KCNQ2钾通道的温度调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:电压依赖型钾离子通道KCNQ2(Kv7.2)在调节神经系统兴奋性方面发挥重要作用。KCNQ2/KCNQ3通道的突变已经被证实是良性家族性新生儿惊厥(benign familial neonatal epilepsy, BFNC)的分子发病基础,KCNQ通道的激活可以减少或降低未成熟大脑的神经元兴奋性的发放和传递。多种因素如神经递质、激素及细胞外离子等通过不同的途径调节KCNQ通道产生的M电流,从而对神经元兴奋性的调节、神经递质的释放和突触的传递等产生影响。因此,研究KCNQ2钾离子通道的调节机制,对了解多种疾病的发病机理和发现新的治疗途径均具有重要的意义。温度对于KCNQ2离子通道的作用尚不清楚,本研究的目的是检测温度对KCNQ2通道的影响,并探讨KCNQ2通道特异性的激活剂氟吡汀对反复热性惊厥(repetitive febrile seizure, RFS)大鼠模型的治疗作用。
     方法:
     1)采用PCR方法扩增目的基因,构建携带有绿色荧光蛋白(green fluorescent protein, GFP)标签的野生型pEGFP-C1-KCNQ2。在融合表达载体构建成功的基础上,在通道上的这两个区域选择了与BFNC相关的位点进行了定点突变。第一个选择的位点S4区段电压敏感区第214位精氨酸突变为色氨酸(R214W, R→W),第二个位点位于p-loop区段第284位酪氨酸突变为半胱氨酸(Y284C, Y→C)。最后利用重叠延伸(overlap extension) PCR的方法构建R214W、Y284C突变型和孔区截短突变型真核表达载体;
     2)用构建成功的野生型和突变型KCNQ2的真核表达载体并分别转染小鼠神经瘤细胞(mouse neuroblastoma cells, N2a)和人胚肾293T细胞(human embryonic kindey, HEK293T cell),荧光共聚焦显微镜(confocal)和Western-blotting检测野生及突变型KCNQ2蛋白在不同温度下的表达情况;将内质网定位质粒pDsRed-ER质粒和野生及突变型KCNQ2的真核表达载体共转染后,Confocal观察野生及突变型KCNQ2蛋白在细胞内的分布及定位情况;
     3)全细胞膜片钳记录不同温度下HEK293T细胞上的野生及突变型KCNQ2钾通道的电生理特性;
     4)对SPF级10日龄雄性SD大鼠采用45℃热水浴方法制备反复热性惊厥模型,并给以氟吡汀或者苯巴比妥治疗,观察各组大鼠热性惊厥的发作情况。大鼠28日龄时再次诱发热性惊厥,观察不同组大鼠再次惊厥发作的易感性变化。大鼠30日龄时通过水迷宫方法观察大鼠学习记忆能力的变化。
     结果:
     1)经DNA测序分析证实野生及突变型重组载体构建正确。全细胞膜片钳结果提示野生型pEGFP-C1-KCNQ2表达的电流呈外向、电压依赖性、慢激活特征,达最大稳态电流后表现非失活特征;
     2)温度从37℃升高到40℃后,荧光显微镜结果显示转染野生KCNQ2及突变型R214W和Y284C的细胞荧光强度明显增强(p<0.001),同时共定位结果分析提示野生及突变型KCNQ2通道蛋白在细胞内滞留,但是孔区截短型通道的表达在温度升高后没有增加;Western-blotting结果表明温度升高后,野生型和突变型KCNQ2通道总蛋白的表达都显著增加(p<0.05),但是膜表面表达没有明显变化;
     3)电生理结果表明温度升高可导致KCNQ2通道的激活曲线明显左移,提示高温情况下KCNQ2通道电压依赖性激活的阈值显著性降低;
     4)氟吡汀和苯巴比妥这两种药物都能显著地延长热性惊厥的潜伏期、降低惊厥的发作等级,并使再次惊厥的易感性下降。水迷宫实验结果表明氟吡汀组在学习和记忆方面损伤较非药物处理组小。
     结论:温度升高增加了KCNQ2通道在细胞内的表达并且降低了KCNQ2通道的激活阈值,孔区可能是KCNQ2通道转运过程中的重要影响因素。同时,氟吡汀可治疗反复热性惊厥的发作,KCNQ通道作为治疗儿童反复热性惊厥的新靶点值得进一步研究。
Objective:KCNQ2(Kv7.2), Voltage-dependent potassium channels, plays a key role in regulating neuronal excitability. Mutations in neuronal KCNQ2/3subunits, the molecular correlates of M current, have previously been linked with benign familial neonatal epilepsy (BFNC). Activation of KCNQ-channels has been shown to decrease or reduce the propagation of neuronal excitation in the immature central nervous system. A variety of factors such as neurotransmitters, hormones and extracellular ion can regulate M current generated by KCNQ channel and thus control neuronal excitability, neurotransmitter release and synaptic transmission. Therefore, the study on regulatory mechanism of KCNQ2potassium channel is important to understand the pathogenesis of many diseases and find new treatment methods. However, the role of temperature on the expression, distribution and the electrophysiological feature of KCNQ2channels have not been clarified. Our study sought to investigate the impact of temperature elevation on neuronal KCNQ2ion channel, and test whether the KCNQ2channel specific activator flupirtine is also effective for repetitive febrile seizures (RFS) in rats.
     Methods:
     1) The cDNAs encoding human wild-type KCNQ2were subcloned into pEGFP-C1vector by polymerase chain reaction (PCR). R214W (in the voltage-sensing S4domain) and Y284C(located in the pore region), were introduced into the wild-type KCNQ2construct with the Quick-Change Site-Directed Mutagenesis Kit on the pEGFP-C1vector. Truncated p-loop mutants were engineered in human KCNQ2cDNA by sequence overlap extension PCR.
     2) The plasmids were transfected into293T cells or N2a cells respectively. The KCNQ2protein expression at different temperature was detected by fluorescence confocal microscopy and Western-blotting. KCNQ2subunits were coexpressed with an endoplasmic reticulum (ER) marker, pDsRed-ER, and then intracellular location of KCNQ2channels was identified by confocal microscopy.
     3) Whole-cell patch clamp was performed to record the effect of temperature electrophysiological activity of KCNQ2potassium channel.
     4) RFS were induced in Sprague-Dawley (SD) rats at postnatal day10(P10) in a warm water bath for eight consecutive days with or without the pre-administration of flupirtine or phenobarbital. At P28, febrile seizures were induced to test the rats' susceptivity to febrile seizures. On P30, the Morris water maze was used to test hippocampus-dependent spatial memory.
     Results:
     1) All of the inserted sequences, as well as the mutated sites, were confirmed by DNA sequencing. The results of whole-cell patch clamp indicated that the current of wild type pEGFP-C1-KCNQ2expressed showed a outward, voltage-dependent, slowly activating and then noninactivating when reached the largest stable current.
     2) Confocal microscopy indicated that total fluorescence intensity values of wtKCNQ2, R214W and Y284C were enhanced with the temperature increasing from37℃to40℃(p<0.001). Co-localization of the ER marker with wtKCNQ2and KCNQ2mutants indicated that KCNQ2intracellular localization was increased after temperature elevation. Meanwhile, temperature elevation did not increase the fluorescence intensity of cells transfected with a p-loop truncated mutant. Western-blotting results showed that the total expression but not the surface expression of wt and mutant KCNQ2was increased after Temperature Elevation.
     3) Results of electrophysiological study indicated that homomeric KCNQ2channels exhibited a significant leftward shift in the half-maximum activation potential (V1/2) at high temperature, suggested that the voltage-dependence activation trended to be increased by elevated temperature.
     4) Both flupirtine and phenobarbital significantly increased the latency, decreased the rate of febrile seizures and reduced the risk of further hyperthermic seizures. The flupirtine-treated group showed less impairment in learning and memory compared with non-treatment group.
     Conclusions:The effects of temperature on KCNQ2channel are to raise the rates of activation and increase the ER retention. The p-loop region is critical for temperature-dependent modulation of expression and trafficking of KCNQ2channels. Meanwhile, KCNQ channels may merit further study as an attractive pharmacological target for the treatment of RFS in children.
引文
1.王刚.对"channelopat h"定义及分类的一些看法.生理科学进展.2003.34(1):70.
    2.秦兵,廖卫平.与癫痫相关的自身免疫性离子通道病.中国神经免疫学和神经病学杂志.2010.17(2):98-100.
    3. Waxman, SG. Acquired channelopathies in nerve injury and MS. Neurology. 2001.56(12):1621-1627.
    4. Yu, FH, V Yarov-Yarovoy, GA Gutman and WA Catterall. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev.2005.57(4):387-395.
    5. Gutman, GA, KG Chandy, S Grissmer, M Lazdunski, D McKinnon, LA Pardo, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev.2005. 57(4):473-508.
    6. Wei, AD, GA Gutman, R Aldrich, KG Chandy, S Grissmer and H Wulff. International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev.2005. 57(4):463-472.
    7. Kubo, Y, JP Adelman, DE Clapham, LY Jan, A Karschin, Y Kurachi, et al. International Union of Pharmacology. LiV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev.2005. 57(4):509-526.
    8. Goldstein, SA, DA Bayliss, D Kim, F Lesage, LD Plant and S Rajan. International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev.2005. 57(4):527-540.
    9. Singh, NA, C Charlier, D Stauffer, BR DuPont, RJ Leach, R Melis, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet.1998.18(1):25-29.
    10. Eunson, LH, R Rea, SM Zuberi, S Youroukos, CP Panayiotopoulos, R Liguori, et al. Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability. Ann Neurol.2000. 48(4):647-656.
    11. Grunder, S, HS Geisler, S Rainier and JK Fink. Acid-sensing ion channel (ASIC) 4 gene:physical mapping, genomic organisation, and evaluation as a candidate for paroxysmal dystonia. Eur J Hum Genet.2001.9(9):672-676.
    12. Gardiner, RM. Genes and epilepsy. J Med Genet.1990.27(9):537-544.
    13. Berthet, M, I Denjoy, C Donger, L Demay, H Hammoude, D Klug, et al. C-terminal HERG mutations:the role of hypokalemia and a KCNQ1-associated mutation in cardiac event occurrence. Circulation.1999. 99(11):1464-1470.
    14. Bezzina, C, MW Veldkamp, MP van Den Berg, AV Postma, MB Rook, JW Viersma, et al. A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res.1999.85(12):1206-1213.
    15. Chorbachi, R, JM Graham, J Ford and CH Raine. Cochlear implantation in Jervell and Lange-Nielsen syndrome. Int J Pediatr Otorhinolaryngol.2002. 66(3):213-221.
    16. Hosaka, Y, H Hanawa, T Washizuka, M Chinushi, F Yamashita, T Yoshida, et al. Function, subcellular localization and assembly of a novel mutation of KCNJ2 in Andersen's syndrome. J Mol Cell Cardiol.2003.35(4):409-415.
    17. Sanguinetti, MC and M Tristani-Firouzi. hERG potassium channels and cardiac arrhythmia. Nature.2006.440(7083):463-469.
    18. Browne, DL, ST Gancher, JG Nutt, ER Brunt, EA Smith, P Kramer, et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet.1994.8(2):136-140.
    19. Biervert, C, BC Schroeder, C Kubisch, SF Berkovic, P Propping, TJ Jentsch, et al. A potassium channel mutation in neonatal human epilepsy. Science.1998. 279(5349):403-406.
    20. Wang, HS, Z Pan, W Shi, BS Brown, RS Wymore, IS Cohen, et al. KCNQ2 and KCNQ3 potassium channel subunits:molecular correlates of the M-channel. Science.1998.282(5395):1890-1893.
    21. Wang, Q, ME Curran, I Splawski, TC Burn, JM Millholland, TJ VanRaay, et al. Positional cloning of a novel potassium channel gene:KVLQT1 mutations cause cardiac arrhythmias. Nat Genet.1996.12(1):17-23.
    22. Kubisch, C, BC Schroeder, T Friedrich, B Lutjohann, A El-Amraoui, S Marlin, et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell.1999.96(3):437-446.
    23. Lerche, C, CR Scherer, G Seebohm, C Derst, AD Wei, AE Busch, et al. Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity. J Biol Chem. 2000.275(29):22395-22400.
    24. Schroeder, BC, M Hechenberger, F Weinreich, C Kubisch and TJ Jentsch. KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem.2000.275(31):24089-24095.
    25. Tinel, N, I Lauritzen, C Chouabe, M Lazdunski and M Borsotto. The KCNQ2 potassium channel:splice variants, functional and developmental expression. Brain localization and comparison with KCNQ3. FEBS Lett.1998. 438(3):171-176.
    26. Cooper, EC, KD Aldape, A Abosch, NM Barbaro, MS Berger, WS Peacock, et al. Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. Proceedings of the National Academy of Sciences of the United States of America.2000.97(9):4914-4919.
    27. Watanabe, H, E Nagata, A Kosakai, M Nakamura, M Yokoyama, K Tanaka, et al. Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. Journal of Neurochemistry.2000.75(1):28-33.
    28. Chung, HJ, YN Jan and LY Jan. Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proceedings of the National Academy of Sciences of the United States of America.2006.103(23):8870-8875.
    29. Cooper, EC, E Harrington, YN Jan and LY Jan. M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain. J Neurosci.2001.21(24):9529-9540.
    30. Passmore, GM, AA Selyanko, M Mistry, M Al-Qatari, SJ Marsh, EA Matthews, et al. KCNQ/M currents in sensory neurons:significance for pain therapy. J Neurosci.2003.23(18):7227-7236.
    31. Maljevic, S, TV Wuttke, G Seebohm and H Lerche. KV7 channelopathies. Pflugers Arch.2010.460(2):277-288.
    32. Peters, HC, H Hu, O Pongs, JF Storm and D Isbrandt. Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci.2005.8(1):51-60.
    33.Mencia, A, D Gonzalez-Nieto, S Modamio-Hoybjor, A Etxeberria, G Aranguez, N Salvador, et al. A novel KCNQ4 pore-region mutation (p.G296S) causes deafness by impairing cell-surface channel expression. Hum Genet. 2008.123(1):41-53.
    34. Borgatti, R, C Zucca, A Cavallini, M Ferrario, C Panzeri, P Castaldo, et al. A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurology.2004.63(1):57-65.
    35. Steinlein, OK, C Conrad and B Weidner. Benign familial neonatal convulsions: always benign? Epilepsy Res.2007.73(3):245-249.
    36. Coppola, G, P Castaldo, E Miraglia del Giudice, G Bellini, F Galasso, MV Soldovieri, et al. A novel KCNQ2 K+ channel mutation in benign neonatal convulsions and centrotemporal spikes. Neurology.2003.61(1):131-134.
    37. Neubauer, BA, S Waldegger, J Heinzinger, A Hahn, G Kurlemann, B Fiedler, et al. KCNQ2 and KCNQ3 mutations contribute to different idiopathic epilepsy syndromes. Neurology.2008.71(3):177-183.
    38. Castaldo, P, EM del Giudice, G Coppola, A Pascotto, L Annunziato and M Taglialatela. Benign familial neonatal convulsions caused by altered gating of KCNQ2/KCNQ3 potassium channels. J Neurosci.2002.22(2):RC199.
    39. Soldovieri, MV, MR Cilio, F Miceli, G Bellini, E Miraglia del Giudice, P Castaldo, et al. Atypical gating of M-type potassium channels conferred by mutations in uncharged residues in the S4 region of KCNQ2 causing benign familial neonatal convulsions. J Neurosci.2007.27(18):4919-4928.
    40. Alaimo, A, JC Gomez-Posada, P Aivar, A Etxeberria, JA Rodriguez-Alfaro, P Areso, et al. Calmodulin activation limits the rate of KCNQ2 K+ channel exit from the endoplasmic reticulum. J Biol Chem.2009.284(31):20668-20675.
    41. Soldovieri, MV, P Castaldo, L Iodice, F Miceli, V Barrese, G Bellini, et al. Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions. J Biol Chem.2006.281(1):418-428.
    42. Hunter, J, S Maljevic, A Shankar, A Siegel, B Weissman, P Holt, et al. Subthreshold changes of voltage-dependent activation of the K(V)7.2 channel in neonatal epilepsy. Neurobiol Dis.2006.24(1):194-201.
    43. Hernandez, CC, O Zaika, GP Tolstykh and MS Shapiro. Regulation of neural KCNQ channels:signalling pathways, structural motifs and functional implications. J Physiol.2008.586(7):1811-1821.
    44. Delmas, P and DA Brown. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci.2005.6(11):850-862.
    45. Liu, B, H Liang, L Liu and H Zhang. Phosphatidylinositol 4,5-bisphosphate hydrolysis mediates histamine-induced KCNQ/M current inhibition. Am J Physiol Cell Physiol.2008.295(1):C81-91.
    46. Zaika, O, GP Tolstykh, DB Jaffe and MS Shapiro. Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. J Neurosci.2007.27(33):8914-8926.
    47.贾庆忠,王川,杜肖娜,李芳,张海林.细胞外pH值对KCNQ2/3钾离子通道的调节.中国药理学通报.2005.21(1):82-87.
    48. Kapfhamer, D, KH Berger, FW Hopf, T Seif, V Kharazia, A Bonci, et al. Protein Phosphatase 2a and glycogen synthase kinase 3 signaling modulate prepulse inhibition of the acoustic startle response by altering cortical M-Type potassium channel activity. J Neurosci.2010.30(26):8830-8840.
    49. Schwarz, JR, G Glassmeier, EC Cooper, TC Kao, H Nodera, D Tabuena, et al. KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier. J Physiol.2006.573(Pt 1):17-34.
    50. Okada, M, G Zhu, S Hirose, KI Ito, T Murakami, M Wakui, et al. Age-dependent modulation of hippocampal excitability by KCNQ-channels. Epilepsy Res.2003.53(1-2):81-94.
    51. Weber, YG, J Geiger, K Kampchen, B Landwehrmeyer, C Sommer and H Lerche. Immunohistochemical analysis of KCNQ2 potassium channels in adult and developing mouse brain. Brain Res.2006.1077(1):1-6.
    52. Micheva, KD and SJ Smith. Strong effects of subphysiological temperature on the function and plasticity of mammalian presynaptic terminals. J Neurosci. 2005.25(33):7481-7488.
    53. Thomas, EA, RJ Hawkins, KL Richards, R Xu, EV Gazina and S Petrou. Heat opens axon initial segment sodium channels:a febrile seizure mechanism? Ann Neurol.2009.66(2):219-226.
    54. Tosun, A, G Koturoglu, G Serdaroglu, M Polat, Z Kurugol, S Gokben, et al. Ratios of nine risk factors in children with recurrent febrile seizures. Pediatr Neurol.2010.43(3):177-182.
    55. Subramony, SH, K Schott, RS Raike, J Callahan, LR Langford, PS Christova, et al. Novel CACNA1A mutation causes febrile episodic ataxia with interictal cerebellar deficits. Ann Neurol.2003.54(6):725-731.
    56. Gomez-Posada, JC, A Etxeberria, M Roura-Ferrer, P Areso, M Masin, RD Murrell-Lagnado, et al. A pore residue of the KCNQ3 potassium M-channel subunit controls surface expression. J Neurosci.2010.30(27):9316-9323.
    57. Rodriguez, BM, D Sigg and F Bezanilla. Voltage gating of Shaker K+ channels. The effect of temperature on ionic and gating currents. J Gen Physiol.1998.112(2):223-242.
    58.蔡春青,邹飞.膜环境高温对新生SD大鼠下丘脑神经元延迟整流性钾通道的影响.中国病理生理杂志.2000.16(2):105-108.
    59.蔡春青,邹飞.不同温度条件对下丘脑神经元K+单离子通道簇状开放的影响.中国应用生理学杂志.2002.18(2):105-108.
    60. Miceli, F, MR Cilio, M Taglialatela and F Bezanilla. Gating currents from neuronal K(V)7.4 channels:general features and correlation with the ionic conductance. Channels (Austin).2009.3(4):274-283.
    61. Delisle, BP, BD Anson, S Rajamani and CT January. Biology of cardiac arrhythmias:ion channel protein trafficking. Circ Res.2004. 94(11):1418-1428.
    62. Kang, JQ, W Shen and RL Macdonald. Why does fever trigger febrile seizures? GABAA receptor gamma2 subunit mutations associated with idiopathic generalized epilepsies have temperature-dependent trafficking deficiencies. J Neurosci.2006.26(9):2590-2597.
    63. Gelman, MS and RR Kopito. Rescuing protein conformation:prospects for pharmacological therapy in cystic fibrosis. J Clin Invest.2002. 110(11):1591-1597.
    64. Kopito, RR. Biosynthesis and degradation of CFTR. Physiol Rev.,1999.79(1 Suppl):S167-173.
    65. Etxeberria, A, P Aivar, JA Rodriguez-Alfaro, A Alaimo, P Villace, JC Gomez-Posada, et al. Calmodulin regulates the trafficking of KCNQ2 potassium channels. FASEB J.2008.22(4):1135-1143.
    66. Heusser, K and B Schwappach. Trafficking of potassium channels. Curr Opin Neurobiol.2005.15(3):364-369.
    67. Schwake, M, D Athanasiadu, C Beimgraben, J Blanz, C Beck, TJ Jentsch, et al. Structural determinants of M-type KCNQ (Kv7) K+ channel assembly. J Neurosci.2006.26(14):3757-3766.
    68. Haitin, Y and B Attali. The C-terminus of Kv7 channels:a multifunctional module. J Physiol.2008.586(7):1803-1810.
    69. Hauser, WA. The prevalence and incidence of convulsive disorders in children. Epilepsia.1994.35 Suppl 2:S1-6.
    70. Offringa, M, PM Bossuyt, J Lubsen, JH Ellenberg, KB Nelson, FU Knudsen, et al. Risk factors for seizure recurrence in children with febrile seizures:a pooled analysis of individual patient data from five studies. J Pediatr.1994. 124(4):574-584.
    71. Annegers, JF, SA Blakley, WA Hauser and LT Kurland. Recurrence of febrile convulsions in a population-based cohort. Epilepsy Res.1990.5(3):209-216.
    72. Annegers, JF, WA Hauser, SB Shirts and LT Kurland. Factors prognostic of unprovoked seizures after febrile convulsions. N Engl J Med.1987. 316(9):493-498.
    73. Berg, AT and S Shinnar. Unprovoked seizures in children with febrile seizures: short-term outcome. Neurology.1996.47(2):562-568.
    74. Annegers, JF, WA Hauser, LR Elveback and LT Kurland. The risk of epilepsy following febrile convulsions. Neurology.1979.29(3):297-303.
    75. Chang, YC, YM Kuo, AM Huang and CC Huang. Repetitive febrile seizures in rat pups cause long-lasting deficits in synaptic plasticity and NR2A tyrosine phosphorylation. Neurobiol Dis.2005.18(3):466-475.
    76. Yang, L, F Li, H Zhang, W Ge, C Mi, R Sun, et al. Astrocyte activation and memory impairment in the repetitive febrile seizures model. Epilepsy Res. 2009.86(2-3):209-220.
    77. Van Esch, A, HA Van Steensel-Moll, EW Steyerberg, M Offringa, JD Habbema and G Derksen-Lubsen. Antipyretic efficacy of ibuprofen and acetaminophen in children with febrile seizures. Arch Pediatr Adolesc Med. 1995.149(6):632-637.
    78. Strengell, T, M Uhari, R Tarkka, J Uusimaa, R Alen, P Lautala, et al. Antipyretic agents for preventing recurrences of febrile seizures:randomized controlled trial. Arch Pediatr Adolesc Med.2009.163(9):799-804.
    79. Lux, AL. Antipyretic drugs do not reduce recurrences of febrile seizures in children with previous febrile seizure. Evid Based Med.2010.15(1):15-16.
    80. Lux, AL. Treatment of febrile seizures:historical perspective, current opinions, and potential future directions. Brain Dev.2010.32(1):42-50.
    81. Herranz, JL, JA Armijo and R Arteaga. Clinical side effects of phenobarbital, primidone, phenytoin, carbamazepine, and valproate during monotherapy in children. Epilepsia.1988.29(6):794-804.
    82. Hirabayashi, Y, A Okumura, T Kondo, M Magota, S Kawabe, N Kando, et al. Efficacy of a diazepam suppository at preventing febrile seizure recurrence during a single febrile illness. Brain Dev.2009.31(6):414-418.
    83. Rantala, H, R Tarkka and M Uhari. A meta-analytic review of the preventive treatment of recurrences of febrile seizures. J Pediatr.1997.131(6):922-925.
    84. Cooper, EC and LY Jan. M-channels:neurological diseases, neuromodulation, and drug development. Arch Neurol.2003.60(4):496-500.
    85. Brown, DA and GM Passmore. Neural KCNQ (Kv7) channels. Br J Pharmacol. 2009.156(8):1185-1195.
    86. Singh, NA, P Westenskow, C Charlier, C Pappas, J Leslie, J Dillon, et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions:expansion of the functional and mutation spectrum. Brain.2003. 126(Pt 12):2726-2737.
    87. Xiong, Q, Z Gao, W Wang and M Li. Activation of Kv7 (KCNQ) voltage-gated potassium channels by synthetic compounds. Trends Pharmacol Sci.2008.29(2):99-107.
    88. Miceli, F, MV Soldovieri, M Martire and M Taglialatela. Molecular pharmacology and therapeutic potential of neuronal Kv7-modulating drugs. Curr Opin Pharmacol.2008.8(l):65-74.
    89. Boscia, F, L Annunziato and M Taglialatela. Retigabine and flupirtine exert neuroprotective actions in organotypic hippocampal cultures. Neuropharmacology.2006.51(2):283-294.
    90. Klawe, C and M Maschke. Flupirtine:pharmacology and clinical applications of a nonopioid analgesic and potentially neuroprotective compound. Expert Opin Pharmacother.2009.10(9):1495-1500.
    91. Sattler, MB, SK Williams, C Neusch, M Otto, JR Pehlke, M Bahr, et al. Flupirtine as neuroprotective add-on therapy in autoimmune optic neuritis. Am J Pathol.2008.173(5):1496-1507.
    92. Raol, YH, DA Lapides, JG Keating, AR Brooks-Kayal and EC Cooper. A KCNQ channel opener for experimental neonatal seizures and status epilepticus. Ann Neurol.2009.65(3):326-336.
    93. Racine, RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol.1972.32(3):281-294.
    94. Ceulemans, BP, LR Claes and LG Lagae. Clinical correlations of mutations in the SCN1A gene:from febrile seizures to severe myoclonic epilepsy in infancy. Pediatr Neurol.2004.30(4):236-243.
    95. Kang, JQ and RL Macdonald. The GABAA receptor gamma2 subunit R43Q mutation linked to childhood absence epilepsy and febrile seizures causes retention of alphalbeta2gamma2S receptors in the endoplasmic reticulum. J Neurosci.2004.24(40):8672-8677.
    96. Mantegazza, M, A Gambardella, R Rusconi, E Schiavon, F Annesi, RR Cassulini, et al. Identification of an Navl.1 sodium channel. (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc Natl Acad SciU S A.2005.102(50):18177-18182.
    97. Palmer, GC, AR Borrelli, TJ Hudzik and S Sparber. Acute heat stress model of seizures in weanling rats:influence of prototypic anti-seizure compounds. Epilepsy Res.1998.30(3):203-217.
    98. Baram, TZ and S Shinnar, eds. Febrile Seizures.1st ed.2001, Academic Press. 189-201.
    99. Dobbing, J and J Sands. Quantitative growth and development of human brain. Arch Dis Child.1973.48(10):757-767.
    100. Gottlieb, A, I Keydar and HT Epstein. Rodent brain growth stages:an analytical review. Biol Neonate.1977.32(3-4):166-176.
    101. Dube, CM, JL Zhou, M Hamamura, Q Zhao, A Ring, J Abrahams, et al. Cognitive dysfunction after experimental febrile seizures. Exp Neurol.2009. 215(1):167-177.
    102. Huang, CC and YC Chang. The long-term effects of febrile seizures on the hippocampal neuronal plasticity-clinical and experimental evidence. Brain Dev.2009.31(5):383-387.
    1. Brown, DA and PR Adams. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature.1980.283(5748): 673-676.
    2. Brown, DA and GM Passmore. Neural KCNQ (Kv7) channels. Br J Pharmacol. 2009.156(8):1185-1195.
    3. Peters, HC, H Hu, O Pongs, JF Storm and D Isbrandt. Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci.2005.8(1):51-60.
    4. Maljevic, S, TV Wuttke, G Seebohm and H Lerche. KV7 channelopathies. Pflugers Arch.2010.460(2):277-288.
    5. Wang, Q, ME Curran, I Splawski, TC Burn, JM Millholland, TJ VanRaay, et al. Positional cloning of a novel potassium channel gene:KVLQTl mutations cause cardiac arrhythmias. Nat Genet.1996.12(1):17-23.
    6. Kubisch, C, BC Schroeder, T Friedrich, B Lutjohann, A El-Amraoui, S Marlin, et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell.1999.96(3):437-446.
    7. Wang, HS, Z Pan, W Shi, BS Brown, RS Wymore, IS Cohen, et al. KCNQ2 and KCNQ3 potassium channel subunits:molecular correlates of the M-channel. Science.1998.282(5395):1890-1893.
    8. Lerche, C, CR Scherer, G Seebohm, C Derst, AD Wei, AE Busch, et al. Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity. J Biol Chem. 2000.275(29):22395-22400.
    9. Schroeder, BC, M Hechenberger, F Weinreich, C Kubisch and TJ Jentsch. KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem.2000.275(31):24089-24095.
    10. Tinel, N, I Lauritzen, C Chouabe, M Lazdunski and M Borsotto. The KCNQ2 potassium channel:splice variants, functional and developmental expression. Brain localization and comparison with KCNQ3. FEBS Lett.1998.438(3): 171-176.
    11. Cooper, EC, KD Aldape, A Abosch, NM Barbara, MS Berger, WS Peacock, et al. Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. Proceedings of the National Academy of Sciences of the United States of America.2000.97(9): 4914-4919.
    12. Watanabe, H, E Nagata, A Kosakai, M Nakamura, M Yokoyama, K Tanaka, et al. Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. Journal of Neurochemistry.2000.75(1):28-33.
    13. Schwarz, JR, G Glassmeier, EC Cooper, TC Kao, H Nodera, D Tabuena, et al. KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier. J Physiol.2006.573(Pt 1):17-34.
    14. Passmore, GM, AA Selyanko, M Mistry, M Al-Qatari, SJ Marsh, EA Matthews, et al. KCNQ/M currents in sensory neurons:significance for pain therapy. J Neurosci.2003.23(18):7227-7236.
    15. Chung, HJ, YN Jan and LY Jan. Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proceedings of the National Academy of Sciences of the United States of America.2006.103(23):8870-8875.
    16. Pan, Z, T Kao, Z Horvath, J Lemos, JY Sul, SD Cranstoun, et al. A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci.2006.26(10):2599-2613.
    17. Hernandez, CC, O Zaika, GP Tolstykh and MS Shapiro. Regulation of neural KCNQ channels:signalling pathways, structural motifs and functional implications. J Physiol.2008.586(7):1811-1821.
    18. Suh, BC, LF Horowitz, W Hirdes, K Mackie and B Hille. Regulation of KCNQ2/KCNQ3 current by G protein cycling:the kinetics of receptor-mediated signaling by Gq. J Gen Physiol.2004.123(6):663-683.
    19.贾庆忠,张海林.神经递质调节M电流的机制.第二军医大学学报.2005.26(5):561-564.
    20. Delmas, P and DA Brown. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci.2005.6(11):850-862.
    21. Mucha, M, L Ooi, JE Linley, P Mordaka, C Dalle, B Robertson, et al. Transcriptional control of KCNQ channel genes and the regulation of neuronal excitability. J Neurosci.2010.30(40):13235-13245.
    22. Zhang, HL, LC Craciun, T Mirshahi, T Rohacs, CMB Lopes, TH Jin, et al. PIP2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron.2003.37(6):963-975.
    23. Brown, DA, SA Hughes, SJ Marsh and A Tinker. Regulation of M(Kv7.2/7.3) channels in neurons by PIP(2) and products of PIP(2) hydrolysis:significance for receptor-mediated inhibition. J Physiol.2007.582(Pt 3):917-925.
    24. Hughes, S, S J Marsh, A Tinker and DA Brown. PIP(2)-dependent inhibition of M-type (Kv7.2/7.3) potassium channels:direct on-line assessment of PIP(2) depletion by Gq-coupled receptors in single living neurons. Pflugers Arch. 2007.455(1):115-124.
    25. Zaika, O, LS Lara, N Gamper, DW Hilgemann, DB Jaffe and MS Shapiro. Angiotensin II regulates neuronal excitability via phosphatidylinositol 4,5-bisphosphate-dependent modulation of Kv7 (M-type) K+channels. J Physiol.2006.575(Pt 1):49-67.
    26. Bofill-Cardona, E, N Vartian, C Nanoff, M Freissmuth and S Boehm. Two different signaling mechanisms involved in the excitation of rat sympathetic neurons by uridine nucleotides. Mol Pharmacol.2000.57(6):1165-1172.
    27. Zaika, O, GP Tolstykh, DB Jaffe and MS Shapiro. Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. J Neurosci.2007.27(33):8914-8926.
    28. Liu, B, H Liang, L Liu and H Zhang. Phosphatidylinositol 4,5-bisphosphate hydrolysis mediates histamine-induced KCNQ/M current inhibition. Am J Physiol Cell Physiol.2008.295(1):C81-91.
    29. Delmas, P and DA Brown..junctional signaling microdomains:Bridging the gap between the neuronal cell surface and Ca2+ stores. Neuron.2002.36(5): 787-790.
    30. Alaimo, A, JC Gomez-Posada, P Aivar, A Etxeberria, JA Rodriguez-Alfaro, P Areso, et al. Calmodulin activation limits the rate of KCNQ2 K+ channel exit from the endoplasmic reticulum. J Biol Chem.2009.284(31):20668-20675.
    31. Lee, SY, HK Choi, ST Kim, S Chung, MK Park, JH Cho, et al. Cholesterol inhibits M-type K+ channels via protein kinase C-dependent phosphorylation in sympathetic neurons. J Biol Chem.2010.285(14):10939-10950.
    32. Jia, Q, Z Jia, Z Zhao, B Liu, H Liang and H Zhang. Activation of epidermal growth factor receptor inhibits KCNQ2/3 current through two distinct pathways:membrane PtdIns(4,5)P2 hydrolysis and channel phosphorylation. J Neurosci.2007.27(10):2503-2512.
    33. Soldovieri, MV, P Castaldo, L Iodice, F Miceli, V Barrese, G Bellini, et al. Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions. J Biol Chem.2006.281(1):418-428.
    34. Ekberg, J, F Schuetz, NA Boase, SJ Conroy, J Manning, S Kumar, et al. Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by ubiquitination. Novel role for Nedd4-2. J Biol Chem.2007.282(16): 12135-12142.
    35. Webster, MK, L Goya, Y Ge, AC Maiyar and GL Firestone. Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Mol Cell Biol.1993.13(4):2031-2040.
    36. Lang, F, C Bohmer, M Palmada, G Seebohm, N Strutz-Seebohm and V Vallon. (Patho)physiological significance of the serum-and glucocorticoid-inducible kinase isoforms. Physiol Rev.2006.86(4):1151-1178.
    37. Schuetz, F, S Kumar, P Poronnik and DJ Adams. Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by serum-and glucocorticoid-regulated kinase-1. Am J Physiol Cell Physiol.2008.295(1): 73-80.
    38.贾庆忠,王川,杜肖娜,李芳,张海林.细胞外pH值对KCNQ2/3钾离子通道的调节.中国药理学通报.2005.21(1):p.82-87.
    39. Schweitzer, P, S Madamba and GR Siggins. Arachidonic acid metabolites as mediators of somatostatin-induced increase of neuronal M-current. Nature. 1990.346(6283):464-467.
    40. Qiu, C, T Zeyda, B Johnson, U Hochgeschwender, L de Lecea and MK Tallent. Somatostatin receptor subtype 4 couples to the M-current to regulate seizures. J Neurosci.2008.28(14):3567-3576.
    41. Kapfhamer, D, KH Berger, FW Hopf, T Seif, V Kharazia, A Bonci, et al. Protein Phosphatase 2a and glycogen synthase kinase 3 signaling modulate prepulse inhibition of the acoustic startle response by altering cortical M-Type potassium channel activity. J Neurosci.2010.30(26):8830-8840.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700