ApoE、CALHM1基因多态性与颞叶癫痫的关联研究中文版儿童癫痫影响量表的信度与效度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分ApoE、CALHM1基因多态性与颞叶癫痫的关联研究
     研究背景与目的
     癫痫是神经系统中仅次于脑血管疾病的第二大病种。全球大约有50000000人患有癫痫,其中发展中国家的患者占80%。癫痫给患者、家庭以及整个社会都带来了极大的疾病负担。内侧颞叶癫痫(mesial temporal lobe epilepsy, MTLE)是发病率最高的成人部分性癫痫,也是临床上最常见的难治性癫痫综合征。散发性MTLE是由遗传因素和环境因素共同作用所导致的一类多基因复杂疾病,其中遗传因素在MTLE的发生发展中扮演着重要的角色。遗传背景的差异在散发性MTLE人群中主要表现为单核苷酸多态性(single nucleotide polymorphisms, SNPs),大量的研究证据表明基因多态性在MTLE的易感性方面发挥了重要的作用。一些研究表明载脂蛋白E (apolipoprotein E, ApoE)基因可能是MTLE的一个易感基因,另有研究发现ApoEε4等位基因与一些疾病相关的特征比如创伤后癫痫发作、MTLE早的起病年龄、难治性复杂部分性发作以及MTLE发作后意识障碍有关。而其它的一些研究未能发现ApoEε4等位基因与MTLE的关联或者不能复制以前的关联研究。鉴于上述不一致的研究结果,再加上不同地域和人种的群体在遗传方面常存在差异,因此我们试图在中国汉族人群进行ApoE基因多态性与MTLE以及上述报道的一些MTLE相关临床变量的关联研究。另外,最近一研究发现人钙稳态调节蛋白1基因(calcium homeostasis regulator 1, CALHM1)能够调节钙离子稳态、提高脑内β-淀粉样蛋白(amyloid-p,Aβ)的产生。钙离子稳态和脑内Aβ的沉积均与MTLE的发生有密切的关系,据此我们推测CALHM1基因可能是MTLE的易感基因,因而探讨了CALHM1基因多态性与MTLE的关联。
     研究方法
     本研究采用病例对照研究设计,在735例癫痫患者(包括560例MTLE患者)、558例健康对照受试者中探讨了ApoEε4等位基因和-491A/T多态性与MTLE及其一些相关临床变量的相关性;在560例MTLE患者、401例健康对照受试者中探讨了CALHM1基因5个多态性位点与MTLE易感性之间的关联。采用PCR-PIRA (Primer Introduced Restriction Analysis,引物引入限制性分析)和PCR-RFLP (Restriction Fragment Length Polymorphism,限制性片段长度多态性)法进行基因分型。采用盲法和随机抽取10%的样本重测进行质量控制。
     结果
     1.ApoE基因多态性与MTLE的相关性
     中国汉族人群MTLE患者ApoEε4等位基因与既往较严重的头部创伤有关,既往有颅脑损伤的患者中携带ε4等位基因者发展成MTLE的风险是无ε4等位基因者的1.873倍(OR=1.873,95%CI 1.084-3.237,p=0.023). MTLE组与健康对照组比较,ApoE和-491A/T的等位基因、基因型及单倍型分布无明显差异。ApoEε4等位基因与难治性MTLE的起病年龄、难治性复杂部分性发作以及MTLE发作后意识障碍无关。
     2. CALHM1基因多态性与MTLE的相关性
     CALHM1基因rs1119692位点等位基因与MTLE有明显关联(OR=1.35,95%CI1.10-1.65,p=0.003),经多重比较校正后p值仍有统计学差异(校正后p=0.015)。MTLE组rs1119692-A等位基因的频率(32.4%)明显大于健康对照组(26.2%)。基因型分析也表明rs1119692变异与MTLE显著相关(p=0.004,校正后p=0.02)。CALHM1基因多态对于MTLE遗传易感性的影响与ApoEε4等位基因无关。四位点单倍型rs1119692-rs729211-rs2986016-rs2986017与MTLE的关联最强(x2=19.87,p=0.0005)。其中G-G-G-T单倍型能够显著增加MTLE的发生风险(OR=2.09,95%CI1.27-3.42,p=0.0029),而G-A-G-C单倍型能够明显降低MTLE的发生风险(OR=0.70,95%CI 0.53-0.92,p=0.0106)。另外,二位点、三位点和五位点单倍型分析也表明了它们与MTLE有明显的关联。与Alzheimer病不同,本研究未发现rs2986017(Pro86Leu)与MTLE的关联。MTLE组与健康对照组比较,其它的三个位点(rs729211、rs2986018、rs2986016)的等位基因与基因型均无统计学差异。
     结论
     ApoEε4等位基因可能是既往有颅脑创伤史患者发生MTLE的一个危险因素,而ApoE和-491A/T多态性与中国汉族人群MTLE的易感性、难治性MTLE的起病年龄、难治性复杂部分性发作以及MTLE发作后意识障碍无关。CALHM1基因rs1119692多态性改变可能与MTLE的发病有关,且不依赖于ApoEε4等位基因的存在。
     第二部分中文版儿童癫痫影响量表的信度与效度分析
     研究背景和目的
     癫痫是儿童时期最常见的慢性神经系统疾病之一,我国儿童癫痫(不含热性惊厥)每年的发病率为151/10万,患病率为3.45%o,因此癫痫是危害儿童身心发育的重要疾病之一。最近大量的研究提示癫痫治疗的终极目标已不再仅仅局限于控制癫痫发作,还要使癫痫患儿的生活质量得到全面的提高。目前,尽管已有很多用于评定儿童癫痫对癫痫患儿生活质量影响的量表问世,但仍然缺乏能够用来评价儿童癫痫对其家庭及患儿生活质量影响的癫痫特异性调查问卷。儿童癫痫影响量表(theimpact of pediatric epilepsy scale, IPES)就是针对评价儿童癫痫对其家庭及自身生活质量的影响这一目的而创建的,它是一合适、有效的测评量表。不同的经济和文化背景可能会对西方国家适用的测评工具直接在其他国家使用时的可信性和有效性产生影响。因此,本研究的目的是将英文版IPES量表恰当地翻译成中文,并检验其信度、效度以及敏感度,从而为我国心理学研究以及常规临床护理提供一个良好的测量工具。
     方法
     根据欧洲癌症研究及治疗机构生活质量小组的量表翻译过程指南,将英文版IPES量表翻译成中文。严格按照录入和排除标准纳入合适的病人。该量表的聚合效度是通过分析中文版IPES量表中的每个项目与中文版父母评价的儿童癫痫生活质量量表和儿童癫痫影响测评表的亚量表的相关性来评价;采用主成份分析,并作方差最大旋转(varimax rotation)来检验该量表的结构效度。Cronbach's a系数用于评估每个项目与总量表的内部一致性信度;采用组内相关系数(the intraclass correlation coefficient, ICC)模型来评价该量表的重测信度。敏感度的分析是通过比较不同癫痫严重程度患儿的项目平均得分的差异是否显著来评价。
     结果
     在将英文版IPES量表翻译为中文的过程中,遇见的主要问题是能否准确理解其含义和文化背景的差异。共有110例患者纳入本研究,在研究人员的督促下所有入组患者均完成了重测测验。完成该量表的平均时间为5分钟(3-10分钟),每个项目的平均得分范围是0.30-2.82分。该量表的所有项目都对该测量工具有显著贡献。效度分析表明,IPES量表的每个项目平均得分与中文版父母评价的儿童癫痫生活质量量表和儿童癫痫影响测评表中概念相近的亚量表显著相关,主成份分析显示三个因素(外部活动的参与、社会功能、家庭生活)解释了该量表72%的方差。第一次和第二次测验的总体内部一致性系数分别为0.916和0.930;该量表的重测信度范围为0.891-0.992。另外,该量表能够区分不同严重程度的癫痫患儿,提示其具有较高的敏感度。
     结论
     中文版IPES量表的翻译过程经过反复斟酌,心理测量学特征分析结果提示该量表具有较好的效度、极好的内部一致性信度和重测信度以及较高的敏感度,因此它可以作为在中国评价儿童癫痫对其家庭及自身生活质量影响的严重程度的一个确切、可接受、简洁的生活质量测评工具。该量表在未来的心理学研究以及常规临床护理中都具有重要的应用价值。
Background and Objectives
     Epilepsy is the second common neurological disorder after cerebrovascular disease. It is estimated that the condition affects approximately 50 million people in the world,80%of whom live in developing countries. Epilepsy brings huge disease burden to the patient, his or her family and the whole society. Mesial temporal lobe epilepsy (MTLE) possesses the highest incidence of adult partial epilepsy and also is the most common drug-resistant epilepsy syndrome. Sporadic MTLE is accepted as a complex disorder attributed to the interaction of genetic and environmental factors. The genetic background plays an important role in induction and maintainance of MTLE. The difference of genetic background in sporadic MTLE population mainly appears as single nucleotide polymorphisms (SNPs). Considerable research has indicated that genetic polymorphism plays a vital role in the susceptibility to MTLE. Some studies indicate that apolipoprotein E (ApoE) may be a susceptibility gene to MTLE. Previous studies indicate that ApoE s4 is associated with several disease-related traits including the increased risk of late posttraumatic seizures, earlier onset of MTLE, refractory complex partial seizures, and postictal confusion. Contradictory data were also reported regarding the association between ApoE polymorphisms and MTLE. The above findings are inconsistent. Furthermore, the genetic background is often different in different geographic area and different ethnicity. Therefore, this study was designed to investigate ApoE gene polymorphisms among the Chinese Han patients with MTLE and its relationship with the clinical variables associated with MTLE. In addition, a recent study identified a SNP (Pro86Leu, rs2986017) in calcium homeostasis regulator 1 (CALHM1) gene influences Ca2+homeostasis and increases cerebral amyloid-β(Aβ) peptide production. Ca2+ homeostasis and high levels of AP in brain are intimately related to MTLE. Thus, we speculate that CALHM1 may be a susceptibility gene, and we also examine the association between CALHM1 gene polymorphisms and MTLE.
     Methods
     This study, a case-control association study design, was to investigate the association between ApoE and-491A/T polymorphisms and MTLE as well as the clinical variables associated with MTLE in 558 controls and 735 patients including 560 MTLE patients. We also examined the association between CALHM1 gene polymorphisms and MTLE in 401 controls and 560 MTLE patients. We genotyped the polymorphisms by polymerase chain reaction-primer introduced restriction analysis (PCR-PIRA) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In addition, genotyping was performed blindly and 10% of the samples were randomly selected for repeated assays.
     Results
     1. Association of ApoE gene polymorphisms with MTLE We detected significant association between prior severe trauma and the ApoEε4 allele in Han Chinese MTLE patients, and the relative risk of MTLE for patients with prior trauma carryingε4 allele was 1.873 (Odds Ratio,1.873; 95%Confidence Interval, 1.084-3.237;p=0.023). There were no statistically significant differences in frequency of ApoE and-491A/T alleles, genotypes or haplotypes between MTLE and control groups. The ApoE s4 allele was not associated with the increased risk of onset of refractory MTLE, refractory complex partial seizures, and postictal confusion.
     2. Association of SNPs in CALHM1 gene with MTLE
     A significant allelic association for rs1119692 was observed (OR=1.35,95%CI 1.10-1.65, p=0.003). After a Bonferroni correction was applied, there was still a significant association between rs1119692 and MTLE (corrected p=0.015). The frequency of the rs1119692-A allele was greater in patients (32.4%) than in control subjects (26.2%). Genotype analysis also showed an association for rs1119692 (uncorrected p=0.004, corrected p=0.02). CALHM1 rs1119692 variant might play a causal role in MTLE development independent of ApoEε4. The four-SNP haplotype (rs1119692-rs729211-rs2986016-rs2986017) showed the strongest association with MTLE (x2=19.87, p=0.0005). The G-G-G-T haplotype exhibited association with the increased risk of MTLE (OR=2.09,95%CI 1.27-3.42,p=0.0029) whereas the G-A-G-C haplotype was significantly associated with the reduced risk (OR=0.70,95%CI 0.53-0.92,p=0.0106). In addition, two-, three-, and five-SNP haplotype analysis also showed strong association with MTLE. In contrast with Alzheimer disease, no evidence of an association between rs2986017 and the risk for MTLE was found in our study. The other three SNPs (rs729211, rs2986018, rs2986016) did not show allelic or genotypic association with MTLE.
     Conclusions
     The ApoEε4 allele probably contributes to the development of MTLE in those patients with prior trauma. However, there were no significant association of ApoE and-491A/T polymorphisms with the increased risk of MTLE, onset of refractory MTLE, refractory complex partial seizures, and postictal confusion. CALHM1 rs1119692 variant may contribute to MTLE development independent of ApoE s4.
     Background and objectives
     Epilepsy is one of the most common neurological disorders in children. The incidence and prevalence of childhood epilepsy (excluding febrile convulsion) in China is 1.51%o and 3.45%o, respectively. Therefore, epilepsy is one of the most important diseases that do great harm to physical and mental development of children. In recent years, considerable research shows the goal of childhood epilepsy treatment has been not only the control of epileptic seizures, but also an improvement of health-related quality of life (HRQOL). At present, although many scales can be used to assess the HRQOL of children with epilepsy, there are few epilepsy-specific questionnaires to evaluate the impact on the child's and the family's life. The impact of pediatric epilepsy scale (IPES) was developed to evaluate the impact on the family and the child of childhood epilepsy appropriately and efficiently. Since people from different countries have different economic and cultural backgrounds, the inventories developed in western countries may not have good reliability and validity when directly used in other countries. Thus, the aim of this study was to translate and to adapt the original version of IPES into a Chinese version, and to verify its reliability, validity, and sensitivity, which can provide a good measure for future psychological research and routine clinical care in China.
     Methods
     The IPES was translated into Chinese according to the procedure of the European Organization for Research and Treatment of Cancer Quality of Life Group. The eligible patients were selected strictly according to the inclusion and exclusion criterion. Convergent validity was assessed by analyzing the correlations between the translation and the subscales of the Chinese version of the Parent-Proxy Health-Related Quality of Life Measure for Children with Epilepsy (PPRS-QOLCE) as well as the impact of childhood epilepsy schedule. A principal components analysis, with a varimax rotation, was conducted to examine the construct of the measure. Cronbach's alpha coefficient was used to evaluate the internal consistency of the item and total scores. The intraclass correlation coefficient (ICC Model 2.1) was used to analyze the degree of agreement between test and retest scores at the item level. The sensitivity of the IPES was evaluated by examining the relationship between the mean score and epilepsy severity.
     Results
     The main translational problems encountered in developing the Chinese version of IPES were due to the exact meaning of items and cross-cultural problems. One hundred and ten patients met the eligibility criteria. Under the supervision of the researcher, all eligible patients'parents completed the retest assessment. The subjects recruited completed all items in approximately 5 min (range:3-10 min). Mean item scores ranged from 0.30 to 2.82. All items contributed significantly to the summary measure. Considering the validity, all items were substantially correlated with the subscales with similar concept in PPRS-QOLCE and the impact of childhood epilepsy schedule. The principal components analysis indicated that three factors (outside activity participation, social well-being, home life) accounted for 72%of the variance of the scale. The internal consistency coefficients of the first and second test for the total were 0.916 and 0.930 respectively, and the test-retest reliability ranged from 0.891 to 0.992. Additionally, the IPES can detect the differences in HRQOL between the subjects according to epilepsy severity, which has good sensitivity.
     Conclusions
     After a multistage translation and cultural adaptation, psychometric analysis suggests the Chinese version of IPES exhibits appropriate validity, excellent internal consistency and test-retest reliability, and good sensitivity, supporting its usefulness as an accurate, acceptable and brief measurement tool that reflects the way that childhood epilepsy affects the child's and family's HRQOL in China. Future psychological research and routine clinical care will undoubtedly benefit from the use of this measure.
引文
[1]Winkler AS, Schaffert M, Schmutzhard E. Epilepsy in resource poor countries-suggestion of an adjusted classification. Epilepsia 2007;48:1029-30.
    [2]Scott RA, Lhatoo SD, Sander JW. The treatment of epilepsy in developing countries: where do we go from here? Bull World Health Organ 2001;79:344-51.
    [3]Murray GJ, Lopez AD. Global Comparative Assessments in the Health Sector: Disease Burden, Expenditure, Intervention Packages. In:Geneva, editor. Switzerland; 1994.
    [4]Engel J, Jr. Surgical treatment for epilepsy:too little, too late? JAMA 2008;300: 2548-50.
    [5]杨露春,曹克勇,朱雷.中国农村及少数民族地区癫痫流行病学调查[J].中华神经外科杂志 1985;5 增刊:22-28.
    [6]李世绰,王忠诚,周树宾.中国六城市居民癫痫的流行病学调查[J].中华神经精神科杂志 1986;19:193-196.
    [7]王志文,吴建中,王德生.中国五省农村人群癫痫流行病学抽样调查[J].中华医学杂志 2002;82:449-452.
    [8]四川医学院流行病学教研室.四川42万人口癫痫发病情况调查报告[J].中华神经精神科杂志 1981;14:135-138.
    [9]丁成赞,赵永青,李志梅.癫痫自然史和预后研究进展[J].中华流行病学杂志2006;27:442-444.
    [10]Engel J, Jr. Mesial temporal lobe epilepsy:what have we learned? Neuroscientist 2001;7:340-52.
    [11]Semah F, Picot MC, Adam C, Broglin D, Arzimanoglou A, Bazin B, Cavalcanti D, Baulac M. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 1998;51:1256-62.
    [12]Hermann BP, Seidenberg M, Dow C, Jones J, Rutecki P, Bhattacharya A, Bell B. Cognitive prognosis in chronic temporal lobe epilepsy. Ann Neurol 2006;60:80-7.
    [13]Gaitatzis A, Trimble MR, Sander JW. The psychiatric comorbidity of epilepsy. Acta Neurol Scand 2004;110:207-20.
    [14]Hitiris N, Mohanraj R, Norrie J, Brodie MJ. Mortality in epilepsy. Epilepsy Behav 2007;10:363-76.
    [15]Perucca E. Treatment of epilepsy in developing countries. BMJ 2007;334:1175-6.
    [16]Lv R, Wu L, Jin L, Lu Q, Wang M, Qu Y, Liu H. Depression, anxiety and quality of life in parents of children with epilepsy. Acta Neurol Scand 2009;120:335-41.
    [17]Engelborghs S, D'Hooge R, De Deyn PP. Pathophysiology of epilepsy. Acta Neurol Belg 2000;100:201-13.
    [18]Vadlamudi L, Scheffer IE, Berkovic SF. Genetics of temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 2003;74:1359-61.
    [19]Gambardella A, Manna I, Labate A, Chifari R, La Russa A, Serra P, Cittadella R, Bonavita S, Andreoli V, LePiane E, Sasanelli F, Di Costanzo A, Zappia M, Tedeschi G, Aguglia U, Quattrone A. GABA(B) receptor 1 polymorphism (G1465A) is associated with temporal lobe epilepsy. Neurology 2003;60:560-3.
    [20]Kanemoto K, Kawasaki J, Miyamoto T, Obayashi H, Nishimura M. Interleukin (IL)lbeta, IL-1 alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol 2000;47:571-4.
    [21]Manna I, Labate A, Gambardella A, Forabosco P, La Russa A, Le Piane E, Aguglia U, Quattrone A. Serotonin transporter gene (5-Htt):association analysis with temporal lobe epilepsy. Neurosci Lett 2007;421:52-6.
    [22]Stogmann E, Zimprich A, Baumgartner C, Aull-Watschinger S, Hollt V, Zimprich F. A functional polymorphism in the prodynorphin gene promotor is associated with temporal lobe epilepsy. Ann Neurol 2002;51:260-3.
    [23]Han SH, Einstein G, Weisgraber KH, Strittmatter WJ, Saunders AM, Pericak-Vance M, Roses AD, Schmechel DE. Apolipoprotein E is localized to the cytoplasm of human cortical neurons:a light and electron microscopic study. J Neuropathol Exp Neurol 1994;53:535-44.
    [24]Poirier J. Apolipoprotein E in animal models of CNS injury and in Alzheimer's disease. Trends Neurosci 1994; 17:525-30.
    [25]Gouras GK, Relkin NR, Sweeney D, Munoz DG, Mackenzie IR, Gandy S. Increased apolipoprotein E epsilon 4 in epilepsy with senile plaques. Ann Neurol 1997;41:402-4.
    [26]Mackenzie IR, Miller LA. Senile plaques in temporal lobe epilepsy. Acta Neuropathol 1994;87:504-10.
    [27]Sheng JG, Boop FA, Mrak RE, Griffin WS. Increased neuronal beta-amyloid precursor protein expression in human temporal lobe epilepsy:association with interleukin-1 alpha immunoreactivity. J Neurochem 1994;63:1872-9.
    [28]Lopez JR, Lyckman A, Oddo S, Laferla FM, Querfurth HW, Shtifman A. Increased intraneuronal resting [Ca2+] in adult Alzheimer's disease mice. J Neurochem 2008; 105: 262-71.
    [29]Westmark CJ, Westmark PR, Beard AM, Hildebrandt SM, Malter JS. Seizure susceptibility and mortality in mice that over-express amyloid precursor protein. Int J Clin Exp Pathol 2008; 1:157-68.
    [30]Palop JJ, Mucke L. Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol 2009;66:435-40.
    [31]Gee JR, Keller JN. Astrocytes:regulation of brain homeostasis via apolipo-protein E. Int J Biochem Cell Biol 2005;37:1145-50.
    [32]Briellmann RS, Torn-Broers Y, Busuttil BE, Major BJ, Kalnins RM, Olsen M, Jackson GD, Frauman AG, Berkovic SF. APOE epsilon4 genotype is associated with an earlier onset of chronic temporal lobe epilepsy. Neurology 2000;55:435-7.
    [33]Diaz-Arrastia R, Gong Y, Fair S, Scott KD, Garcia MC, Carlile MC, Agostini MA, Van Ness PC. Increased risk of late posttraumatic seizures associated with inheritance of APOE epsilon4 allele. Arch Neurol 2003;60:818-22.
    [34]Gambardella A, Aguglia U, Chifari R, Labate A, Manna I, Serra P, Romeo N, Sibilia G, Lepiane E, Russa AL, Ventura P, Cittadella R, Sasanelli F, Colosimo E, Leggio U, Zappia M, Quattrone A. ApoE epsilon4 allele and disease duration affect verbal learning in mild temporal lobe epilepsy. Epilepsia 2005;46:110-7.
    [35]Busch RM, Lineweaver TT, Naugle RI, Kim KH, Gong Y, Tilelli CQ, Prayson RA, Bingaman W, Najm IM, Diaz-Arrastia R. ApoE-epsilon4 is associated with reduced memory in long-standing intractable temporal lobe epilepsy. Neurology 2007;68:409-14.
    [36]Chapin JS, Busch RM, Janigro D, Dougherty M, Tilelli CQ, Lineweaver TT, Naugle RI, Diaz-Arrastia R, Najm IM. APOE epsilon4 is associated with postictal confusion in patients with medically refractory temporal lobe epilepsy. Epilepsy Res 2008;81:220-4.
    [37]Sporis D, Sertic J, Henigsberg N, Mahovic D, Bogdanovic N, Babic T. Association of refractory complex partial seizures with a polymorphism of ApoE genotype. J Cell Mol Med 2005;9:698-703.
    [38]Blumcke I, Brockhaus A, Scheiwe C, Rollbrocker B, Wolf HK, Elger CE, Wiestler OD. The apolipoprotein E epsilon 4 allele is not associated with early onset temporal lobe epilepsy. Neuroreport 1997;8:1235-7.
    [39]Gambardella A, Aguglia U, Cittadella R, Romeo N, Sibilia G, LePiane E, Messina D, Manna I, Oliveri RL, Zappia M, Quattrone A. Apolipoprotein E polymorphisms and the risk of nonlesional temporal lobe epilepsy. Epilepsia 1999;40:1804-7.
    [40]Cavalleri GL, Lynch JM, Depondt C, Burley MW, Wood NW, Sisodiya SM, Goldstein DB. Failure to replicate previously reported genetic associations with sporadic temporal lobe epilepsy:where to from here? Brain 2005;128:1832-40.
    [41]Yeni SN, Ozkara C, Buyru N, Baykara O, Hanoglu L, Karaagac N, Ozyurt E, Uzan M. Association between APOE polymorphisms and mesial temporal lobe epilepsy with hippocampal sclerosis. Eur J Neurol 2005;12:103-7.
    [42]Kumar A, Tripathi M, Pandey RM, Ramakrishnan L, Srinivas M, Luthra K. Apolipoprotein E in temporal lobe epilepsy:a case-control study. Dis Markers 2006;22: 335-42.
    [43]Kauffman MA, Pereira-de-Silva N, Consalvo D, Kochen S. ApoE epsilon4 is not associated with posictal confusion in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Res 2009;85:311-3.
    [44]Dreses-Werringloer U, Lambert JC, Vingtdeux V, Zhao H, Vais H, Siebert A, Jain A, Koppel J, Rovelet-Lecrux A, Hannequin D, Pasquier F, Galimberti D, Scarpini E, Mann D, Lendon C, Campion D, Amouyel P, Davies P, Foskett JK, Campagne F, Marambaud P. A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer's disease risk. Cell 2008;133:1149-61.
    [45]Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy:the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 2005;105:229-66.
    [46]Beecham GW, Schnetz-Boutaud N, Haines JL, Pericak-Vance MA. CALHM1 polymorphism is not associated with late-onset Alzheimer disease. Ann Hum Genet 2009;73:379-81.
    [47]Bertram L, Schjeide BM, Hooli B, Mullin K, Hiltunen M, Soininen H, Ingelsson M, Lannfelt L, Blacker D, Tanzi RE. No association between CALHM1 and Alzheimer's disease risk. Cell 2008;135:993-4; author reply 994-6.
    [48]Boada M, Antunez C, Lopez-Arrieta J, Galan JJ, Moron FJ, Hernandez I, Marin J, Martinez-Lage P, Alegret M, Carrasco JM, Moreno C, Real LM, Gonzalez-Perez A, Tarraga L, Ruiz A. CALHM1 P86L Polymorphism is Associated with Late-Onset Alzheimer's Disease in a Recessive Model. J Alzheimers Dis 2010.
    [49]Cui PJ, Zheng L, Cao L, Wang Y, Deng YL, Wang G, Xu W, Tang HD, Ma JF, Zhang T, Ding JQ, Cheng Q, Chen SD. CALHM1 P86L polymorphism is a risk factor for Alzheimer's disease in the Chinese population. J Alzheimers Dis 2010; 19:31-5.
    [50]Inoue K, Tanaka N, Yamashita F, Sawano Y, Asada T, Goto Y. The P86L common allele of CALHM1 does not influence risk for Alzheimer disease in Japanese cohorts. Am J Med Genet B Neuropsychiatr Genet 153B 2010:532-5.
    [51]Minster RL, Demirci FY, DeKosky ST, Kamboh MI. No association between CALHM1 variation and risk of Alzheimer disease. Hum Mutat 2009;30:E566-9.
    [52]Nacmias B, Tedde A, Bagnoli S, Lucenteforte E, Cellini E, Piaceri I, Guarnieri BM, Bessi V, Bracco L, Sorbi S. Lack of Implication for CALHM1 P86L Common Variation in Italian Patients with Early and Late Onset Alzheimer's Disease. J Alzheimers Dis 2010.
    [53]Shibata N, Kuerban B, Komatsu M, Ohnuma T, Baba H, Arai H. Genetic Association Between CALHM1,2, and 3 Polymorphisms and Alzheimer's Disease in a Japanese Population. J Alzheimers Dis 2010.
    [54]Sleegers K, Brouwers N, Bettens K, Engelborghs S, van Miegroet H, De Deyn PP, Van Broeckhoven C. No association between CALHM1 and risk for Alzheimer dementia in a Belgian population. Hum Mutat 2009;30:E570-4.
    [55]Tan EK, Ho P, Cheng SY, Yih Y, Li HH, Fook-Chong S, Lee WL, Zhao Y. CALHM1 variant is not associated with Alzheimer's disease among Asians. Neurobiol Aging 2009.
    [56]Cascino GD, Jack CR. Neuroimaging in epilepsy:principles and practice. In: Jackson GD, editor. Visual analysis in mesial temporal sclerosis. Boston:Butterworth-Heinemann; 1996, p.73-110.
    [57]Engel JJ, Van Ness,P.C., Rasmussen,T.B. Outcome with respect to epileptic seizures. In:Jr EJ, editor. Surgical Treatment of Epilepsies. New York; 1993, p.609-621.
    [58]Chapman J, Estupinan J, Asherov A, Goldfarb LG. A simple and efficient method for apolipoprotein E genotype determination. Neurology 1996;46:1484-5.
    [59]Bullido MJ, Artiga MJ, Recuero M, Sastre I, Garcia MA, Aldudo J, Lendon C, Han SW, Morris JC, Frank A, Vazquez J, Goate A, Valdivieso F. A polymorphism in the regulatory region of APOE associated with risk for Alzheimer's dementia. Nat Genet 1998;18:69-71.
    [60]Ke X, Collins A, Ye S. PIRA PCR designer for restriction analysis of single nucleotide polymorphisms. Bioinformatics 2001; 17:838-9.
    [61]Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 2005;15:97-8.
    [62]Mahley RW. Apolipoprotein E:cholesterol transport protein with expanding role in cell biology. Science 1988;240:622-30.
    [63]Mahley RW, Rall SC, Jr. Apolipoprotein E:far more than a lipid transport protein. Annu Rev Genomics Hum Genet 2000; 1:507-37.
    [64]Cedazo-Minguez A, Cowburn RF. Apolipoprotein E:a major piece in the Alzheimer's disease puzzle. J Cell Mol Med 2001;5:254-66.
    [65]Deary IJ, Whiteman MC, Pattie A, Starr JM, Hayward C, Wright AF, Carothers A, Whalley LJ. Cognitive change and the APOE epsilon 4 allele. Nature 2002;418:932.
    [66]Lenzen HJ, Assmann G, Buchwalsky R, Schulte H. Association of apolipo-protein E polymorphism, low-density lipoprotein cholesterol, and coronary artery disease. Clin Chem 1986;32:778-81.
    [67]Okuizumi K, Onodera O, Tanaka H, Kobayashi H, Tsuji S, Takahashi H, Oyanagi K, Seki K, Tanaka M, Naruse S, et al. ApoE-epsilon 4 and early-onset Alzheimer's. Nat Genet 1994;7:10-1.
    [68]Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvesen GS, Pericak-Vance M, Schmechel D, Saunders AM, Goldgaber D, Roses AD. Binding of human apolipoprotein E to synthetic amyloid beta peptide:isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci U S A 1993;90: 8098-102.
    [69]Teasdale GM, Nicoll JA, Murray G, Fiddes M. Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 1997;350:1069-71.
    [70]Misra UK, Adlakha CL, Gawdi G, McMillian MK, Pizzo SV, Laskowitz DT. Apolipoprotein E and mimetic peptide initiate a calcium-dependent signaling response in macrophages. J Leukoc Biol 2001;70:677-83.
    [71]Muller W, Meske V, Berlin K, Scharnagl H, Marz W, Ohm TG. Apolipoprotein E isoforms increase intracellular Ca2+differentially through a omega-agatoxin IVa-sensitive Ca2+-channel. Brain Pathol 1998;8:641-53.
    [72]Aono M, Lee Y, Grant ER, Zivin RA, Pearlstein RD, Warner DS, Bennett ER, Laskowitz DT. Apolipoprotein E protects against NMDA excitotoxicity. Neurobiol Dis 2002; 11:214-20.
    [73]Lee Y, Aono M, Laskowitz D, Warner DS, Pearlstein RD. Apolipoprotein E protects against oxidative stress in mixed neuronal-glial cell cultures by reducing glutamate toxicity. Neurochem Int 2004;44:107-18.
    [74]Polvikoski T, Sulkava R, Haltia M, Kainulainen K, Vuorio A, Verkkoniemi A, Niinisto L, Halonen P, Kontula K. Apolipoprotein E, dementia, and cortical deposition of beta-amyloid protein. N Engl J Med 1995;333:1242-7.
    [75]MO MC, Muir KW, Weir CJ, Dyker AG, Bone I, Nicoll JA, Lees KR. The apolipoprotein E epsilon4 allele and outcome in cerebrovascular disease. Stroke 1998;29: 1882-7.
    [76]Sheng H, Laskowitz DT, Mackensen GB, Kudo M, Pearlstein RD, Warner DS. Apolipoprotein E deficiency worsens outcome from global cerebral ischemia in the mouse. Stroke 1999;30:1118-24.
    [77]Sabo T, Lomnitski L, Nyska A, Beni S, Maronpot RR, Shohami E, Roses AD, Michaelson DM. Susceptibility of transgenic mice expressing human apolipoprotein E to closed head injury:the allele E3 is neuroprotective whereas E4 increases fatalities. Neuroscience 2000;101:879-84.
    [78]Gallek MJ, Conley YP, Sherwood PR, Horowitz MB, Kassam A, Alexander SA. APOE genotype and functional outcome following aneurysmal subarachnoid hemorrhage. Biol Res Nurs 2009; 10:205-12.
    [79]Han SD, Suzuki H, Drake AI, Jak AJ, Houston WS, Bondi MW. Clinical, cognitive, and genetic predictors of change in job status following traumatic brain injury in a military population. J Head Trauma Rehabil 2009;24:57-64.
    [80]Holtzman DM, Fagan AM, Mackey B, Tenkova T, Sartorius L, Paul SM, Bales K, Ashe KH, Irizarry MC, Hyman BT. Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer's disease model. Ann Neurol 2000;47: 739-47.
    [81]Lomnitski L, Chapman S, Hochman A, Kohen R, Shohami E, Chen Y, Trembovler V, Michaelson DM. Antioxidant mechanisms in apolipoprotein E deficient mice prior to and following closed head injury. Biochim Biophys Acta 1999;1453:359-68.
    [82]Levi O, Jongen-Relo AL, Feldon J, Roses AD, Michaelson DM. ApoE4 impairs hippocampal plasticity isoform-specifically and blocks the environmental stimulation of synaptogenesis and memory. Neurobiol Dis 2003;13:273-82.
    [83]Horsburgh K, McCarron MO, White F, Nicoll JA. The role of apolipoprotein E in Alzheimer's disease, acute brain injury and cerebrovascular disease:evidence of common mechanisms and utility of animal models. Neurobiol Aging 2000;21:245-55.
    [84]Houlden H, Greenwood R. Apolipoprotein E4 and traumatic brain injury. J Neurol Neurosurg Psychiatry 2006;77:1106-7.
    [85]Tan NC, Mulley JC, Berkovic SF. Genetic association studies in epilepsy:"the truth is out there". Epilepsia 2004;45:1429-42.
    [86]Liang S, Pan M, Geng HH, Chen H, Gu LQ, Qin XT, Qian JJ, Zhu JH, Liu CF. Apolipoprotein E polymorphism in normal Han Chinese population:frequency and effect on lipid parameters. Mol Biol Rep 2009;36:1251-6.
    [87]Lynch CA, Brazil J, Cullen B, Coakley D, Gill M, Lawlor BA, Hawi Z. Apolipoprotein E promoter polymorphisms (-491A/T and-427T/C) and Alzheimer's disease:no evidence of association in the Irish population. Ir J Med Sci 2008; 177:29-33.
    [88]Green KN, LaFerla FM. Linking calcium to Abeta and Alzheimer's disease. Neuron 2008;59:190-4.
    [89]Lambert JC, Campagne F, Marambaud P. CALHM1, a novel gene to blame in Alzheimer disease. Med Sci (Paris) 2008;24:923-4.
    [90]Marambaud P, Dreses-Werringloer U, Vingtdeux V. Calcium signaling in neurodegeneration. Mol Neurodegener 2009;4:20.
    [91]Raza M, Pal S, Rafiq A, DeLorenzo RJ. Long-term alteration of calcium homeostatic mechanisms in the pilocarpine model of temporal lobe epilepsy. Brain Res 2001;903:1-12.
    [92]Gnegy ME. Ca2+/calmodulin signaling in NMDA-induced synaptic plasticity. Crit Rev Neurobiol 2000; 14:91-129.
    [93]McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. Sci STKE 2006;2006:re12.
    [94]Feng L, Molnar P, Nadler JV. Short-term frequency-dependent plasticity at recurrent mossy fiber synapses of the epileptic brain. J Neurosci 2003;23:5381-90.
    [95]Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, Yoo J, Ho KO, Yu GQ, Kreitzer A, Finkbeiner S, Noebels JL, Mucke L. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron 2007;55:697-711.
    [96]Minkeviciene R, Rheims S, Dobszay MB, Zilberter M, Hartikainen J, Fulop L, Penke B, Zilberter Y, Harkany T, Pitkanen A, Tanila H. Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci 2009;29:3453-62.
    [97]Wang H, Jin G, Liu G, Qian J, Jin L, Wei Q, Shen H, Huang W, Lu D. Genetic susceptibility of lung cancer associated with common variants in the 3'untranslated regions of the adenosine triphosphate-binding cassette B1 (ABCB1) and ABCC1 candidate transporter genes for carcinogen export. Cancer 2009; 115:595-607.
    [98]Saunders MA, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A 2007; 104:3300-5.
    [99]Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, Hatzigeorgiou AG, Antonarakis SE. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR13'untranslated region:a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 2007;81:405-13.
    [100]Yu Z, Li Z, Jolicoeur N, Zhang L, Fortin Y, Wang E, Wu M, Shen SH. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res 2007;35:4535-41.
    [101]Dahlman I, Eaves IA, Kosoy R, Morrison VA, Heward J, Gough SC, Allahabadia A, Franklyn JA, Tuomilehto J, Tuomilehto-Wolf E, Cucca F, Guja C, Ionescu-Tirgoviste C, Stevens H, Carr P, Nutland S, McKinney P, Shield JP, Wang W, Cordell HJ, Walker N, Todd JA, Concannon P. Parameters for reliable results in genetic association studies in common disease. Nat Genet 2002;30:149-50.
    [1]Larsson K, Eeg-Olofsson O. A population based study of epilepsy in children from a Swedish county. Eur J Paediatr Neurol 2006;10:107-13.
    [2]Wirrell EC, Wood L, Hamiwka LD, Sherman EM. Parenting stress in mothers of children with intractable epilepsy. Epilepsy Behav 2008; 13:169-73.
    [3]秦炯.小儿癫痫的药物治疗原则[J].继续医学教育 2006;7:44-46.
    [4]Baker GA, Hargis E, Hsih MM, Mounfield H, Arzimanoglou A, Glauser T, Pellock J, Lund S. Perceived impact of epilepsy in teenagers and young adults:an international survey. Epilepsy Behav 2008;12:395-401.
    [5]Cushner-Weinstein S, Dassoulas K, Salpekar JA, Henderson SE, Pearl PL, Gaillard WD, Weinstein SL. Parenting stress and childhood epilepsy:the impact of depression, learning, and seizure-related factors. Epilepsy Behav 2008;13:109-14.
    [6]Bailet LL, Turk WR. The impact of childhood epilepsy on neurocognitive and behavioral performance:a prospective longitudinal study. Epilepsia 2000;41:426-31.
    [7]Elliott IM, Lach L, Smith ML. I just want to be normal:a qualitative study exploring how children and adolescents view the impact of intractable epilepsy on their quality of life. Epilepsy Behav 2005;7:664-78.
    [8]Kadis DS, Stollstorff M, Elliott I, Lach L, Smith ML. Cognitive and psychological predictors of everyday memory in children with intractable epilepsy. Epilepsy Behav 2004;5:37-43.
    [9]Davies S, Heyman I, Goodman R. A population survey of mental health problems in children with epilepsy. Dev Med Child Neurol 2003;45:292-5.
    [10]The World Health Organization Quality of Life assessment (WHOQOL):position paper from the World Health Organization. Soc Sci Med 1995;41:1403-9.
    [11]史明丽,方积乾.儿童生存质量研究[J].国外医学社会医学分册 1997;14:57-62.
    [12]Gordon N, Sillanpaa M. Epilepsy and prejudice with particular relevance to childhood. Dev Med Child Neurol 1997;39:777-81.
    [13]Cramer JA, Westbrook LE, Devinsky O, Perrine K, Glassman MB, Camfield C. Development of the Quality of Life in Epilepsy Inventory for Adolescents:the QOLIE-AD-48. Epilepsia 1999;40:1114-21.
    [14]Sabaz M, Cairns DR, Lawson JA, Nheu N, Bleasel AF, Bye AM. Validation of a new quality of life measure for children with epilepsy. Epilepsia 2000;41:765-74.
    [15]Lv R, Wu L, Jin L, Lu Q, Wang M, Qu Y, Liu H. Depression, anxiety and quality of life in parents of children with epilepsy. Acta Neurol Scand 2009;120:335-41.
    [16]Camfield C, Breau L, Camfield P. Impact of pediatric epilepsy on the family:a new scale for clinical and research use. Epilepsia 2001;42:104-12.
    [17]Breau GM, Camfield CS, Camfield PR, Breau LM. Evaluation of the responsiveness of the Impact of Pediatric Epilepsy Scale. Epilepsy Behav 2008;13:454-7.
    [18]Cull A, Sprangers M, Bjordal K. EORTC Quality of Life Group translation procedure. In. Brussels:EORTC Publications; 2002.
    [19]Yam WK, Chow SM, Ronen GM. Chinese version of the parent-proxy health-related quality of life measure for children with epilepsy:translation, cross-cultural adaptation, and reliability studies. Epilepsy Behav 2005;7:697-707.
    [20]Hoare P. The quality of life of children with chronic epilepsy and their families. Seizure 1993;2:269-75.
    [21]Stevanovic D, Lozanovic-Miladinovic D, Jovic N, Sarenac M. The Serbian QOLIE-AD-48:translation, cultural adaptation, and preliminary psychometric evaluation. Epilepsy Behav 2005;7:240-5.
    [22]Lynn MR. Determination and quantification of content validity. Nurs Res 1986;35: 382-5.
    [23]Baker GA, Camfield C, Camfield P, Cramer JA, Elger CE, Johnson AL, Martins da Silva A, Meinardi H, Munari C, Perucca E, Thorbecke R. Commission on Outcome Measurement in Epilepsy,1994-1997:final report. Epilepsia 1998;39:213-31.
    [24]Moffat C, Dorris L, Connor L, Espie CA. The impact of childhood epilepsy on quality of life:a qualitative investigation using focus group methods to obtain children's perspectives on living with epilepsy. Epilepsy Behav 2009; 14:179-89.
    [25]Acquadro C, Conway K, Hareendran A, Aaronson N. Literature review of methods to translate health-related quality of life questionnaires for use in multinational clinical trials. Value Health 2008;11:509-21.
    [26]Costello AB, Osborne JB. Best Practices in Exploratory Factor Analysis:Four Recommendations for Getting the Most From Your analysis. Practical Assessment, Research & Evaluation 2005;10.
    [27]Chassany O, Sagnier P, Marquis P, Fullerton S, Aaronson N. Patient-reported outcomes:The example of health-related quality of life:A European guideline document for the improved integration of health-related quality of life assessment in the drug regulatory process. Drug Inf J 2002;36:209-238.
    [28]Hoare P, Russell M. The quality of life of children with chronic epilepsy and their families:preliminary findings with a new assessment measure. Dev-Med Child Neurol 1995;37:689-96.
    [29]Norrby U, Carlsson J, Beckung E, Nordholm L. Self-assessment of well-being in a group of children with epilepsy. Seizure 1999;8:228-34.
    [30]Hoare P, Kerley S. Psychosocial adjustment of children with chronic epilepsy and their families. Dev Med Child Neurol 1991;33:201-15.
    [31]Austin JK, Smith MS, Risinger MW, Mcnelis AM. Childhood epilepsy and asthma: comparison of quality of life. Epilepsia 1994;35:608-15.
    [32]Carpay HA, Vermeulen J, Stroink H, Brouwer OF, Peters AC, van Donselaar CA, Aldenkamp AP, Arts WF. Disability due to restrictions in childhood epilepsy. Dev Med Child Neurol 1997;39:521-6.
    [33]Cui Y, Stapleton F, Suttle C. Developing an instrument to assess vision-related and subjective quality of life in children with intellectual disability:data collection and preliminary analysis in a Chinese population. Ophthalmic Physiol Opt 2008;28:238-46.
    [34]Olsson MB, Hwang CP. Socioeconomic and psychological variables as risk and protective factors for parental well-being in families of children with intellectual disabilities. J Intellect Disabil Res 2008;52:1102-13.
    [35]Terwee CB, Dekker FW, Wiersinga WM, Prummel MF, Bossuyt PM. On assessing responsiveness of health-related quality of life instruments:guidelines for instrument evaluation. Qual Life Res 2003;12:349-62.
    [36]Sprangers MA, Cull A, Bjordal K, Groenvold M, Aaronson NK. The European Organization for Research and Treatment of Cancer. Approach to quality of life assessment:guidelines for developing questionnaire modules. EORTC Study Group on Quality of Life. Qual Life Res 1993;2:287-95.
    [1]Winkler AS, Schaffert M, Schmutzhard E. Epilepsy in resource poor countries-suggestion of an adjusted classification. Epilepsia 2007;48:1029-30.
    [2]Scott RA, Lhatoo SD, Sander JW. The treatment of epilepsy in developing countries: where do we go from here? Bull World Health Organ 2001;79:344-51.
    [3]Murray GJ, Lopez AD. Global Comparative Assessments in the Health Sector: Disease Burden, Expenditure, Intervention Packages. In:Geneva, editor. Switzerland; 1994.
    [4]Engel J, Jr. Surgical treatment for epilepsy:too little, too late? JAMA 2008;300: 2548-50.
    [5]杨露春,曹克勇,朱雷.中国农村及少数民族地区癫痫流行病学调查[J].中华神经外科杂志 1985;5 增刊:22-28.
    [6]李世绰,王忠诚,周树宾.中国六城市居民癫痫的流行病学调查[J].中华神经精神科杂志 1986;19:193-196.
    [7]王志文,吴建中,王德生.中国五省农村人群瘢痫流行病学抽样调查[J].中华医学杂志 2002;82:449-452.
    [8]四川医学院流行病学教研室.四川42万人口癫痫发病情况调查报告[J].中华神经精神科杂志 1981;14:135-138.
    [9]丁成赟,赵永青,李志梅.癫痫自然史和预后研究进展[J].中华流行病学杂志2006;27:442-444.
    [10]Engel J, Jr. Mesial temporal lobe epilepsy:what have we learned? Neuroscientist 2001;7:340-52.
    [11]Semah F, Picot MC, Adam C, Broglin D, Arzimanoglou A, Bazin B, Cavalcanti D, Baulac M. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 1998;51:1256-62.
    [12]Hermann BP, Seidenberg M, Dow C, Jones J, Rutecki P, Bhattacharya A, Bell B. Cognitive prognosis in chronic temporal lobe epilepsy. Ann Neurol 2006;60:80-7.
    [13]Gaitatzis A, Trimble MR, Sander JW. The psychiatric comorbidity of epilepsy. Acta Neurol Scand 2004; 110:207-20.
    [14]Hitiris N, Mohanraj R, Norrie J, Brodie MJ. Mortality in epilepsy. Epilepsy Behav 2007;10:363-76.
    [15]Perucca E. Treatment of epilepsy in developing countries. BMJ 2007;334:1175-6.
    [16]Lv R, Wu L, Jin L, Lu Q, Wang M, Qu Y, Liu H. Depression, anxiety and quality of life in parents of children with epilepsy. Acta Neurol Scand 2009;120:335-41.
    [17]Bruton CJ. The neuropathology of temporal lobe epilepsy. In. Oxford University Press:Oxford; 1988.
    [18]Falconer MA, Serafetinides EA, Corsellis JA. Etiology and Pathogenesis of Temporal Lobe Epilepsy. Arch Neurol 1964; 10:233-48.
    [19]Ottman R, Risch N, Hauser WA, Pedley TA, Lee JH, Barker-Cummings C, Lustenberger A, Nagle KJ, Lee KS, Scheuer ML, et al. Localization of a gene for partial epilepsy to chromosome 1Oq. Nat Genet 1995; 10:56-60.
    [20]Winawer MR, Ottman R, Hauser WA, Pedley TA. Autosomal dominant partial epilepsy with auditory features:defining the phenotype. Neurology 2000;54:2173-6.
    [21]Brodtkorb E, Gu W, Nakken KO, Fischer C, Steinlein OK. Familial temporal lobe epilepsy with aphasic seizures and linkage to chromosome 10q22-q24. Epilepsia 2002;43: 228-35.
    [22]Kalachikov S, Evgrafov O, Ross B, Winawer M, Barker-Cummings C, Martinelli Boneschi F, Choi C, Morozov P, Das K, Teplitskaya E, Yu A, Cayanis E, Penchaszadeh G, Kottmann AH, Pedley TA, Hauser WA, Ottman R, Gilliam TC. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet 2002;30:335-41.
    [23]Gu W, Brodtkorb E, Piepoli T, Finocchiaro G, Steinlein OK. LGI1:a gene involved in epileptogenesis and glioma progression? Neurogenetics 2005;6:59-66.
    [24]Chabrol E, Popescu C, Gourfinkel-An I, Trouillard O, Depienne C, Senechal K, Baulac M, LeGuern E, Baulac S. Two novel epilepsy-linked mutations leading to a loss of function of LGI1. Arch Neurol 2007;64:217-22.
    [25]Striano P, de Falco A, Diani E, Bovo G, Furlan S, Vitiello L, Pinardi F, Striano S, Michelucci R, de Falco FA, Nobile C. A novel loss-of-function LGI1 mutation linked to autosomal dominant lateral temporal epilepsy. Arch Neurol 2008;65:939-42.
    [26]Bisulli F, Tinuper P, Scudellaro E, Naldi I, Bagattin A, Avoni P, Michelucci R, Nobile C. A de novo LGI1 mutation in sporadic partial epilepsy with auditory features. Ann Neurol 2004;56:455-6.
    [27]Michelucci R, Mecarelli O, Bovo G, Bisulli F, Testoni S, Striano P, Striano S, Tinuper P, Nobile C. A de novo LGI1 mutation causing idiopathic partial epilepsy with telephone-induced seizures. Neurology 2007;68:2150-1.
    [28]Senechal KR, Thaller C, Noebels JL. ADPEAF mutations reduce levels of secreted LGI1, a putative tumor suppressor protein linked to epilepsy. Hum Mol Genet 2005;14: 1613-20.
    [29]Fukata Y, Adesnik H, Iwanaga T, Bredt DS, Nicoll RA, Fukata M. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 2006;313:1792-5.
    [30]Schulte U, Thumfart JO, Klocker N, Sailer CA, Bildl W, Biniossek M, Dehn D, Deller T, Eble S, Abbass K, Wangler T, Knaus HG, Fakler B. The epilepsy-linked Lgil protein assembles into presynaptic Kvl channels and inhibits inactivation by Kvbetal. Neuron 2006;49:697-706.
    [31]Berkovic SF, Howell A, Hopper JL. Familial temporal lobe epilepsy:a new syndrome with adolescent/adult onset and a benign course. In:Wolf P, editor. Epileptie seizures and syndromes. London:John Libbey & Company Ltd; 1994, p.257-263.
    [32]Regesta G, Tanganelli P. Temporal lobe epilepsy of adult age of possible idiopathic nature. Seizure 2002;11:131-5.
    [33]Hedera P, Blair MA, Andermann E, Andermann F, D'Agostino D, Taylor KA, Chahine L, Pandolfo M, Bradford Y, Haines JL, Abou-Khalil B. Familial mesial temporal lobe epilepsy maps to chromosome 4q13.2-q21.3. Neurology 2007;68:2107-12.
    [34]Kobayashi E, Lopes-Cendes I, Guerreiro CA, Sousa SC, Guerreiro MM, Cendes F. Seizure outcome and hippocampal atrophy in familial mesial temporal lobe epilepsy. Neurology 2001;56:166-72.
    [35]Fernandez G, Effenberger O, Vinz B, Steinlein O, Elger CE, Dohring W, Heinze HJ. Hippocampal malformation as a cause of familial febrile convulsions and subsequent hippocampal sclerosis. Neurology 1998;50:909-17.
    [36]Kalviainen R, Salmenpera T, Partanen K, Vainio P, Riekkinen P, Pitkanen A. Recurrent seizures may cause hippocampal damage in temporal lobe epilepsy. Neurology 1998;50:1377-82.
    [37]Mathern GW, Babb TL, Vickrey BG, Melendez M, Pretorius JK. The clinical-pathogenic mechanisms of hippocampal neuron loss and surgical outcomes in temporal lobe epilepsy. Brain 1995;118 (Pt 1):105-18.
    [38]Gambardella A, Labate A, Giallonardo A, Aguglia U. Familial mesial temporal lobe epilepsies:clinical and genetic features. Epilepsia 2009;50 Suppl 5:55-7.
    [39]Baulac S, Picard F, Herman. A, Feingold J, Genin E, Hirsch E, Prud'homme JF, Baulac M, Brice A, LeGuern E. Evidence for digenic inheritance in a family with both febrile convulsions and temporal lobe epilepsy implicating chromosomes 18qter and 1q25-q31. Ann Neural 2001;49:786-92.
    [40]Depondt C, Van Paesschen W, Matthijs G, Legius E, Martens K, Demaerel P, Wilms G. Familial temporal lobe epilepsy with febrile seizures. Neurology 2002;58:1429-33.
    [41]Ward N, Evanson J, Cockerell OC. Idiopathic familial temporal lobe epilepsy with febrile convulsions. Seizure 2002;11:16-9.
    [42]Claes L, Audenaert D, Deprez L, Van Paesschen W, Depondt C, Goossens D, Del-Favero J, Van Broeckhoven C, De Jonghe P. Novel locus on chromosome 12q22-q23.3 responsible for familial temporal lobe epilepsy associated with febrile seizures. J Med Genet 2004;41:710-4.
    [43]Baulac S, Gourfinkel-An I, Nabbout R, Huberfeld G, Serratosa J, Leguern E, Baulac M. Fever, genes, and epilepsy. Lancet Neurol 2004;3:421-30.
    [44]Colosimo E, Gambardella A, Mantegazza M, Labate A, Rusconi R, Schiavon E, Annesi F, Cassulini RR, Carrideo S, Chifari R, Canevini MP, Canger R, Franceschetti S, Annesi G, Wanke E, Quattrone A. Electroclinical features of a family with simple febrile seizures and temporal lobe epilepsy associated with SCN1A loss-of-function mutation. Epilepsia 2007;48:1691-6.
    [45]Scheffer IE, Harkin LA, Grinton BE, Dibbens LM, Turner SJ, Zielinski MA, Xu R, Jackson G, Adams J, Connellan M, Petrou S, Wellard RM, Briellmann RS, Wallace RH, Mulley JC, Berkovic SF. Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain 2007;130:100-9.
    [46]Maher J, McLachlan RS. Febrile convulsions. Is seizure duration the most important predictor of temporal lobe epilepsy? Brain 1995;118 (Pt 6):1521-8.
    [47]Abou-Khalil B, Ge Q, Desai R, Ryther R, Bazyk A, Bailey R, Haines JL, Sutcliffe JS, George AL, Jr. Partial and generalized epilepsy with febrile seizures plus and a novel SCN1A mutation. Neurology 2001;57:2265-72.
    [48]Cavalleri GL, Weale ME, Shianna KV, Singh R, Lynch JM, Grinton B, Szoeke C, Murphy K, Kinirons P, O'Rourke D, Ge D, Depondt C, Claeys KG, Pandolfo M, Gumbs C, Walley N, McNamara J, Mulley JC, Linney KN, Sheffield LJ, Radtke RA, Tate SK, Chissoe SL, Gibson RA, Hosford D, Stanton A, Graves TD, Hanna MG, Eriksson K, Kantanen AM, Kalviainen R, O'Brien TJ, Sander JW, Duncan JS, Scheffer IE, Berkovic SF, Wood NW, Doherty CP, Delanty N, Sisodiya SM, Goldstein DB. Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and seizure types:a case-control study. Lancet Neurol 2007;6:970-80.
    [49]Scheffer IE, Phillips HA, O'Brien CE, Saling MM, Wrennall JA, Wallace RH, Mulley JC, Berkovic SF. Familial partial epilepsy with variable foci:a new partial epilepsy syndrome with suggestion of linkage to chromosome 2. Ann Neurol 1998;44: 890-9.
    [50]Xiong L, Labuda M, Li DS, Hudson TJ, Desbiens R, Patry G, Verret S, Langevin P, Mercho S, Seni MH, Scheffer I, Dubeau F, Berkovic SF, Andermann F, Andermann E, Pandolfo M. Mapping of a gene determining familial partial epilepsy with variable foci to chromosome 22q11-ql2. Am J Hum Genet 1999;65:1698-710.
    [51]Kinton L, Johnson MR, Smith SJ, Farrell F, Stevens J, Rance JB, Claudino AM, Duncan JS, Davis MB, Wood NW, Sander JW. Partial epilepsy with pericentral spikes:a new familial epilepsy syndrome with evidence for linkage to chromosome 4p15. Ann Neurol 2002;51:740-9.
    [52]Botstein D, Risch N. Discovering genotypes underlying human phenotypes:past successes for mendelian disease, future approaches for complex disease. Nat Genet 2003;33 Suppl:228-37.
    [53]Kanemoto K, Kawasaki J, Miyamoto T, Obayashi H, Nishimura M. Interleukin (IL)lbeta, IL-1 alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol 2000;47:571-4.
    [54]Heils A, Haug K, Kunz WS, Fernandez G, Horvath S, Rebstock J, Propping P, Elger CE. Interleukin-1 beta gene polymorphism and susceptibility to temporal lobe epilepsy with hippocampal sclerosis. Ann Neurol 2000;48:948-50.
    [55]Buono RJ, Ferraro TN, O'Connor MJ, Sperling MR, Ryan SG, Scattergood T, Mulholland N, Gilmore J, Lohoff FW, Berrettini WH. Lack of association between an interleukin 1 beta (IL-1 beta) gene variation and refractory temporal lobe epilepsy. Epilepsia 2001;42:782-4.
    [56]Ozkara C, Uzan M, Tanriverdi T, Baykara O, Ekinci B, Yeni N, Kafadar A, Buyru N. Lack of association between IL-1 beta/alpha gene polymorphisms and temporal lobe epilepsy with hippocampal sclerosis. Seizure 2006;15:288-91.
    [57]Jin L, Jia Y, Zhang B, Xu Q, Fan Y, Wu L, Shen Y. Association analysis of a polymorphism of interleukin 1 beta (IL-1 beta) gene with temporal lobe epilepsy in a Chinese population. Epilepsia 2003;44:1306-9.
    [58]Kauffman MA, Moron DG, Consalvo D, Bello R, Kochen S. Association study between interleukin 1 beta gene and epileptic disorders:a HuGe review and meta-analysis. Genet Med 2008;10:83-8.
    [59]Salzmann A, Perroud N, Crespel A, Lambercy C, Malafosse A. Candidate genes for temporal lobe epilepsy:a replication study. Neurol Sci 2008;29:397-403.
    [60]Kanemoto K, Kawasaki J, Yuasa S, Kumaki T, Tomohiro O, Kaji R, Nishimura M. Increased frequency of interleukin-1beta-511T allele in patients with temporal lobe epilepsy, hippocampal sclerosis, and prolonged febrile convulsion. Epilepsia 2003;44: 796-9.
    [61]Virta M, Hurme M, Helminen M. Increased frequency of interleukin-1 beta (-511) allele 2 in febrile seizures. Pediatr Neurol 2002;26:192-5.
    [62]Tilgen N, Pfeiffer H, Cobilanschi J, Rau B, Horvath S, Elger CE, Propping P, Heils A. Association analysis between the human interleukin lbeta (-511) gene polymorphism and susceptibility to febrile convulsions. Neurosci Lett 2002;334:68-70.
    [63]Peltola J, Keranen T, Rainesalo S, Hurme M. Polymorphism of the interleukin-1 gene complex in localization-related epilepsy. Ann Neurol 2001;50:275-6.
    [64]Dominici R, Cattaneo M, Malferrari G, Archi D, Mariani C, Grimaldi LM, Biunno I. Cloning and functional analysis of the allelic polymorphism in the transcription regulatory region of interleukin-1 alpha. Immunogenetics 2002;54:82-6.
    [65]Jamali S, Bartolomei F, Robaglia-Schlupp A, Massacrier A, Peragut JC, Regis J, Dufour H, Ravid R, Roll P, Pereira S, Royer B, Roeckel-Trevisiol N, Fontaine M, Guye M, Boucraut J, Chauvel P, Cau P, Szepetowski P. Large-scale expression study of human mesial temporal lobe epilepsy:evidence for dysregulation of the neurotransmission and complement systems in the entorhinal cortex. Brain 2006;129:625-41.
    [66]Wilson DR, Juan TS, Wilde MD, Fey GH, Darlington GJ. A 58-base-pair region of the human C3 gene confers synergistic inducibility by interleukin-1 and interleukin-6. Mol Cell Biol 1990;10:6181-91.
    [67]Tsai FJ, Hsieh YY, Chang CC, Lin CC, Tsai CH. Polymorphisms for interleukin 1 beta exon 5 and interleukin 1 receptor antagonist in Taiwanese children with febrile convulsions. Arch Pediatr Adolesc Med 2002;156:545-8.
    [68]Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao WJ, Johnson M, Gunwaldsen C, Huang LY, Tang C, Shen Q, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 1998;396:674-9.
    [69]Bischoff S, Leonhard S, Reymann N, Schuler V, Shigemoto R, Kaupmann K, Bettler B. Spatial distribution of GABA(B)R1 receptor mRNA and binding sites in the rat brain. J Comp Neurol 1999;412:1-16.
    [70]Mangan PS, Lothman EW. Profound disturbances of pre-and postsynaptic GABAB-receptor-mediated processes in region CA1 in a chronic model of temporal lobe epilepsy. J Neurophysiol 1996;76:1282-96.
    [71]Wu C, Leung LS. Partial hippocampal kindling decreases efficacy of presynaptic GABAB autoreceptors in CA1. J Neurosci 1997;17:9261-9.
    [72]Schuler V, Luscher C, Blanchet C, Klix N, Sansig G, Klebs K, Schmutz M, Heid J, Gentry C, Urban L, Fox A, Spooren W, Jaton AL, Vigouret J, Pozza M, Kelly PH, Mosbacher J, Froestl W, Kaslin E, Korn R, Bischoff S, Kaupmann K, van der Putten H, Bettler B. Epilepsy, hyperalgesia, impaired memory, and loss of pre-and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron 2001;31:47-58.
    [73]Peters HC, Kammer G, Volz A, Kaupmann K, Ziegler A, Bettler B, Epplen JT, Sander T, Riess O. Mapping, genomic structure, and polymorphisms of the human GABABR1 receptor gene:evaluation of its involvement in idiopathic generalized epilepsy. Neurogenetics 1998;2:47-54.
    [74]Gambardella A, Manna I, Labate A, Chifari R, La Russa A, Serra P, Cittadella R, Bonavita S, Andreoli V, LePiane E, Sasanelli F, Di Costanzo A, Zappia M, Tedeschi G, Aguglia U, Quattrone A. GABA(B) receptor 1 polymorphism (G1465A) is associated with temporal lobe epilepsy. Neurology 2003;60:560-3.
    [75]Cavalleri GL, Lynch JM, Depondt C, Burley MW, Wood NW, Sisodiya SM, Goldstein DB. Failure to replicate previously reported genetic associations with sporadic temporal lobe epilepsy:where to from here? Brain 2005;128:1832-40.
    [76]Ma S, Abou-Khalil B, Sutcliffe JS, Haines JL, Hedera P. The GABBR1 locus and the G1465A variant is not associated with temporal lobe epilepsy preceded by febrile seizures. BMC Med Genet 2005;6:13.
    [77]Ren L, Jin L, Zhang B, Jia Y, Wu L, Shen Y. Lack of GABABR1 gene variation (G1465A) in a Chinese population with temporal lobe epilepsy. Seizure 2005; 14:611-3.
    [78]Salzmann A, Moulard B, Crespel A, Baldy-Moulinier M, Buresi C, Malafosse A. GAB A receptor 1 polymorphism (G1465 A) and temporal lobe epilepsy. Epilepsia 2005;46:931-3.
    [79]Tan NC, Heron SE, Scheffer IE, Berkovic SF, Mulley JC. Is variation in the GABA(B) receptor 1 gene associated with temporal lobe epilepsy? Epilepsia 2005;46: 778-80.
    [80]Stogmann E, Zimprich A, Baumgartner C, Gleiss A, Zimprich F. Lack of association between a GABA receptor 1 gene polymorphism and temporal lobe epilepsy. Epilepsia 2006;47:437-9.
    [81]Wang X, Sun W, Zhu X, Li L, Wu X, Lin H, Zhu S, Liu A, Du T, Liu Y, Niu N, Wang Y. Association between the gamma-aminobutyric acid type B receptor 1 and 2 gene polymorphisms and mesial temporal lobe epilepsy in a Han Chinese population. Epilepsy Res 2008;81:198-203.
    [82]Kauffman MA, Levy EM, Consalvo D, Mordoh J, Kochen S. GABABR1 (G1465A) gene variation and temporal lobe epilepsy controversy:new evidence. Seizure 2008; 17: 567-71.
    [83]Ogita K, Kitayama T, Okuda H, Yoneda Y. Effects of glutathione depletion by 2-cyclohexen-l-one on excitatory amino acids-induced enhancement of activator protein-1 DNA binding in murine hippocampus. J Neurochem 2001;76:1905-15.
    [84]Solbrig MV, Adrian R, Chang DY, Perng GC. Viral risk factor for seizures: pathobiology of dynorphin in herpes simplex viral (HSV-1) seizures in an animal model. Neurobiol Dis 2006;23:612-20.
    [85]Merg F, Filliol D, Usynin I, Bazov I, Bark N, Hurd YL, Yakovleva T, Kieffer BL, Bakalkin G. Big dynorphin as a putative endogenous ligand for the kappa-opioid receptor. J Neurochem 2006;97:292-301.
    [86]Stogmann E, Zimprich A, Baumgartner C, Aull-Watschinger S, Hollt V, Zimprich F. A functional polymorphism in the prodynorphin gene promotor is associated with temporal lobe epilepsy. Ann Neurol 2002;51:260-3.
    [87]Tilgen N, Rebstock J, Horvath S, Propping P, Elger CE, Heils A. Prodynorphin gene promoter polymorphism and temporal lobe epilepsy. Ann Neurol 2003;53:280-1; author reply 281-2.
    [88]Gambardella A, Manna I, Labate A, Chifari R, Serra P, La Russa A, LePiane E, Cittadella R, Andreoli V, Sasanelli F, Zappia M, Aguglia U, Quattrone A. Prodynorphin gene promoter polymorphism and temporal lobe epilepsy. Epilepsia 2003;44:1255-6.
    [89]Kauffman MA, Consalvo D, Gonzalez MD, Kochen S. Transcriptionally less active prodynorphin promoter alleles are associated with temporal lobe epilepsy:a case-control study and meta-analysis. Dis Markers 2008;24:135-40.
    [90]Han SH, Einstein G, Weisgraber KH, Strittmatter WJ, Saunders AM, Pericak-Vance M, Roses AD, Schmechel DE. Apolipoprotein E is localized to the cytoplasm of human cortical neurons:a light and electron microscopic study. J Neuropathol Exp Neurol 1994;53:535-44.
    [91]Poirier J. Apolipoprotein E in animal models of CNS injury and in Alzheimer's disease. Trends Neurosci 1994; 17:525-30.
    [92]Mackenzie IR, Miller LA. Senile plaques in temporal lobe epilepsy. Acta Neuropathol 1994;87:504-10.
    [93]Sheng JG, Boop FA, Mrak RE, Griffin WS. Increased neuronal beta-amyloid precursor protein expression in human temporal lobe epilepsy:association with interleukin-1 alpha immunoreactivity. J Neurochem 1994;63:1872-9.
    [94]Gouras GK, Relkin NR, Sweeney D, Munoz DG, Mackenzie IR, Gandy S. Increased apolipoprotein E epsilon 4 in epilepsy with senile plaques. Ann Neurol 1997;41:402-4.
    [95]Lopez JR, Lyckman A, Oddo S, Laferla FM, Querfurth HW, Shtifman A. Increased intraneuronal resting [Ca2+] in adult Alzheimer's disease mice. J Neurochem 2008; 105: 262-71.
    [96]Westmark CJ, Westmark PR, Beard AM, Hildebrandt SM, Malter JS. Seizure susceptibility and mortality in mice that over-express amyloid precursor protein. Int J Clin Exp Pathol 2008;1:157-68.
    [97]Palop JJ, Mucke L. Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol 2009;66:435-40.
    [98]Gee JR, Keller JN. Astrocytes:regulation of brain homeostasis via apolipoprotein E. Int J Biochem Cell Biol 2005;37:1145-50.
    [99]Briellmann RS, Torn-Broers Y, Busuttil BE, Major BJ, Kalnins RM, Olsen M, Jackson GD, Frauman AG, Berkovic SF. APOE epsilon4 genotype is associated with an earlier onset of chronic temporal lobe epilepsy. Neurology 2000;55:435-7.
    [100]Diaz-Arrastia R, Gong Y, Fair S, Scott KD, Garcia MC, Carlile MC, Agostini MA, Van Ness PC. Increased risk of late posttraumatic seizures associated with inheritance of APOE epsilon4 allele. Arch Neurol 2003;60:818-22.
    [101]Gambardella A, Aguglia U, Chifari R, Labate A, Manna I, Serra P, Romeo N, Sibilia G, Lepiane E, Russa AL, Ventura P, Cittadella R, Sasanelli F, Colosimo E, Leggio U, Zappia M, Quattrone A. ApoE epsilon4 allele and disease duration affect verbal learning in mild temporal lobe epilepsy. Epilepsia 2005;46:110-7.
    [102]Busch RM, Lineweaver TT, Naugle RI, Kim KH, Gong Y, Tilelli CQ, Prayson RA, Bingaman W, Najm IM, Diaz-Arrastia R. ApoE-epsilon4 is associated with reduced memory in long-standing intractable temporal lobe epilepsy. Neurology 2007;68:409-14.
    [103]Chapin JS, Busch RM, Janigro D, Dougherty M, Tilelli CQ, Lineweaver TT, Naugle RI, Diaz-Arrastia R, Najm IM. APOE epsilon4 is associated with postictal confusion in patients with medically refractory temporal lobe epilepsy. Epilepsy Res 2008;81:220-4.
    [104]Sporis D, Sertic J, Henigsberg N, Mahovic D, Bogdanovic N, Babic T. Association of refractory complex partial seizures with a polymorphism of ApoE genotype. J Cell Mol Med 2005;9:698-703.
    [105]Blumcke I, Brockhaus A, Scheiwe C, Rollbrocker B, Wolf HK, Elger CE, Wiestler OD. The apolipoprotein E epsilon 4 allele is not associated with early onset temporal lobe epilepsy. Neuroreport 1997;8:1235-7.
    [106]Gambardella A, Aguglia U, Cittadella R, Romeo N, Sibilia G, LePiane E, Messina D, Manna I, Oliveri RL, Zappia M, Quattrone A. Apolipoprotein E polymorphisms and the risk of nonlesional temporal lobe epilepsy. Epilepsia 1999;40:1804-7.
    [107]Yeni SN, Ozkara C, Buyru N, Baykara O, Hanoglu L, Karaagac N, Ozyurt E, Uzan M. Association between APOE polymorphisms and mesial temporal lobe epilepsy with hippocampal sclerosis. Eur J Neurol 2005;12:103-7.
    [108]Kumar A, Tripathi M, Pandey RM, Ramakrishnan L, Srinivas M, Luthra K. Apolipoprotein E in temporal lobe epilepsy:a case-control study. Dis Markers 2006;22: 335-42.
    [109]Kauffman MA, Pereira-de-Silva N, Consalvo D, Kochen S. ApoE epsilon4 is not associated with posictal confusion in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Res 2009;85:311-3.
    [110]Aguzzi A, Weissmann C. Prion research:the next frontiers. Nature 1997;389: 795-8.
    [111]Prusiner SB. Prions. Proc Natl Acad Sci U S A 1998;95:13363-83.
    [112]Graner E, Mercadante AF, Zanata SM, Forlenza OV, Cabral AL, Veiga SS, Juliano MA, Roesler R, Walz R, Minetti A, Izquierdo I, Martins VR, Brentani RR. Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res 2000;76: 85-92.
    [113]Graner E, Mercadante AF, Zanata SM, Martins VR, Jay DG, Brentani RR. Laminin-induced PC-12 cell differentiation is inhibited following laser inactivation of cellular prion protein. FEBS Lett 2000;482:257-60.
    [114]Chiarini LB, Freitas AR, Zanata SM, Brentani RR, Martins VR, Linden R. Cellular prion protein transduces neuroprotective signals. EMBO J 2002;21:3317-26.
    [115]Zanata SM, Lopes MH, Mercadante AF, Hajj GN, Chiarini LB, Nomizo R, Freitas AR, Cabral AL, Lee KS, Juliano MA, de Oliveira E, Jachieri SG, Burlingame A, Huang L, Linden R, Brentani RR, Martins VR. Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J 2002;21:3307-16.
    [116]Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, Clarke AR, Jefferys JG. Prion protein is necessary for normal synaptic function. Nature 1994;370:295-7.
    [117]Colling SB, Collinge J, Jefferys JG Hippocampal slices from prion protein null mice:disrupted Ca(2+)-activated K+ currents. Neurosci Lett 1996;209:49-52.
    [118]Walz R, Amaral OB, Rockenbach IC, Roesler R, Izquierdo I, Cavalheiro EA, Martins VR, Brentani RR. Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia 1999;40:1679-82.
    [119]Mallucci GR, Ratte S, Asante EA, Linehan J, Gowland I, Jefferys JG, Collinge J. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 2002;21:202-10.
    [120]Colling SB, Khana M, Collinge J, Jefferys JG. Mossy fibre reorganization in the hippocampus of prion protein null mice. Brain Res 1997;755:28-35.
    [121]Klamt F, Dal-Pizzol F, Conte da Frota MJ, Walz R, Andrades ME, da Silva EG, Brentani RR, Izquierdo I, Fonseca Moreira JC. Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic Biol Med 2001;30:1137-44.
    [122]Walz R, Castro RM, Velasco TR, Carlotti CG, Jr., Sakamoto AC, Brentani RR, Martins VR. Cellular prion protein:implications in seizures and epilepsy. Cell Mol Neurobiol 2002;22:249-57.
    [123]Walz R, Castro RM, Velasco TR, Alexandre V, Jr., Lopes MH, Leite JP, Santos AC, Assirati JA, Jr., Wichert-Ana L, Terra-Bustamante VC, Bianchin MM, Maciag PC, Ribeiro KB, Guarnieri R, Araujo D, Cabalero O, Moura R, Salim AC, Kindlmann K, Landemberger MC, Marques W, Jr., Fernandes RM, Serafini LN, Machado HR, Carlotti CG, Jr., Brentani RR, Sakamoto AC, Martins VR. Surgical outcome in mesial temporal sclerosis correlates with prion protein gene variant. Neurology 2003;61:1204-10.
    [124]Walz R, Castro RM, Landemberger MC, Velasco TR, Terra-Bustamante VC, Bastos AC, Bianchin M, Wichert-Ana L, Araujo D, Alexandre V, Jr., Santos AC, Machado HR, Carlotti CG, Jr., Brentani RR, Martins VR, Sakamoto AC. Cortical malformations are associated with a rare polymorphism of cellular prion protein. Neurology 2004;63: 557-60.
    [125]Labate A, Manna I, Gambardella A, Le Piane E, La Russa A, Condino F, Cittadella R, Aguglia U, Quattrone A. Association between the M129V variant allele of PRNP gene and mild temporal lobe epilepsy in women. Neurosci Lett 2007;421:1-4.
    [126]Wang X, Sun W, Zhu X, Wu X, Li L, Zhu S, Du T, Liu Y, Niu N, Wang Y. M129V polymorphism in the prion protein gene is not associated with mesial temporal lobe epilepsy in a Han Chinese population. Eur J Neurol 2008; 15:827-30.
    [127]Lindvall O, Kokaia Z, Bengzon J, Elmer E, Kokaia M. Neurotrophins and brain insults. Trends Neurosci 1994; 17:490-6.
    [128]Kokaia M, Ernfors P, Kokaia Z, Elmer E, Jaenisch R, Lindvall O. Suppressed epileptogenesis in BDNF mutant mice. Exp Neurol 1995;133:215-24.
    [129]Aronica E, Leenstra S, Jansen GH, van Veelen CW, Yankaya B, Troost D. Expression of brain-derived neurotrophic factor and tyrosine kinase B receptor proteins in glioneuronal tumors from patients with intractable epilepsy:colocalization with N-methyl-D-aspartic acid receptor. Acta Neuropathol 2001;101:383-92.
    [130]Scharfman H. Does BDNF Contribute to Temporal Lobe Epilepsy? Epilepsy Curr 2002;2:92-94.
    [131]Binder DK. The role of BDNF in epilepsy and other diseases of the mature nervous system. Adv Exp Med Biol 2004;548:34-56.
    [132]Lindholm D, da Penha Berzaghi M, Cooper J, Thoenen H, Castren E. Brain-derived neurotrophic factor and neurotrophin-4 increase neurotrophin-3 expression in the rat hippocampus. Int J Dev Neurosci 1994; 12:745-51.
    [133]Nawa H, Carnahan J, Gall C. BDNF protein measured by a novel enzyme immunoassay in normal brain and after seizure:partial disagreement with mRNA levels. Eur J Neurosci 1995;7:1527-35.
    [134]Murray KD, Isackson PJ, Eskin TA, King MA, Montesinos SP, Abraham LA, Roper SN. Altered mRNA expression for brain-derived neurotrophic factor and type II calcium/calmodulin-dependent protein kinase in the hippocampus of patients with intractable temporal lobe epilepsy. J Comp Neurol 2000;418:411-22.
    [135]Zhu WJ, Roper SN. Brain-derived neurotrophic factor enhances fast excitatory synaptic transmission in human epileptic dentate gyrus. Ann Neurol 2001;50:188-94.
    [136]Kanemoto K, Kawasaki J, Tarao Y, Kumaki T, Oshima T, Kaji R, Nishimura M. Association of partial epilepsy with brain-derived neurotrophic factor (BDNF) gene polymorphisms. Epilepsy Res 2003;53:255-8.
    [137]Lohoff FW, Ferraro TN, Dahl JP, Hildebrandt MA, Scattergood TM, O'Connor MJ, Sperling MR, Dlugos DJ, Berrettini WH, Buono RJ. Lack of association between variations in the brain-derived neurotrophic factor (BDNF) gene and temporal lobe epilepsy. Epilepsy Res 2005;66:59-62.
    [138]Catalano M. Functionally gene-linked polymorphic regions and genetically controlled neurotransmitters metabolism. Eur Neuropsychopharmacol 2001;11:431-9.
    [139]Lesch KP. Variation of serotonergic gene expression:neurodevelopment and the complexity of response to psychopharmacologic drugs. Eur Neuropsychopharmacol 2001;11:457-74.
    [140]Jobe PC. Common pathogenic mechanisms between depression and epilepsy:an experimental perspective. Epilepsy Behav 2003;4 Suppl 3:S14-24.
    [141]Jobe PC, Dailey JW, Wernicke JF. A noradrenergic and serotonergic hypothesis of the linkage between epilepsy and affective disorders. Crit Rev Neurobiol 1999; 13: 317-56.
    [142]Favale E, Audenino D, Cocito L, Albano C. The anticonvulsant effect of citalopram as an indirect evidence of serotonergic impairment in human epileptogenesis. Seizure 2003;12:316-8.
    [143]Cupello A, Favale E, Audenino D, Scarrone S, Gastaldi S, Albano C. Decrease of serotonin transporters in blood platelets after epileptic seizures. Neurochem Res 2005;30: 425-8.
    [144]Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR, Hamer DH, Murphy DL. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996;274: 1527-31.
    [145]Lesch KP, Balling U, Gross J, Strauss K, Wolozin BL, Murphy DL, Riederer P. Organization of the human serotonin transporter gene. J Neural Transm Gen Sect 1994;95:157-62.
    [146]Fiskerstrand CE, Lovejoy EA, Quinn JP. An intronic polymorphic domain often associated with susceptibility to affective disorders has allele dependent differential enhancer activity in embryonic stem cells. FEBS Lett 1999;458:171-4.
    [147]Lovejoy EA, Scott AC, Fiskerstrand CE, Bubb VJ, Quinn JP. The serotonin transporter intronic VNTR enhancer correlated with a predisposition to affective disorders has distinct regulatory elements within the domain based on the primary DNA sequence of the repeat unit. Eur J Neurosci 2003; 17:417-20.
    [148]Manna I, Labate A, Gambardella A, Forabosco P, La Russa A, Le Piane E, Aguglia U, Quattrone A. Serotonin transporter gene (5-Htt):association analysis with temporal lobe epilepsy. Neurosci Lett 2007;421:52-6.
    [149]Kauffman MA, Consalvo D, Gonzalez-Moron D, Aguirre F, D'Alessio L, Kochen S. Serotonin transporter gene variation and refractory mesial temporal epilepsy with hippocampal sclerosis. Epilepsy Res 2009;85:231-4.
    [150]Ferraro TN, Golden GT, Smith GG, Schork NJ, St Jean P, Ballas C, Choi H, Berrettini WH. Mapping murine loci for seizure response to kainic acid. Mamm Genome 1997;8:200-8.
    [151]Ferraro TN, Golden GT, Smith GG, St Jean P, Schork NJ, Mulholland N, Ballas C, Schill J, Buono RJ, Berrettini WH. Mapping loci for pentylenetetrazol-induced seizure susceptibility in mice. J Neurosci 1999; 19:6733-9.
    [152]Vaughn BV, Greenwood RS, Aylsworth AS, Tennison MB. Similarities of EEG and seizures in del(1q) and benign rolandic epilepsy. Pediatr Neurol 1996; 15:261-4.
    [153]Buono RJ, Ferraro TN, O'Connor MJ, Sperling MR, Abbey M, Finanger E, Lohoff F, Mulholland N, Berrettini WH. Lack of association between temporal lobe epilepsy and a novel polymorphism in the alpha 2 subunit gene (ATP1A2) of the sodium potassium transporting ATPase. Am J Med Genet 2000;96:79-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700