硫化氢对大鼠局灶性脑缺血损伤的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中风是导致残疾的重要原因之一,其损伤的相关危险因素主要包括:兴奋性损害、Ca~(2+)超载、自由基及脂质过氧化、线粒体功能障碍、一氧化氮(nitric oxide, NO)、细胞凋亡、细胞因子等。目前,溶栓仍为临床治疗脑缺血的主要手段,但一部分病人在溶栓治疗后由于再灌注等原因导致病情加重。因此,有关脑缺血损伤的发病机制、预防措施及治疗手段成为当今医学研究的热点之一。大脑中动脉闭塞(MCAO)模型因其手术方法简单、动物损伤较小、成功率高而作为局灶性脑缺血损伤模型广泛应用于脑缺血损伤机制的研究。
     越来越多的证据表明硫化氢(hydrogen sulfide,H_2S)广泛参与机体多种病理生理过程。H_2S已经被认为是继NO和一氧化碳(carbon monoxide, CO)之后的第三种气体信号分子。研究表明,H_2S可通过抗凋亡和抗氧化应激而改善肝缺血再灌注损伤和心肌缺血再灌注损伤。H_2S对脑缺血损伤的影响报道较少,其机制尚不清楚。本研究采用线栓法复制大鼠局灶性脑缺血损伤模型,观察H_2S对局灶性脑缺血损伤的影响,并从氧化应激、凋亡和炎症细胞因子方面探讨H_2S可能的作用机制。
     第一部分硫化氢对大鼠局灶性脑缺血损伤的影响
     目的:观察硫化氢(H_2S)对局灶性脑缺血损伤大鼠脑组织硫化氢/3-巯基丙酮酸转硫酶(H_2S/3MST)及脑缺血体积的影响。
     方法:健康成年雄性SD大鼠(250-280g)共80只,随机分为5组,每组16只,分别为假手术组;缺血模型组;NaHS低剂量组;NaHS中剂量组;NaHS高剂量组。NaHS低、中、高剂量组分别于大鼠脑缺血3h时腹腔注射0.7mg/kg、1.4mg/kg和2.8mg/kg的NaHS,假手术组和缺血模型组大鼠注射等容量的生理盐水。各组大鼠均于缺血24h断头取脑,TTC染色测定脑梗死灶体积,测定脑组织中H_2S含量,改良法测定脑组织3MST的活性。
     结果:
     与假手术组比较,缺血模型组大鼠脑梗死体积明显增大(P<0.01),脑组织中H_2S含量、3MST活性明显降低(P<0.01);与缺血模型组比较,NaHS中、高剂量组大鼠脑梗死体积明显缩小,脑组织中H_2S含量和3MST活性明显升高(P <0.05)。
     结论:NaHS中、高剂量可明显缩小脑缺血体积,增强脑组织3MST活性,升高脑组织H_2S含量,表明NaHS对大鼠局灶性脑缺血损伤具有一定治疗作用。
     第二部分硫化氢对局灶性脑缺血损伤大鼠脑组织氧化应激的影响
     目的:观察H_2S对局灶性脑缺血损伤大鼠脑组织氧化应激的影响,并探讨其作用机制。
     方法:健康成年雄性SD大鼠(250-280g)共40只,随机分为5组,每组8只,分别为假手术组;缺血模型组;NaHS低剂量组;NaHS中剂量组;NaHS高剂量组。10%的水合氯醛350mg/kg麻醉大鼠,采用线栓法复制大鼠大脑中动脉闭塞模型,假手术组颈部切开,分离颈总动脉、颈内动脉和颈外动脉但不插线栓。NaHS低、中、高剂量组分别于大鼠脑缺血3h时腹腔注射0.7mg/kg、1.4mg/kg和2.8mg/kg的NaHS,假手术组和缺血模型组注射等容量的生理盐水。各组大鼠均于缺血24h时断头取脑,采用硫代巴比妥酸法测定脑组织中丙二醛(MDA)的含量、黄嘌呤氧化酶化学法测定脑组织中超氧化物歧化酶(SOD)的活性以及酶促反应谷胱甘肽消耗法测定脑组织中谷胱甘肽过氧化物酶(GSH-PX)的活性;透射电镜观察脑组织的病理变化。
     结果:
     1与假手术组比较,缺血模型组大鼠脑组织中SOD、GSH-PX活性明显降低(P <0.01,P <0.01),MDA含量明显升高(P <0.01);与缺血模型组比较,NaHS中、高剂量组大鼠脑组织中SOD、GSH-PX活性明显升高(P <0.05,P <0.05),MDA含量明显降低(P <0.05)。
     2电镜观察结果显示,假手术组大鼠脑组织神经细胞核膜清晰、完整,核大而圆,微管、粗面内质网、高尔基复合体等细胞器清晰可见,线粒体内膜、外膜结构清晰,嵴排列整齐;缺血模型组大鼠可见明显神经元水肿,线粒体膜明显肿胀、线粒体嵴断裂甚至消失,线粒体大量空泡化,细胞器的数量减少等;与缺血模型组比较,NaHS中、高剂量组大鼠可见神经元轻度水肿,线粒体部分肿胀、内外膜结构清晰、部分嵴断裂消失,细胞器数量增多,脑缺血损伤程度明显减轻。
     结论:局灶性脑缺血损伤后氧化应激状态发生改变,脑组织脂质过氧化物MDA生成增多,抗过氧化物酶SOD和GSH-PX活性减弱;应用NaHS后,脑组织脂质过氧化物MDA生成减少,抗过氧化物酶SOD和GSH-PX活性增强,脑组织损伤明显减轻。
     第三部分硫化氢对局灶性脑缺血损伤大鼠脑组织神经元凋亡的影响
     目的:观察H_2S对大鼠局灶性脑缺血损伤所致的神经元凋亡的影响,从神经元凋亡途径探讨H_2S对脑缺血损伤的作用及其机制。
     方法:健康成年雄性SD大鼠(250-280g)共40只,随机分为5组,每组8只,分别为假手术组;缺血模型组;NaHS低剂量组;NaHS中剂量组;NaHS高剂量组。10%的水合氯醛350mg/kg麻醉大鼠,采用线栓法复制大鼠大脑中动脉闭塞模型,假手术组颈部切开,分离颈总动脉、颈内动脉和颈外动脉但不插线栓。NaHS低、中、高剂量组分别于大鼠脑缺血3h时腹腔注射0.7mg/kg、1.4mg/kg和2.8mg/kg的NaHS,假手术组和缺血模型组注射等容量的生理盐水。各组大鼠均于缺血24h时断头取脑,采用HE染色法观察脑组织形态学变化,Tunel法检测神经细胞凋亡率,免疫组织化学法检测Bcl-2和Bax在脑组织中的定位和表达,Westernblot法分析Caspase-3在脑组织中表达的变化。
     结果:
     1HE染色结果显示,假手术组大鼠神经细胞核仁清晰、核圆形,核膜完整,胞浆染色正常,未见任何病理变化。缺血模型组缺血侧脑组织出现严重的神经细胞坏死,细胞肿胀,胞核浓缩,胞浆疏松淡染及空泡化。NaHS中、高剂量组大鼠脑组织上述病理变化较缺血模型组明显减轻。
     2Tunel检测神经细胞凋亡率结果显示,与假手术组比较,缺血模型组大鼠神经细胞凋亡率明显升高(P<0.01);与缺血模型组比较,NaHS中、高剂量组大鼠神经细胞凋亡率明显降低(P<0.05)。
     3免疫组化检测结果显示, Bcl-2和Bax蛋白阳性染色呈棕黄色,主要在神经细胞胞浆表达;假手术组可见少量的Bcl-2和Bax蛋白阳性细胞;与假手术组比较,缺血模型组脑组织Bcl-2阳性细胞表达数目明显减少,Bax阳性细胞表达明显增多(P<0.01);与缺血模型组比较,NaHS中、高剂量组大鼠脑组织Bax阳性细胞数明显减少,Bcl-2阳性细胞数明显增多(P<0.05)。
     4Western blot检测结果显示,假手术组仅有少量Caspase-3阳性蛋白表达;与假手术组比较,缺血模型组大鼠脑组织Caspase-3蛋白表达明显升高(P<0.01);与缺血模型组比较,NaHS中、高剂量组大鼠脑组织Caspase-3蛋白表达明显下降(P<0.01)。
     结论:H_2S可以明显降低局灶性脑缺血损伤引起的神经元凋亡,其抗凋亡作用可能与降低Bax和Caspase-3蛋白表达、增加Bcl-2蛋白表达有关。
     第四部分硫化氢对局灶性脑缺血损伤大鼠脑组织炎性细胞因子的影响
     目的:观察H_2S对局灶性脑缺血损伤大鼠脑组织NF-κB活性及其下游的炎性因子肿瘤坏死因子α(TNF-α)、白介素-1β(IL-1β)和白介素-10(IL-10)的影响,从炎性细胞因子方面探讨H_2S对局灶性脑缺血损伤的作用及其机制。
     方法:健康成年雄性SD大鼠(250-280g)共40只,随机分为5组,每组8只,分别为假手术组;缺血模型组;NaHS低剂量组;NaHS中剂量组;NaHS高剂量组。10%的水合氯醛350mg/kg麻醉大鼠,采用线栓法复制大鼠大脑中动脉闭塞模型,假手术组颈部切开,分离颈总动脉、颈内动脉和颈外动脉但不插线栓。NaHS低、中、高剂量组分别于大鼠脑缺血3h时腹腔注射0.7mg/kg、1.4mg/kg和2.8mg/kg的NaHS,假手术组和缺血模型组注射等容量的生理盐水。各组大鼠均于缺血24h腹主动脉取血并断头取脑,ELISA法测定血清、脑组织中TNF-α、IL-1β和IL-10的含量。免疫组织化学染色分析脑组织中NF-κB的核移位,Western blot检测脑组织NF-κB的表达。
     结果:
     1与假手术组比较,缺血模型组大鼠的血清与脑组织匀浆中IL-1β、TNF-α水平显著升高,IL-10水平显著降低(P <0.01);与缺血模型组比较,NaHS低、中、高剂量组大鼠的血清中IL-1β、TNF-α水平显著降低,IL-10水平显著升高(P <0.05,P <0.01),NaHS中、高剂量组大鼠脑组织匀浆中IL-1β、TNF-α水平显著降低,IL-10水平显著升高(P <0.01)。
     2与假手术组比较,缺血模型组大鼠的脑组织中NF-κB表达显著增加(P<0.05),明显从细胞浆移位于细胞核;与缺血模型组比较,NaHS中、高剂量组大鼠脑组织中NF-κB从细胞浆向细胞核的移位被明显抑制(P<0.01),NF-κB的表达也明显降低。
     结论:H_2S可明显抑制局灶性脑缺血损伤后脑组织NF-κB的核移位,减少其蛋白表达,下调TNF-α、IL-1β,上调IL-10炎症相关细胞因子的表达,从而减轻局灶性脑缺血损伤。
     小结:
     1NaHS可明显增强局灶性脑缺血损伤大鼠脑组织3MST活性,增加脑组织H_2S生成,缩小脑梗死体积。提示H_2S可改善局灶性脑缺血损伤。
     2应用NaHS后局灶性脑缺血损伤大鼠脑组织损伤减轻,同时MDA生成减少,SOD和GSH-PX活性升高。提示H_2S可通过降低脂质过氧化反应减轻局灶性脑缺血损伤。
     3NaHS可明显降低局灶性脑缺血损伤大鼠神经细胞凋亡率,减弱Bax和Caspase-3蛋白表达,增强Bcl-2蛋白表达,减轻神经元损伤。H_2S可能通过抑制局灶性脑缺血损伤大鼠神经元凋亡改善脑缺血损伤。
     4大鼠局灶性脑缺血损伤后,NF-κB蛋白表达增强,血清和脑组织中TNF-α、IL-1β含量升高,IL-10含量下降; NaHS可明显抑制局灶性脑缺血损伤发生时NF-κB的活化,下调TNF-α、IL-1β的表达,上调IL-10的表达,从而减轻局灶性脑缺血损伤。
Strokes caused by ischemia (lack of blood flow), blockage or hemorrhageare major causes of mortality and long-term disability. The dangerous factorsof cerebral ischemia injury include Ca2+overload, free radical, nitric oxide(NO), cell apoptosis, cytokines and so on. Therefore, the prevention,mechanism and treatment of cerebral ischemic injury are the points of medicalresearch at present. Among the various rodent models of stroke, middlecerebral artery occlusion (MCAO) is a simple surgical approach with minimaltrauma and is widely used to reconstruct focal cerebral ischemic model.
     During the past decade, increasing lines of evidence have shown thathydrogen sulfide (H_2S) has important physiological functions, especially inthe nervous system. Now H_2S is recognized as the third endogenous signalinggasotransmitter, following NO and carbon monoxide (CO). H_2S has beenshown to attenuate hepatic and myocardial ischemia-reperfusion injuries viaantioxidant and anti-apoptotic signaling. In the present study, we used MCAOas focal cerebral ischemic model to evaluate the effects of H_2S on focalcerebral ischemia in rats and explored the possible mechanisms.
     Part1Effects of hydrogen sulfide on focal cerebral ischemia injury in
     rats
     Objective: To investigate the effects of hydrogen sulfide on focalcerebral ischemia injury in rats.
     Methods: Eighty male SD rats (weigh250-280g) were randomly dividedinto five groups (n=16): sham group, ischemia group, NaHS low, middle andhigh dose groups. Rats were anesthetized by10%chloral hydrate at350mg/kg. Focal cerebral ischemia model was reconstructed by inserting craniallya nylon thread with rounded tip into internal carotid artery. Rats were onlyunderwent a surgical operation but without ischemia in the sham group. The NaHS (0.7mg,1.4mg and2.8mg/kg) were respectively administrated at3hafter ischemia in rats. The equal volume of saline was administrated in thesham and the ischemia groups. Rats were sacrificed at24h after ischemia.Half of the rats in each group were used for measurement of the infarctvolumes by TTC staining. The others in each group were used fordetermination of the content of H_2S and the activity of3MST in the braintissue.
     Results:
     Compared with those of the group sham, the infarct volume wassignificantly increased, the content of H_2S and the activity of3MST in thebrain were significantly decreased in those of the ischemia group (P<0.01).Compared with those of the ischemia group, the infarct volume wassignificantly decreased, the content of H_2S and the activity of3MST weresignificantly increased in those of the NaHS middle and high dose groups (P<0.05, P <0.01).
     Conclusion: Administration of NaHS could decrease the infarct volume,increase the activity of3MST and the content of H_2S. It could be concludedthat H_2S may play the protective role against focal cerebral ischemic injury.
     Part2Effects of hydrogen sulfide on oxidative stress in focal cerebral
     ischemic injury in rats
     Objective: To investigate the effects of H_2S on focal cerebral ischemicinjury in rats and explore the possible mechanisms.
     Methods: Forty male SD rats (weigh250-280g) were randomly dividedinto five groups (n=8): sham group, ischemia group, NaHS low dose, middledose and high dose groups. Rats were anesthetized by10%chloral hydrate at350mg/kg. Focal cerebral ischemia model was reconstructed by insertingcranially a nylon thread with rounded tip into internal carotid artery. Rats wereonly underwent a surgical operation but without ischemia in the sham group.The NaHS (0.7mg,1.4mg and2.8mg/kg) were respectively administrated at3h after ischemia in rats. The equal volume of saline was administrated in thesham and the ischemia groups. Rats were sacrificed at24h after ischemia. The content of malondialdehyde (MDA), and the activities of superoxidedismutase (SOD) and glutathione peroxidase (GSH-PX) in the brain tissuewere respectively measured. The ultrastructure changes of neurons wereobserved by transmission electron microscope.
     Results:
     1The activities of SOD and GSH-PX in the brain tissue weresignificantly decreased, the content of MDA in the brain tissue weresignificantly increased in the ischemia group compared with those of the shamgroup (P<0.01). The activities of SOD and GSH-PX in the brain tissue weresignificantly increased, the content of MDA in the brain were significantlydecreased in the NaHS middle and high dose groups compared with those ofthe ischemia group (P<0.01).
     2Transmission electron microscope showed the neuronal cytoplasm andthe mitochondria are normal in the sham group. The neuronal cytoplasm andthe mitochondria swelled, the cristae of mitochondria disrupted, dissolved ordisappeared, the amounts of organelles are significantly reduced in theischemia group compared with those of the sham group. The above injurieswere significantly ameliorated in the NaHS middle and high dose groupscompared with those of the ischemia group.
     Conclusion: Administration of NaHS could increase the activities ofSOD and GSH-PX and decrease the content of MDA. It could be concludedthat the protection role of H_2S on focal cerebral ischemic tissue is related todiminishing oxidative stress.
     Part3Effects of hydrogen sulfide on apoptosis in focal cerebral ischemia
     injury in rats
     Objective: To study the effects of H_2S on neruronal apoptosis in focalcerebral ischemic injury in rats and explore the possible mechanism.
     Methods: Forty male SD rats (weigh250-280g) were randomly dividedinto five groups (n=8): sham group, ischemia group, NaHS low, middle andhigh dose groups. Rats were anesthetized by10%chloral hydrate at350mg/kg. Focal cerebral ischemia model was reconstructed by inserting cranially a nylon thread with rounded tip into internal carotid artery. Rats were onlyunderwent a surgical operation but without ischemia in the sham group. TheNaHS (0.7mg,1.4mg and2.8mg/kg) were respectively administrated at3hafter ischemia in rats. The equal volume of saline was administrated in thesham and the ischemia groups. Rats were sacrificed at24h after ischemia. Thepathological changes of brain tissue were observed with light microscope byHE staining. The neuronal apoptosis were assayed by TUNEL detection. Theexpressions of Bcl-2and Bax in the brain tissue were respectively detected byimmunohistochemisty. The expression of Caspase-3in the brain tissue wasanalyzed by Western blot.
     Results:
     1HE staining showed that the neurons are normal in the sham group. Thevascular dilatation, some of neurons cellular swelling, cell nucleusconcentrating,cytoplasmic rarefaction, staining weakly, vacuole formation inthe ischemia group. The pathological alterations were obviously amelioratedin the NaHS middle and high dose groups compared with those of theischemia group.
     2The apoptotic rate of neurons was significantly increased in theischemia group compared with that of the sham group (P<0.01). Comparedwith that of the ischemia group, the apoptotic rate of neurons was significantlydecreased in the NaHS middle and high dose groups (P<0.05or P<0.01).
     3Immunohistochemisty showed the expression of Bcl-2wassignificantly decreased, the expression of Bax was significantly increased inthe ischemia group compared with those of the sham group (P<0.01). Theexpression of Bcl-2was significantly increased, the expression of Bax wassignificantly decreased in the NaHS middle and high dose groups comparedwith those of the ischemia group (P<0.05or P<0.01).
     4Western blot showed that there was only a small amount of expressionof Caspase-3in the sham group. The expression of Caspase-3wassignificantly increased in the ischemia group compared with that of the shamgroup. The expression of Caspase-3was significantly decreased in the NaHS middle and high dose groups compared with that of the ischemia group.
     Conclusion: Administration of NaHS could decrease the apoptotic rateof neurons, attenuate the expression of Bax and Caspase-3, and increase theexpression of Bcl-2in brain tissue in focal cerebral ischemic injury in rats.The results showed that H_2S may play a protective role against focal cerebralischemic injury by inhibiting neuronal apoptosis.
     Part4Effects of hydrogen sulfide on inflammatory factors in focalcerebral ischemia injury in rats
     Objective: To investigate the effects of H_2S on focal cerebral ischemicinjury in rats and explore the possible mechanisms.
     Methods: Forty male SD rats (weigh250-280g) were randomly dividedinto five groups (n=8): sham group, ischemia group, NaHS low, middle andhigh dose groups. Rats were anesthetized by10%chloral hydrate at350mg/kg. Focal cerebral ischemia model was reconstructed by inserting craniallya nylon thread with rounded tip into internal carotid artery. Rats were onlyunderwent a surgical operation but without ischemia in the sham group. TheNaHS (0.7mg,1.4mg and2.8mg/kg) were respectively administrated at3hafter ischemia in rats. The equal volume of saline was administrated in thesham and the ischemia groups. Rats were sacrificed at24h after ischemia. Thecontents of TNF-α, IL-1β and IL-10were respectively measured byenzyme-linked immunosorbent assay (ELISA). The transposition of nuclearfactor-κB (NF-кB) in nucleus was detected by immunohistochemisty. Theexpression of NF-кB in the brain tissue was detected by Western blot.
     Results:
     1The contents of TNF-α and IL-1β in serum and brain tissue weresignificantly increased in the ischemia group in rats compared with those ofthe sham group (P<0.01). The contents of IL-10in serum and brain tissuewere significantly decreased in the ischemia group in rats compared with thoseof the sham group (P<0.01). The contents of TNF-α and IL-1β in serum andbrain tissue were significantly decreased. The content of IL-10in serum andbrain tissue were significantly increased in the NaHS middle and high dose groups compared with those of the ischemia group (P<0.05or P<0.01).
     2The NF-κB was significantly translocated from the neurons cytoplasminto the nucleus and the expression of NF-κB was significantly increased inthe ischemia group compared with those of the sham group(P<0.05). In theNaHS middle and high dose groups, the NF-κB translocation was markedlyinhibited and the expression of NF-κB in the nuclei was obviously decreasedcompared with those of the ischemia group (P﹤0.05).
     Conclusion: Administration of NaHS could inhibit NF-κB activation,decrease the expression of TNF-α and IL-1β, increase the expression of IL-10,which may be one of the molecular mechanisms of its neuroprotection.
     Summary:
     1Administration of NaHS could decrease the infarct volume, increase theactivity of3MST and the content of H_2S. H_2S may play the protective roleagainst focal cerebral ischemic injury.
     2Administration of NaHS could increase the activities of SOD andGSH-PX and decrease the MDA content. The protection role of H_2S on focalcerebral ischemic tissue may be related to diminishing oxidative stress.
     3Administration of NaHS could decrease the apoptotic rate of neurons,attenuate the expression of Bax and Caspase-3, and increase the expression ofBcl-2in brain tissue in focal cerebral ischemic injury in rats. H_2S may play aprotective role against focal cerebral ischemic injury by inhibiting neuronalapoptosis.
     4Administration of NaHS could inhibit NF-κB activation, decrease theexpression of TNF-α and IL-1β, increase the expression of IL-10, which maybe one of the molecular mechanisms of its neuroprotection.
引文
1唐康,张均田.脑缺血损伤机制和治疗策略研究进展[J].中国新药杂志,2000,9(21):809-813
    2耿彬,杜军保,唐朝枢.内源性H2S:一种新的气体信号分子[J].生理科学进展,2002,33(3):256-258
    3Eto K, Kimura H. The production of hydrogen sulfide is regulated by tes-tosterone and S-adenosy l-L-methionine in mouse brain[J]. J Neurochem,2002,83(1):80-86
    4Shibuya N,Tanaka M,Yoshida M,et al.3-Mercaptopyruvate sulfur trans-ferase produces hydrogen sulfide and bound sulfane sulfur in the brain [J].Antioxid Redox Signal,2009,11(4):703-714
    5Shibuya N, Mikami Y, Kimura Y, et al. Vascular endothelium expresses3-mercaptopyruvate sulfur transferase and produces hydrogen sulfide[J].Biochem,2009,146(5):623-626
    6Longa EZ, Weinstein PR, Carlson S,et al. Reversible middle cerebrlarteryocclusion without craniectomy in rats[J]. Stroke,1989,20:84-91
    7张苏明,魏岗之.急性缺血性脑卒中的超早期抢救治疗[J].中华神经科杂志,1996,26(6):323-326
    8李国风,张建新,骆海坤,等.氨基氧乙酸对大鼠局灶性脑缺血损伤的影响[J].中华麻醉学杂志,2011,31(8):984-986
    9Qu K, Chen CPLH, Halliwell B, et al. Hydrogen sulfide is a mediator ofcerebral ischemic damage[J]. Stroke,2006,37(3):889-893
    10Caili Ren, Ailin Du, Dongliang Li, et al. Dynamic change of hydrogensulfide during global cerebral ischemia-reperfusion and its effect inrats[J]. Brain.Res,2010,1345(5):197-205
    11Abe K, Kimura H. The possible role of hydrogen sulphide as anendogenous neuromodulator[J]. Neurosci,1996,16(3):1066-1071
    12Kimura H. Hydrogen sulfide: from brain to gut[J]. Antioxid.RedoxSignal,2010,12(9):1111-1123
    13Chen SD, Yang DI, Lin TK, et al. Roles of oxidative Stress, apoptosis,PGC-1α and mitochondrial biogenesis in cerebral ischemia[J]. Int. J. Mol.Sci,2011,12(10):7199-7215
    1粟秀初.现代脑血管病学[M].北京:人民军医出版社,2003:82
    2Chen SD, Yang DI, Lin TK, et al. Roles of oxidative Stress, apoptosis,PGC-1α and mitochondrial biogenesis in cerebral ischemia[J]. Int. J. Mol.Sci,2011,12(10):7199-7215
    3Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidativestress[J]. FASEB J.2004,18(10):1165-1167
    4Kimura Y, Goto YI, Kimura H. Hydrogen sulfide increases glutathioneproduction and suppresses oxidative stress in mitochondria[J]. Antioxid.Redox Signal.2010,12(1):1-13
    5Clark JB, Nicklas WJ. The metabolism of rat brain mitochondria[J]. J.Biol. Chem,1970,245(18):4724-4731
    6Pato ková J, Marhol P, T mová E, et al. Oxidative stress in the braintissue of laboratory mice with acute post insulin hypoglycemia[J].Physiol. Res,2003,52(1):131-135
    7Niizuma K, Yoshioka H, Chen H, et al. Mitochondrial and apoptoticneuronal death signaling pathways in cerebral ischaemia[J]. Biochim.Biophys. Acta,2010,1802(1):92-99
    8Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases[J]. Nature,2006,443(7113):787-795
    9Jha S, Calvert JW, Duranski MR, Ramachandran A, et al. Hydrogensulfide attenuates hepatic ischaemia-reperfusion injury: role ofantioxidant and antiapoptotic signaling[J]. Am. Physiol. Heart. Circ.Physiol,2008,295(2): H801-806
    10杨丝丝,姜志胜,唐小卿.硫化氢对H2O2损伤PC12细胞的保护作用[J].南华大学学报(医学版),2007,35(4):491-494
    1Lee BI, Chan PH, Kim GW. Metalloporphyrin-based superoxide dism-utase mimic attenuates the nuclear translocation of apoptosis-inducingfactor and the subsequent DNA fragmentation after permanent focalcerebral ischaemia in mice[J]. Stroke,2005,36(12):2712-2717
    2Sairanen T, Szepesi R, Karjalainen-Lindsberg ML, et al. Neuronalcaspase-3and PARP-1correlate differentially with apoptosis and necro-sis in ischaemic human stroke[J]. Acta. Neuropathol,2009,118(4):541-552
    3Sodha NR, Clements RT, Feng J, et al. The effects of therapeutic sulfideon myocardial apoptosis in response to ischemia-reperfusion injury[J].Eur. J. cardiothoral. Surg,2008,33(5):906-913
    4Hu LF, Lu M, Wu ZY, et al. Hydrogen sulfide inhibits rotenone-inducedapoptosis via preservation of mitochondrial function[J]. Mol. Pharmacol,2009,75(1):27-34
    5Schulz JB, Weller M, Moskowitz MA. Caspase as treatment targets instoke and neurodegenerative disease[J]. Ann Neurol,1999,45(4):421-429
    6Zhao H, Yenari MA, Cheng D, et al. Bcl-2overexpression protectsagainst neuron loss within the ischemic margin following experimentalstroke and inhibits cytochrome C translocation and caspase-3activity [J].J Neurochem,2003,85(4):1026-1036
    7Rami A, Jansen S, Giesser I, et al. Post-ischem activation of caspase-3inthe rat hippocampus: evidence of an anoxal and dendritic localization [J].Neurochem Int,2003,43(3):211-223
    8Zhang Z, Zhao H, Steinberg GK, et al. Cellular and molecular eventsunderlying ischemia-induced neuronal apoptosis [J]. Drug News Perspect,2003,16(8):497-503
    9Charriaut-Marlangue C, Margaill I, Represa A, et al. Apoptosis andnecrosis after reversible focal ischemia: an in situ DNA fragmentationanalysis [J]. J Cereb Blood Flow Metab,1996,16(2):186-194
    10Ferrer I, Friguls B, Dalfo E, et al. Caspase-dependent and caspaseindependent signaling of apoptosis in the penumbra following middlecerebral artery occlusion in the adult rat [J]. Neuropathol ApplNeurobiol,2003,29(5):472-481
    11Martinou JC, Dubois-Dauphin M, Staple JK, et al. Overexpressionof BCL-2in transgenic mice protects neurons from naturallyoccurring cell death and experimental ischemia. Neuron,1994,13(4):1017-1030
    12Chen J, Graham SH, Chan PH, et al. Bcl-2is expressed in neuronsthat survive focal ischemia in the rat. Neuroreport,1995,6(2):394-398
    13Sodha NR, Clements RT, Feng J, et al. The effects of therapeutic sulfideon myocardial apoptosis in response to ischemia-reperfusion injury[J].Eur. J. cardiothoral. Surg,2008,33(5):906-913
    14Jha S, Calvert JW, Duranski MR, Ramachandran A, et al. Hydrogensulfide attenuates hepatic ischaemia-reperfusion injury: role ofantioxidant and antiapoptotic signaling[J]. Am. Physiol. Heart. Circ.Physiol,2008,295(2): H801-806
    1张建新,李兰芳,张会欣,等. L-硝基精氨酸对大鼠急性脑缺血损伤后炎症因子及细胞凋亡的影响[J]. Chin J Appl physiol,2007,23:446-449
    2Karin M, Ben Neriah Y. Phosphorylation meets ubiquity ination: thecontrol of NF-κB activity[J]. Annu Rev Immunol,2000,18:621-663
    3FrijnsCJ, Kappelle LJ. Inflammatory cell adhesion molecules in ischemiccerebrovascular disease[J]. Stroke,2002,33(8):2115-2122
    4JeanWC, Spellman SR, Nussbaum ES, et al. Reperfusion injury afterfocal cerebral ischemia: the role of inflammation and the therapeutichorizon[J]. Neurosurgery,1998,43(6):1382-1396
    5Zanardo RC, Brancaleone V, Distrutti E, et al. Hydrogen sulfide is anendogenous modulator of leukocyte-mediated inflammation[J]. FASEB J,2006,20(12):2118-2120
    6SchallerB, GrafR. Cerebral ischemia and reperfusion: the pathophysiol-ogic concept as a basis for clinical therapy[J]. J Cereb Blood FlowMetab,2004,24(4):351-371
    7Yang GY, Gong C, Qin Z, et al. Inhibition of TNF-αattenuates infarctvolume and ICAM-1expression in ischemic mouse brain[J]. Neuroreport,1998,9(9):2131-2134
    1Ramazzini B. On the diseases of artificers (De morbis artificum diatriba),1713. In: James R, editor. Health preserved, in two treatises.2nd ed.London, Whiston, J,1750
    2Reiffenstein RJ, Hulbert WC, Roth SH. Toxicology of hydrogen sulfide[J].Annu Rev Pharmacol Toxicol,1992,32:109-34
    3Beauchamp RO Jr., Bus JS, Popp JA, et al. A critical review of theliterature on hydrogen sulfide toxicity. Crit Rev oxicol,1984,13(1):25-97
    4Goodwin LR, Francom D, Dieken FP, et al. Determination of sulfide inbrain tissue by gas dialysis/ion chromatography: postmortem studies andtwo casereports[J]. J Anal Toxicol,1989,13(2):105-109
    5Abe K, Kimura H. The possible role of hydrogen sulfide as an endogeno-us neuromodulator[J]. Neurosci,1996,16(3):1066-1071
    6ZhaoW, Zhang J, Lu Y, et al. The vasorelaxant effect of H2S as a novelendogenous gaseous K-ATP channel opener[J].EMBOJ,2001,20(21):6008-6016
    7Kamoun P. Endogenous Production of hydrogen sulfide in mammals[J].Amino Aeiels,2004,26(3):243-254
    8Mitchell TW, Savaga JC, Gould DH. High-performance liquid chromat-ography detection of sulfide in tissues from sulfide-treated mice[J]. JAppl Toxicol,1993,13(6):389-394
    9Kimura H. Hydrogen sulfide: from brain to gut. Antioxid. Redox Signal.2010,12:1111-23
    10Shibuya N, Tanaka M, Yoshida M, et al.3-Mercaptopyruvate sulfurTransferase produces hydrogen sulfide and bound sulfane sulfur in thebrain[J]. Antioxid Redox Signal,2009,11(4):703-714
    11Eto K, Kimura H. The production of hydrogen sulfide is regulated bytestosterone and S-adenosyl-L-methionine in mouse brain [J]. JNeurochem,2002,83(1):80-86
    12Bao L, Vleek C, Paces V, et al. Idetification and tissue distribution ofhuman cystathionine beta-synthase mRNA isoforms[J]. Arch BiochemBiophys,1998,350(1):95-103
    13Richardson CJ, Magee EA, Cwmmings JH. A new method for thedetermination of sulphide in gastrointestinal contents and whole blood bymicrodistillation and ion chromatography[J]. Clin Chim Acta,2000,293(1-2):115-125
    14Bang R. The gasotransmitter role of hydrogen sulfide[J]. Antioxid RedoxSianal,2003,5(4):493-501
    15Furne J, Saeed A, Levitt MD. Whole tissue hydrogen sulfideconcentr-ations are orders ofmagnitude lower than presently acceptedvalues[J]. Am J PhysiolRegul IntegrComp Physio l,2008,295(5):1479-1485
    16Ogasawara Y, Ishii K, Togawa T, et al. Determination of bound sulfur inserum by gas dialysis/high-performance liquid chromatography[J]. AnalBiochem,1993,215(1):73-81
    17Toohey JI. Sulphane sulphur in biological systems: A possible regulatoryrole[J]. Biochem J,1989,264(3):625-632
    18Wang R. Two’ s company, three’ s a crowd: can H2S be the thirdendogenous gaseous transmitter[J]? FASEB,2002,16(13):1792-1798
    19Stipanuk MH. Sulfuramino acid metabolism pathways for production andremoval of homocysteine and cysteine[J]. Annu RevNutr,2004,24:539-577
    20Eto K, Ogasawara M, Umemura K, et al. Hydrogen sulfide is produced inresponse to neuronal excitation[J]. J Neurosci,2002,22(9):3386-3391
    21LeeM, Schwab C, Yu S, et al. Astrocytes produce the anti-inflammataryand neuroprotective agent hydrogen sulfide[J]. Neurobiol Aging,2009,
    30(10):1523-1534
    22EnokidoY, SuzukiE, IwasawaK, etal. Cystathionine beta-synthase, a keyenzyme forhomocysteinemetabolism, ispreferentially expressed in theradialglia/astrocyte lineage ofdevelopingmouse CNS(J), FASEB J,2009,19(13):1854-1856
    23Lee SW, ChengY, Moore PK, et al. Hydrogen sulphide regulates intra-cellular pH in vascular smooth muscle cells[J]. Biochem Biophys ResCommun,2007,358(4):1142-1147
    24Lu M, Choo CH, Hu LF, et al. Hydrogen sulfide regulates intracellularpH in ratprimary cultured glia cells[J]. NeurosciRes,2010,66(1):92-98
    25代政伟,晏勇,张华,等.硫化氢与神经胶质细胞功能的研究进展[J].中国老年学杂志,2011,31(3):1072-1074
    26Nagai Y, Tsugane M, Oka J, et al. Hydrogen sulfide induces calciumwaves in astrocytes[J]. FASEB J,2004,18(3):557-559
    27Lee SW, Hu YS, Hu LF, et al. Hydrogen sulphide regulates calciumhomeostasis inmicroglial cells[J]. Glia,2009,54(2):116-24
    28Oh GS, Pae HO, Lee BS, et al. Hydrogen sulfide inhibits nitric oxideproduction and nuclear factor-kappaB via hemeoxygenase-1expressionin RAW264.7macrophages stimulated with lipopolysaccharide[J]. FreeRadic BiolMed,2006,41(1):106-19
    29Jung KK, Lee HS, Cho JY, et al. Inhibitory effect of curcumin onnitricoxide production from lipopolysaccharide-activated primarymicroglia[J]. Life Sci,2006,79(21):2022-31
    30Rinaldi L, Gobbi G, Pambianco M, et al. Hydrogen sulphide preventsapoptosis of human PMN via inhibition of p38and caspase3[J]. LabInvest,2006,86(4):391-397
    31Russo CD, Tringali G, Navarra P, et al. Evidence that hydrogen sulphidecan modulate hypothalamo-pituitary-adrenal axis function: in vitro and invivo studies in the rat[J]. J Neuroendocrinol,2000,12(3):225-233
    32刘登群,胡志安.中枢神经系统H2S的作用及机制研究进展.生理科学进展,2004,35(2):170-173
    33Navarra P,Russo CD, Mancuso C, et al. Gaseous neuromodulat ors in thecontrol of neuroen docrine stress axis [J]. Ann N Y Acad Sc,2000,917(1):638-646
    34Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidativestress[J]. FASEB J,2004,18(10):1165-1167
    35Kimura Y, Goto YI, Kimura H. Hydrogen sulfide increases glutathioneproduction and suppresses oxidative stress in mitochondria[J]. Antioxid.Redox Signal,2010,12(1):1-13
    36Whiteman M, Armstrong JS, Chu SH, et al. The novel neuromodulatorhydrogen sulfide: an endogenous peroxynitrite 'scavenger'? J Neurochem,2004,90(3):765-768
    37杨丝丝,姜志胜,唐小卿.硫化氢对H2O2损伤PC12细胞的保护作用[J].南华大学学报(医学版),2007,35(4):491-494
    38廖新学,唐小卿,郭瑞鲜,等. ATP敏感钾通道在硫化氢钠对抗β-淀粉样肽诱导细胞损伤中的作用[J].中山大学学报(医学科学版),2008,29(3):258-263
    39ChengY, Ndisang J F, TangG, et al. Hydrogen sulfide-induced relaxationof resistance mesenteric artery beds of rats[J]. Am J PhysiolHeart CircPhysiol,2004,287(5): H2316-2323
    40张建华,陈志武.大鼠脑基底动脉舒张作用的EDHF机制及杜鹃花总黄酮的作用[D].中国博士学位论文数据库,2009:1-8
    41周方杰,陈志武.硫化氢介导的大鼠大脑中动脉的内皮源性超极化因子反应[J].安徽医科大学学报,2011,46(8):768-771
    42Wong PT, Qu K, Chimon GN, et al. High plasma cyst(e)ine levelmayindicate poor clinical outcome in patientswith acute stroke: possibleinvolvement of hydrogen sulfide[J]. NeuropatholExp Neuro,2006,65(2):109-115
    43Qu, K., Chen, C.P., Halliwell, B., et al. Hydrogen sulfide is a mediator ofcerebral ischemic damage[J]. Stroke,2006,37(3):889–893
    44李国风,张建新,骆海坤,等.氨基氧乙酸对大鼠局灶性脑缺血损伤的影响.中华麻醉学杂志,2011,31(8):984-986
    45周丽,王绍博.短暂性脑缺血发作内源性H2S及CBS检测的意义.中国实用医药,2009,23:20-21
    46任彩丽,赵红岗,蔡德亮,等.脑梗死患者血浆中内源性硫化氢含量的变化.中国神经精神疾病杂志,2010,36(1):43-45
    47任彩丽,李东亮,赵红岗等.全脑缺血-再灌注大鼠脑组织内源性硫化氢的动态变化[J].中国脑血管病杂志,2008,4(5):177-181
    48任彩丽,赵红岗,刘磊,等.缺氧缺血性脑损伤新生大鼠皮质脑组织硫化氢的动态变化[J].实用儿科杂志,2008,23(6):930-931
    49Caili ren, Ailin Du, Dongliang Li, et al. Dynamic change of hydrogensulfide during global cerebral ischemia-reperfusion and its effect in rats.Brain research,2010,5:197-205
    50邵建林,朱俊超,王俊科,等.胱硫醚β合成酶/硫化氢和血红素氧合酶-1/一氧化碳体系在大鼠脑缺血再灌注损伤中的作用[J].中华麻醉学杂志,2006,26(5):439-442
    51邵建林,王俊科,马虹.外源性硫化氢对脑缺血再灌注损伤大鼠海马气体信号分子的影响[J].中华麻醉学杂志,2007,27(5):451-454
    52杨志仙,秦炯,周国平,等.发育期大鼠高热惊厥脑损伤模型的建立[J].北京大学学报(医学版),2002,34:225-228
    53韩颖,秦炯,常杏芝,等.反复热性惊厥前后硫化氢/胱硫醚-β-合成酶体系表达的改变[J].北京大学学报(医学版),2005,37(6):579-581
    54MorimotoT, NagaoH, YoshimatsuM, et al. Pathogenic role of glutamatein hyperthermia-induced seizures[J]. Epilepsia,1993,34(3):447-452
    55Nagaki S, Nagaki S, MinatoganaY, et al. The role of vasopressin,somatostatin and GABA in febrile convulsion in rat pups[J]. Life Sci,1996,58(24):2233-2242
    56Wu J, FisherRS. Hyperthermic spreading depressions in the immature rathippocampal slice[J]. J Neurophysiol,2000,84(3):1355-1360
    57Kimura H. Hydrogen sulfide as a neuromodulator[J]. MolNeurobiol,2002,26(1):13-19
    58Carrilo E. Fuente T, Laorden ML. Hyperthermia-induced seizures alterthe levels of methionine-enkephalin in immature rat brain[J].Neuropeptides,1992,21(3):139-142
    59Leffler CW, Parfenova H, Jaggar JH. Carbon monoxide and hydrogensulfide:gaseous messengers in cerebrovascular circulation[J]. J ApplPhysiol,2006,100(3):1065-1076
    60Malinski T. Nitric oxide and nitroxidative stress in Alzheimer's disease[J].Journal of Alzheimer's disease,2007,11(2):207-218
    61Jang JH, Aruoma OI, Jen LS, et al. Ergothioneine rescues PC12cellsfromβ-amyloid induced apoptotic death[J]. Free Radic Biol Med,2004,36(3):288-299
    62Geylis V, Steinitz M. Immunotherapy of Alzheimer's disease (AD):frommurine models to anti-amyloid beta (Abeta) human monoclonalantibodies[J]. Geriatrics Autoimmun Rev,2006,5(1):33-39
    63陈秀琴,唐小卿,李景田,等.硫化氢对β-淀粉样蛋白诱PC12细胞凋亡的影响[J].解剖学研究,2007,29:107-110
    64Kamoun P. Mental retardation in Down syndrome:a hydrogen sulfidehypothesis[J]. Med Hypotheses,2001,57(3):389-392
    65Belardinelli MC, Chabli A, Chadefaux-Vekemans B, et al. Urinary sulfurcompounds in Down syndrome[J]. Clin Chem,2001,47(8):1500-1501
    66Hu LF, Lu M, Tiong CX, et al. Neuroprotective effects of hydrogensulfide on Parkinson's disease rat models[J]. Aging Cell,2010,9(2):135-146
    67马玉杰.急性二硫化碳、硫化氢等混合气体急性中毒21例患者的抢救及护理[J].当代医学,2009,15(36):137-138
    68Reiffenstein RJ, Hulbert WC, Roth SH. Toxicology of hydrogen sulfide[J]. Annu Rev Pharmacol Toxicol,1992,32:109-134
    69Li L, BhatiaM, Moore PK. Hydrogen sulfide: a novel mediator inflam-mation [J]. CurrOpin Pharmaco, l2006,6(2):125-129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700