计算,浙江:浙江大学出版社,1990
    [97]陈庆光、徐忠、张永建,RNG k-ε在工程湍流数值计算中的应用,力学季刊,23(1):2003
    [98] Choudhury,D., Introduction to the Renormalization Group Method and Turbulence Modeling, Fluent Inc. Technical Memorandum TM-107, 1993
    [99] Launder,B.E., Spalding,D.B., The Numerical Computation of Turbulent Flows Computer Methods, Applied Mechanics and Engineering, 3: 269-289, 1974
    [100] Chorin,A.J., Numerical solution of navier-stokes equations, Mathematics of Computation, 22: 745-762, 1968
    [101] Patanka,S.V., Numerical Heat Transfer and Fluid Flow, Washington DC, Hemisphere, 1980
    [102] White,A.J., Hounslow,M.J., Modelling droplet size distributions in polydispersed wet-steam flows, Int. J. Heat and Mass Transfer, 43: 1873-1884, 2000
    [103] Moore,M.J., Sieverding,C. H., Tow-phase steam flow in turbines and separators, Washington D. C., Hemisphere, 1976
    [104] Asako,Y., Fahgri,M., Finite-volume Solution for Laminar Flow and Heat Transfer in a Corrugated Duct., ASME J. Heat Transfer, 109: 627-634, 1987
    [105] Amano,R.S., A Numerical Study of Laminar and Turbulent Heat Transfer in a Periodical Corrugated Wall Channel, ASME J. Heat Transfer, 107: 564-569, 1985
    [106] Xin,R.C., Tao,W.Q., Numerical Prediction of Laminar Flow and Heat Transfer in Wavy Channel of Uniform Cross-sectional Area, Numerical Heat Transfer, 14: 465-481, 1988
    [107] Lewellen,W.S., A Solution for Three-dimensional Vortex Flows with Strong Circulation, J. Fluid Mech, 14: 420-432, 1962
    [108]郭鸿志,传输过程数值模拟,北京:冶金工业出版社,1998
    [109]刘儒勋,王志峰,数值模拟方法和运动界面追踪,中国科学技术大学出版社,2001
    [110]程元龙,刘顺隆,姚明,姜宗林,船用燃气轮机进气滤清器性级内的流场计算和试验验证,力学学报,1987,19(4):293-303
    [111]庞凤阁,于瑞侠,张志俭,波形板汽水分离器的机理研究,核动力工程,1992,13(30):9-14
    [112]吕以波,任阿宝,陈玉翔,新型高效汽水分离器元件研究,热能动力工程,1995,10(5):306-309
    [113]于瑞侠,张志俭,庞凤阁,波形板汽水分离器的试验研究,核动力工程,13(6):21-25,1992
    [114]高彦栋,波形板汽水分离器过程的研究,华中科技大学硕士论文,2000
    [115]高彦栋,王晓墨,黄素逸,用液滴碰壁模型对波形板汽水分离器的模拟,华中科技大学学报(自然科学版),Vol.30, No.2, pp.48-50
    [116] Wu,Z.N., Prediction of the size distribution of secondary ejected droplets by crown splashing of droplets impinging on a solid wall, Probabilistic Engineering Mechanics, 18: 241–249, 2003
    [117] Tatsuhiro Imaeda, Shear-induced migration of a droplet in the presence of a plane wall, Physica A, 285: 306-314, 2000
    [118] Keh,H.J., Chen,Po.Y., Slow motion ofa droplet between two parallel plane walls, Chemical Engineering Science, 56: 6863–6871, 2001
    [119] Ebner,J., Gerendas,M., Schafer,O., Droplet Entrainment From A Shear-Driven Liquid Wall Film In Inclined Ducts: Experimental Study And Correlation Comparison, Journal of Engineering for Gas Turbines and Powe, 124(4): 874-880, 2002
    [120] Trujillo,M.F., Lee,C.F., Modeling crown formation due to the splashing of a droplet, Physics of Fluids, 13(9): 2503-2516, 2001
    [121] Simmons,K., Hibberd,S., Wang,Y., Numerical Study Of The Two-Phase Air/Oil Flow Within An Aero-Engine Bearing Chamber Model Using A Coupled Lagrangian Droplet Tracking Method, ASME Prssure Vessels and Piping Conference, 448(1): 325-331, 2002
    [122] Lee,S.H., Ryou,H.S., Comparison Of Spray/Wall Impingement Models WithExperimental Data, Journal of Propulsion and Power, 16(6): 939-945, 2000
    [123] Haller,K.K., Poulikakos,D., Ventikos,Y., Shock Wave Formation In Droplet Impact On A Rigid Surface: Lateral Liquid Motion And Multiple Wave Structure In The Contact Line Region, Journal of Fluid Mechanics, 490: 1-14, 2003
    [124] Aleksandar,M.S., Vukoman,J., Stability of the Secondary Droplet-film Structure in Polydispersed Systems, Journal of Colloid and Interface Science, 170: 229-240, 1995
    [125] Uijttewaal,W.S.J., Nijhof,E.J., Motion Of A Droplet Subjected To Linear Shear Flow Including The Presence Of A Plane Wall, Journal of Fluid Mechanics, 302(10): 45-63, 1995
    [126] Tsurutani and Kazushi, Numerical Analysis Of The Deformation Process Of A Droplet Impinging Upon A Wall, JSME International Journal, 33(3): 555-561, 1990
    [127] Brunnello,G., Callera,S., Coghe,A., LDV and PDA Analysis Of Spray-Wall Interaction, Proceedings of the 5th International Conference on Liquid Atomization and Spray Systems, 813: 645-652, 1991
    [128] Fore,L.B., Dukler,A.E., Droplet Deposition And Momentum Transfer In Annular Flow, AIChE Journal, 41(9): 2040-2046, 1995
    [129] Kelkar,M., Patankar,S.V., Numerical Prediction of Flow and Heat Transfer in a Parallel Plate Channel with Staggered Fins, J. Heat Transfer, 99: 25-30, 1987
    [130] Miyata,H., Finite-difference simulation of breaking waves, J. Comput. Phys., 65: 179-214, 1986
    [131] Samenfink,W., Wlsa?er,A., Internal transport mechanism in shear-driven liquid films, Eighth Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, 1996
    [132] Williama,L.R., Dykhon,L.A., Hanratty,T.J., Droplet Flux Distributions and Entrainment in Horizonal Gas-liquid Flows, Int. J. Multiphase Flow, 22:1-18, 1996
    [133] Nguyen,A.V., Fletcher,C.A.J., Particle Interaction with the Wall Surface in Two-phase Gas-liquid Particle Flow, Int. J. Multiphase Flow, 25:139-154,1999
    [134] Kaftori,D., Hetsroni,G.., Banerjee,S., Particle Behavior in the Turbulent Boundary Layer.Ⅰ. Motion, deposition, and entrainment, Phys. Fluids.7(5):1095-1106, 1999
    [135]陈军亮,程慧平,薛运奎等,百万千瓦级压水堆核电厂蒸汽发生器干燥器冷态试验研究,核动力工程,27(2):72-76,2006
    [136]薛运奎,刘世勋,谢官道等.带钩波形板汽水分离器的试验研究,核动力工程,10(2):13-18,1989
    [137]陈军亮,程慧平,薛运奎等,百万千瓦级压水堆核电厂蒸汽发生器汽水分离装置热态验证试验,核动力工程,27(3):61-66,2006
    [138] Lijia, Huang suyi,Wangxiaomo, Numerical Study of Steam-Water Separators with Wave-type Vanes,Chinese Journal of Chemical Engineering,4:,2007
    [139]李嘉,黄素逸,王晓墨等,波形板汽-水分离器分离效率的实验研究,核动力工程,3:2007
    [140]李嘉,黄素逸,王晓墨等,波形板干燥器的分离机理与实验研究,空泡物理与自然循环重点国家级重点实验室年会,第十二期论文集,成都,2007
    [141]李嘉黄素逸王晓墨,波形板干燥器的数值模拟,工程热物理多相流年会论文集,大庆,2007
    [142] Li,J., Wang,X.M., Huang,S.Y., The Study of Steam-Water Separators with Wave-type Plates, ChengDu, China, 2007
    [143] Chung,M., Lee,K.H., Catton,I., Experimental study on steam zone behavior in a uniform water flow through porous media,American Society of Mechanical Engineers, Heat Transfer Division, 139: 51-56, 1990
    [144] Murata,A., Hihara,E., Saito,T., Heat transfer by condensation at a steam-water interface in a horizontal channel, Heat Transfer Research, 20(8): 793-804, 1991
    [145] Tinoco,H., Three-dimensional modeling of a steam-line break in a boiling water reactor, Nuclear Science and Engineering, 140(2): 152-164, 2002
    [146] Haji,M., Chow,L.C., Experimental Measurement Of Water Evaporation Rates Into Air And Superheated Steam, Journal of Heat Transfer, Transactions ASME, 110(1): 237-242, 1988
    [147] Zeijseink,A.G.L., Heijboer,R., Organic impurities in the water-steam cycle: Origin, consequences and measures, VGB PowerTech, 80(3): 53-5, 2000
    [148] Gusev,G.B., Ivanov,V.I., Fedorov,L.F., Steam quality and structure of steam-water flows with local swirling, Heat Transfer Research, 24(7): 873-880, 1992
    [149] Gordon,B., Water spray interaction with air-steam mixture, Experimental Thermal and Fluid Science, 4(6): 698-713, 1991
    [150] De,V., Arnold,S., Wit,K., Rheology of gas/water foam in the quality range relevant to steam foam, SPE Reservoir Engineering, 5(2): 8-15, 1990
    [151] Shishkov,Ye.V., Kotov,S.A., Burnout heat transfer in steam-water mixtures in cylindrical and annular porous channels, Heat Transfer Research, 25(6): 852-855, 1993
    [152] Stow,C.D., Hadfield,M.G., An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface, Proc. R. Soc. London, 373: 429-441,1981
    [153] Mundo,C.H.R., Sommerfeld,M., Droplet-wall Collisions: Experiment Studies of the Deformation and Breakup Process, Int. J. Multiphase Flow, 21(2):151-173, 1995
    [154] Xu,J.L., Experimental Study on gas-liquid tow-phase flow regimes in rectangular channels with mini gaps, Int. J. Heat and Fluid Flow, 20: 422-428,1999
    [155] MacDowell,L.G., Muller,M., Binder,K., How Do Droplets On A Surface Depend On The System Size, Colloids and Surfaces, 206: 277–291, 2002
    [156] Mathews,W.S., Lee,C.F., Peters,J.E., Experimental Investigations Of Spray/Wall Impingement, Atomization and Sprays, Journal of the International Institutions for Liquid Atomization and Spray Systems, 13(2): 223-242, 2003
    [157] Barnhart,J.S., Peter,J.E., An Experimental Investigation of entrained liquid carry-over from a Serpentine Evaporator, Int. J. Refrig., 18(5): 343-354, 1995
    [158] Pan,L., Hanratty,T.J., Correlation of entrainment for annular flow in horizontal pipes, International Journal of Multiphase Flow, 28: 385–408, 2002
    [159] H.Γ.拉索欣著,孔祥谦等译,核电站蒸汽发生器装置,原子能出版社,1982
    [160]英国电力中央实验研究室及比利时冯·卡门流体力学研究所主编,蔡颐年译,透平及分离器中的两相流,机械工业出版社,1983
    [161]苏顺玉,王晓墨,黄素逸,环状狭缝通道流动沸腾压降的实验研究,华中科技大学学报(自然科学版),30(9):88-90, 2002
    [162]苏顺玉,黄素逸,王晓墨,环状狭缝通道流动沸腾换热的实验研究,工程热物理学报,25(1):106-10,2004
    [163]苏顺玉,黄素逸,王晓墨,环形狭缝中沸腾传热特性的研究,工程热物理学报, 25(3):442-444,2004
    [164]苏顺玉,王晓墨,黄素逸,狭缝中流动沸腾传热过冷沸腾起始点的实验研究,热科学与技术, 3 (2): 104-107,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700