土壤源热泵垂直地埋管换热器传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤源热泵系统利用埋设于地下的换热器与土壤交换热量,提升了可再生浅层地热能的能量品位,被称为是21世纪一项最具发展前途的空调新技术。制约土壤源热泵技术发展的因素很多,其中地埋管换热器传热一直是该技术的研究关键之一。如果对地埋管热量传递过程特性认识不全面,盲目设计地埋管结构和尺寸会导致地下换热性能严重下降,空调系统的能耗增高,甚至完全瘫痪,这势必给新技术的推广带来巨大阻碍。
     本文首先从与地埋管换热过程密切关联的土壤特性以及需要向土壤排热或取热的地埋管换热负荷特性着手,着重分析了土壤热特性、地下水渗流特性以及不同地区、不同建筑的换热负荷分布特性和规律,提出了描述地埋管热量在土壤中传递的两种主要机制和表征换热负荷的三个重要特性。这些特征直接决定了地埋管的换热性能,换热器能否长期保持良好的换热状态,同时也决定了土壤源热泵系统保持多年运行的可持续性。通过理论分析,本文建立了两种传热机制下地埋管换热器传热过程的数学物理模型,借助于边界条件和初始化条件体现出地埋管动态换热负荷特性。采用有限体积法对求解域进行整场离散、整场求解。依据土壤源热泵设计和运行所关注的进出口温度以及换热可持续性,引入参数地埋管换热器能效系数和换热效用时间,对地埋管换热能效特性和最大可用温差的可持续换热时间进行量化分析。根据优化的无穷远边界值对地埋管换热器传热过程进行动态数值模拟,分析了有无地下水渗流土壤中地埋管换热器换热性能的差异,并讨论了不同的地埋管结构和尺寸、土壤热状态、分层特性、换热负荷特性以及运行方式条件下地埋管传热特性和效用时间变化规律,且针对土壤分层特性提出了区段换热理论及其动态迁移特性,从而为地埋管换热器的优化设计及空调系统参数匹配提供了理论与技术支持。
     根据地埋管换热器传热模型建立了现场实验平台,利用现场实验测试验证本文所建立的地埋管换热器数学模型及其实现过程的正确性、可靠性,并从实验的角度验证和分析进水流体温度、流速以及运行方式对土壤温度场和地埋管换热器传热特性的作用规律,为土壤源热泵的工程实践提供基础数据储备。
     鉴于地埋管周围土壤温度的模拟值与实测值,在地埋管循环流体与周围土壤换热过程中,土壤温度在轴向方向上变化不大,因而可采用二维传热模型分析钻井外土壤传热。基于此,本文采用地埋管传热多极理论模型并结合热阻网络平衡原理建立了垂直U型地埋管的热量传递解析模型。该模型将地埋管与周围土壤传热区域分为钻井内外两部分,钻井内为稳态传热,采用多极理论U型管模型,钻井外为瞬态传热,采用柱热源模型,并考虑了地埋管内循环介质轴向变化。在一定的换热时间下,利用该模型分析地埋管传热特性,具有较高的可靠性和较少的计算工作量。
     本论文的研究将使地埋管换热器的设计以及工程实践更为合理化,为推广和发展土壤源热泵这一极具节能与环保潜力的浅层地热能利用技术提供了理论基础和支撑。
For utilizing heat exchangers buried in the ground to transfer heat with the soil and upgrade the tenor of the renewable geothermal energy in shallow layer, a ground source heat pump (GSHP) system is known as one of air conditioning techniques which have the greatest developmental future in the 21th century. It is a matter of common observation that the development of GSHP technique is restricted by a lot of factors, in which the heat transfer of a ground heat exchanger (GHE) is the key of research on GSHP techniques at all times. Due to lacking in an comprehensive acquaintance with the heat transfer process, the arbitrary design for the constructure and size of GHEs would lead to the serious drop in performance of heat exchangers, and the increase in energy consumption of the whole air conditioning system, to top it all, going so far as do the system paralysis, all which should bring great barriers of the promotion and popularization of the new technology.
     The desertation first launched on the soil trait and the commutative load rejected to or extracted from the soil which were tightly related with the heat transfer of geothermal heat exchangers. The soil thermal property and ground water seepage flow behavior as well as the load distribution in various regions and buildings were analyzed intensely. Two primary heat transfer manners describing the heat quantity transport in the soil and three important characteristic representing the thermal load property were put forward. These traits directly determined the heat transfer performance of GHEs and whether or not the heat exchangers could keep the good performance in the long run in the limited buried places, which in turn decided the years of the sustained and effective operation of GSHP systems.
     Through theoretical analysis, the mathematical and physical model of a vertical U-tube GHE under two kinds of heat transfer manners was established in which the thermal load characteristic of GHEs can be incarnated with the help of boundary conditions and initialization conditions. For such kind of coupled heat transfer problem, the methodology of a straightforward discretization and an overall solution utilizing the finite-volume method in all mediums zones, was adopted in this paper. In view of the inlet and outlet temperature and heat transfer continuable feature of GHEs focused in the design and operation of GHSP systems, the energy efficiency coefficient and heat transfer endurance were introduced to quantify the energy efficiency performance and the endurance period according to maximal available temperature difference between the inlet and outlet in the U-tube heat exchanger. The performance of GHE in soil with and without groundwater flow was analyzed firstly through dynamic numerical simulation of heat transfer process between the soil and the working fluid by the use of the optimized infinite boundary size. Basing on the model, the varied regularity of energy efficiency performance and heat transfer endurance with the conditions including the different configuration and dimension of the U-tube heat exchangers, the soil thermal behavior, stratified feature in the soil, thermal load characteristic and operational mode were discussed. Regional heat transfer theory and migratory property under the condition of dynamic heat transfer capacity in U-tube heat exchangers were brought forward in the thesis. It supplies theory support and technology accumulation for the optimal design of the GHE and the parametric matching of air conditioning systems.
     According to the heat transfer model of GHE, an experimental facility in situ for measuring the performance of exchangers was upbuilt. Through being compared with experiments in testing boreholes, the accuracy and reliability combined with its implementation in the mathematic model of GHE was validated. From the point of view of the experiments, the influences rules of the inlet water temperature, the flow velocity and operational mode on the temperature field in the surrounding soil and heat transfer characteristic of GHE were verified and analyzed. Thus all above can make contribution the basic data for engineering practice in GSHP systems.
     In the light of the simulative and experimental testing value in the soil surrounding the GHE, the minor temperature of the soil in the axial direction should be found during the heat transfer between the circulating fluid in the U-tube and the soil. So the soil heat transmission outside the borehole can be analyzed by two dimensional heat transfer model. On the basis of that, a new heat transfer analytical model considering the axial flowing based upon a multipole theory model combined with the thermal resistance network balance principle was developed. The heat transfer region was divided into two parts at the borehole wall. Both steady and transient heat transfer methods were used to analyze the transmission of heat inside and outside borehole respectively. As for inside borehole, multipole theory model in the U-tube was used to solve the heat transfer problems. As for outside borehole, constant heat flux cylindrical source model was used to calculate the borehole wall temperature. To a certain heat transfer duration, adapting this model to analyze the heat transfer performance can not only afford high reliability but also need a minor calculating work capacity.
     The research in this desertation can make the design and engineering practice of GSHP more reasonable. Furthermore, it can also provide theoretical base and technique support for the popularization and development of applications in the GSHP system utilizing shallow statum geothermal energy which have great energy saving and environmental protection advantaged potentiality.
引文
[1] Energy Information Administration, Office of Integrated Analysis and Forecasting. International energy outlook 2006 [R]. Washington DC: US Department of Energy, 2006. 8-10
    [2] NIFES Consulting Group, Gee Ltd.. The complete guide to energy efficiency [R]. United States: The Energy Saver, 1999. 16-20
    [3] Magyar Z, Leitner A. Better indoor climate with less energy: European energy performance of building directive (EPBD) [C]. // The 6th International Conference for Enhanced Building Operations (ICEBO), 2006. Vol. I-4-2
    [4]国家技术前瞻研究组.中国技术前瞻报告2004——能源、资源环境和先进制造[R].北京:科学技术文献出版社, 2005. 79-86
    [5] Martin M A, Durfee D J, Hughes P J. Comparing maintenance costs of geothermal heat pump systems with other HVAC systems in Lincoln Public Schools: Repair, service, and corrective actions [J]. ASHRAE Transactions, 1999, 105(1):1208-1215
    [6] Martin M A, Durfee D J, Hughes P J. Comparing maintenance costs of geothermal heat pump systems with other HVAC systems: Preventive maintenance actions and total maintenance costs [J]. ASHRAE Transactions, 2000, 106(1): 408-423
    [7] Dinse D R. Geothermal system for school [J]. ASHRAE Journal, 1998, (5): 36-40
    [8]龚明启,冀兆良.地源热泵的分类及其若干问题的看法[J].能源技术, 2005, 26 (3):120-123
    [9]中国土壤系统分类研究丛书编委会.中国土壤系统分类进展[M].科学出版社, 1993. 354-360
    [10]李元晋, Gebert L,李秀果.美国土一气型地源热泵技术在中国的应用推广[J].节能与环保, 2002, (12): 20-23
    [11]丁力行,陈季芬,彭梦珑.土壤源热泵垂直单埋管换热性能影响因素研究[J].流体机械, 2002, 30(3): 47-49
    [12] Ball D A , Fischer R D, Hodgett D L. Design methods for ground-source heat pumps [J]. ASHRAE Transactions, 1983, 89(2): 416-440
    [13] Svec O J, Goodrich L E, J.H.L.Palmer. Heat transfer characteristics of in ground heat exchangers [J]. Energy Research, 1983, (7): 265-278
    [14]冯健美,屈宗长,王迪生.土壤热源热泵的技术经济性能分析[J].流体机械, 2001, 29(11): 48-51
    [15] Petit P J, Meyer J P . Economic potential of vertical ground-source heat pump compared to air-source air conditioners in south [J] Africa Energy Research, 1998, 23 (2): 137-143
    [16]桂江波,徐玉党,黎栩.三种商业常用地源热泵系统经济性评价[J].节能, 2003, (1):14-16
    [17]王永镖,李炳熙,姜宝成.地源热泵运行经济性分析[J].热能动力工程, 2002, 17(6): 565-567
    [18]李新国,赵军,朱强.地源热泵供暖空调的经济性[J].太阳能学报, 2001, 22(4): 418-421
    [19] Bose J E, Parker J D. Ground-coupled heat pump research [J]. ASHRAE Transac -tions, 1983, 89(2): 375-390
    [20] Ingersoll L R, Plass H J. Theory of the ground pipe heat source for the heat pump [J]. Heating Piping and Air Conditioning, 1948, 20(7): 119-122
    [21] Ingersoll L R, Zobel O J. Ingersoll A C. Heat conduction with engineering, geological and other applications [M]. New York: McGraHr-HIill Co, 1954.169-171
    [22] Mei V C, Fischer S K. Vertical concentric tube ground-coupled heat exchangers [J]. ASHRAE Transactions, 1983, 89(2): 391-406
    [23] Partin J R. Sizing the closed-loop earth coupling for heat pumps [J]. ASHRAE Trans -actions, 1985, 91(1): 61-68
    [24] Mei V C, Baxter V D. Performance of a ground-coupled heat pump with multiple dissimilar U-tube coils in series [J]. ASHRAE Transactions, 1986, 92(2): 30-41
    [25] Parker J D, Bose JE, Mcquiston F C. The ASHRAE design/data manual for ground -coupled heat pumps [J]. ASHRAE Transactions, 1985, 91(2): 1169-1183
    [26] Couvillion R J. Field and laboratory simulation of earth-coupled heat pump coils [J]. ASHRAE Transactions, 1985, 91(2): 1326-1334
    [27] Li Xin-guo, Chen Zhi-hao, Zhao Jun. Simulation and experiment on the thermal performance of U-vertical ground coupled heat exchanger [J]. Applied Thermal Engi -neering, 2006, 26(14): 1564- 1571.
    [28] Burkhard S, Constmtine K, Diinitrios M et al. Current status of ground source heat pumps and underground thermal energy storage in Europe [J]. Geothennics, 2003, 32 (4): 579-588
    [29] Leong W H, Tarnawski V R, Aittomaki A. Effect of soil type and moisture content on ground heat pump performance [J]. International Journal of Refrigeration, 1998, 21 (8): 595-606
    [30] Gu Y, O'Neal D L. Modeling the effect of backfills on U-tube ground coil perform–ance [J]. ASHRAE Transactions, 1998, 104(2): 356-365
    [31] Spilker E H. Ground-coupled heat pump loop design using thermal conductivity testing and the effect of different backfill materials on vertical bore length [J]. ASHRAE Transactions, 1998, 104(1): 775-779
    [32] Zhang Qiang. Heat transfer analysis of vertical U-tube heat exchangers in a multiple borehole field for ground source heat pump systems [D]. Kentucky: University of Kentucky, 1999
    [33] Bi Y, Chen L, Wu C. Heat source performance for solar-ground source heat pump [J]. Journal of the Energy Institute, 2005, 78(4): 185-189
    [34] Bi Y H, Guo T W, Zhang L et al. Solar and ground source heat-pump system [J]. Applied Energy, 2004, 78(2): 231-245
    [35]杨卫波,施明恒,董华.太阳能一壤源热泵系统(SESHPS)交替运行性能的数值模拟[J].热科学与技术, 2005, 4(3): 228-232
    [36] Esen H, Inalli M, Esen M et al. Energy and exergy analysis of a ground-coupled heat pump system with two horizontal ground heat exchangers [J]. Building and Environment, 2007, 42 (10): 3606-3615
    [37] Hepbasli A, Akdemir O. Energy and exergy analysis of a ground source (geothermal) heat pump system [J]. Energy Conversion and Management, 2004, 45(5): 737-753
    [38] Kavanaugh S P, Xie Lan. Energy use of ventilation air conditioning options for ground-source heat pump systems [J]. ASHRAE Transactions, 2000, 106 (1): 543 -550
    [39] Rybach L, Burkhard S. Ground-source heat pump systems the European experience [R]. GHC Bulletin, 2000, 3: 16-26
    [40]高青,于鸣.高效率环保效能好的供热制冷装置-地源热泵的开发与利用[J].吉林工业大学自然科学学报, 2001, 31(2): 96-102
    [41]王健敏,叶衍华,彭国荣.地源热泵的地热能利用方式与工程运用[J].流体机械, 2002, 21 (79): 30-33
    [42]王勇,刘宪英,付祥钊.地源热泵及地下蓄能的实验研究[J].暖通空调, 2003, 33(5): 21-23
    [43]张喜明.土壤源热泵供热水装置的实验研究[J].哈尔滨商业大学学报(自然科学版), 2003, 19(4): 479-481
    [44]魏先勋,李元旦,林玉鹏等.土壤源热泵的研究[J].湖南大学学报(自然科学版), 2003, 27(2): 62-65
    [45]李元旦,张旭,周亚素等.土壤源热泵冬季工况启动特性的实验研究[J].暖通
    [46]胡平放,孙启明,於仲义等.地源热泵地埋管换热量的测试与分析[J].暖通空调, 2007, 37(10): 176-179.(增刊)
    [47]张银安.竖直U形地埋管换热器换热性能测试与分析[J].暖通空调, 2007, 37 (7): 72-78
    [48]高桂芝,王桂娟,田继民.某别墅地埋管地源热泵空调系统设计与测试分析[J].暖通空调, 2006, 36(9): 65-68
    [49]刘猛,何雪冰,刘宪英.某住宅地源热泵系统夏季运行测试研究[J].暖通空调, 2006, 36(1): 118-122
    [50]李炳熙,王永镖,姜宝成等.地源热泵小负荷状态下的运行优化[J].太阳能学报, 2003, 24 (5): 713-717
    [51]曲云霞.地源热泵系统模型与仿真: [博士学位论文].西安:西安建筑科技大学, 2004
    [52]李新国.埋地换热器内热源理论与地源热泵运行特性研究: [博士学位论文].天津:天津大学, 2004
    [53] P. Eskilson. Thermal analysis of heat extraction boreholes [D] Lund: University of Lund Doctoral Thesis, 1987
    [54] Carslaw H S, Jaeger J C. Conduction of heat in solids [M]. Oxford: Claremore Press, 1947. 260-265
    [55] Carslaw H S, Jaeger J C. Conduction of heat in solids [M]. 2nded. Oxford: Oxford University Press, 1959. 260-265
    [56] Deerman J D, Kavanaugh S P. Simulation of vertical U-tube ground-coupled heat pump systems using the cylindrical heat source solution [J]. ASHRAE Transactions, 1997, 103(1): 287-295
    [57] Gu Y, O’Neal D L. Development of an equivalent diameter expression for vertical U-tube used in ground-coupled heat pumps [J]. ASHARE Transactions, 1998, 104(2): 347-355
    [58] Rottmayer S P , Beckman W A , Mitchell J W. Simulation of a single vertical U-tube ground heat exchanger in an infinite medium[J]. ASHRAE Transactions, 1997, 103 (2): 651-659
    [59] Michel A B. Ground-coupled heat pump system simulation [J]. ASHRAE Transac -tions, 2001, 107(1): 605-616
    [60] Michel A B. Uncertainty in the design length calculation or vertical ground heat exchangers [J]. ASHRAE Transactions, 2002, 108(1): 939-943
    [61] Yavuzturk C, Spitler J D. Field validation of a short time step model for vertical ground-loop heat exchangers [J]. ASHRAE Transactions, 2001, 107(1): 617-625
    [62] Michel P. A Simplified tool for assessing the feasibility of ground-source heat pump projects [J]. ASHRAE Transactions, 2001, 107(1): 120-129
    [63] Yavuzturk C, Chiasson A D. Performance snalysis of U-tube, concentric tube, and standing column well ground heat exchangers using a system simulation approach [J]. ASHRAE Transactions, 2002, 108(1): 925-938
    [64] Yavuzturk C, Spitler J D., Rees S J. A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers [J]. ASHRAE Transac -tions. 1999, 105(2): 465-474
    [65] Mei V C. New approach for analysis of ground coil design for applied heat pump systems [J]. ASHRAE Transations, 1985, 91(2).1216-1224
    [66] Cane R L D, Forgas D A. Modeling of ground-source heat pump performance [J]. ASHRAE Transactions, 1991, 97(1): 909 -925
    [67] Marvin D.Smith, Randolf L. Perry. Borehole grouting: Field study and thermal performance testing [J]. ASHRAE Transations, 1999, 105(1): 451-457.
    [68]刘宪英,胡鸣明,魏唐棣.地热源热泵地下埋管换热器传热模型的综述[J].重庆建筑大学学报. 1999, (4): 106-111
    [69]李芄,仇中柱.垂直埋管式土壤源热泵埋管周围土壤温度场的数值模拟[J].建筑热能通风空调. 2000, 19(4): 1-4
    [70]张旭.土壤源热泵的实验及相关基础理论研究[J].现代空调-空调热泵设计方法专辑, 2001, (3): 75-87
    [71]刁乃仁.地热换热器的传热问题研究及其工程应用: [博士学位论文].北京:清华大学, 2004
    [72]余延顺.土壤蓄冷与土壤耦合热泵集成系统的研究: [博士学位论文].哈尔滨:哈尔滨工业大学, 2004
    [73] Chiasson A D. Advances in modeling of ground-source heat pump systems [D]. Oklahoma: Oklahoma State University, 1999
    [74] H.J.L. Witte, A.J.V. Gelder, M. Serr?o. Comparison of design and operation of a commercial UK ground source heat pump project [C]. // The lst International Conference on Sustainable Energy Technologies, 2002. 89-94
    [75] H.J.L.Witte. Geothermal response tests with heat extraction and heat injection: example of application in research and design of geothermal ground heat exchangers [EB/ OL]. // http: // www.greenholland.nl/download/Lausanne
    [76] Chiasson A D, Rees S J, Spitler J D. Preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems [J]. ASHRAE Transactions, 2000, 106(1): 380-393
    [77] Signhild G. Thermal response test method development and evaluation [D]. Lund: Lund University, 2002.
    [78] Sutton M G, Nutter D W, Couvillion R J. A ground resistance for vertical bore heat exchangers with groundwater flow [J]. Journal of Energy Resources Technology, 2003, 125(3): 183-189
    [79]谭显辉,丁力行.影响地下环路热交换器设计的地下水流动的理论分析[J].制冷空调与电力机械, 2003, (5): 14-18
    [80]刁乃仁,李琴云,方肇洪.有渗流时地热换热其温度响应的解析解[J].山东建筑工程学院学报, 2003, 18 (3): 1-5
    [81] Nairen Diao, Qinyun Li, Zhaohong Fang. Heat transfer in ground heat exchangers with groundwater advection [J]. International Journal of Thermal Sciences, 2004, 43(12): 1203-1211
    [82]赵军.竖直埋管型地源热泵地下传热及热力性能的研究: [博士学位论文].天津:天津大学, 2002
    [83]李新国,赵军,周倩.埋地换热器理论模型与周围土壤温度数值模拟[J].太阳能学报, 2004, 25(4): 492-496
    [84] Leong W H. Tarnawski V R. Aittomaki A. Effect of soil type and moisture content on ground heat pump performance [J]. International Journal of Refrigeration, 1998, 21 (8): 595-606
    [85] Piechowski M. Heat and mass transfer model of a ground heat exchanger: theoretical development [J]. International Journal of Energy Research, 1999, 32(7): 571-588
    [86] Piechowski M. Heat and mass transfer model of a ground heat exchanger: validation and sensitivity analysis [J]. International Journal of Energy Research, 1998, 22 (11): 965-79
    [87] Kavanaugh S. P. Field tests for ground thermal properties methods and impact on ground source heat pump design [J]. ASHRAE Transactions, 1992, 98 (2): 607-615
    [88] Austin W A, Yavuzturk C, Spitler, J D. Development of an in-situ system and analysis procedure for measuring ground thermal properties [J]. ASHRAE Transac -tions, 2000, 106(1): 365-379
    [89] Lan Xie. Merhods for determining soil and rock formation thermal properties from short-term field tests [D]. Alabama: University of Alabama, 2001
    [90] Austin W. A. Development of an in situ system for measuring ground thermal properties [D]. Oklahoma: Oklahoma State University, 1998
    [91] Mogensen, P. Fluid to duct wall heat transfer in duct system heat storages[C]. // International Conference on Subsurface Heat Storage in Theory and Practice, 1983. 126-130
    [92] Lim K, Lee S, Lee C. An experimental study on the thermal performance of ground heat exchanger [J].Experimental Thermal and Fluid Science, 2007, 31(8): 985-990
    [93] Nagano K, Katsura T, Takeda S. Development of a design and performance prediction tool for the ground source heat pump system [J]. Applied Thermal Engi -neering, 2006, 26(15): 1578-1592
    [94] Florides G, Kalogirou S. First in situ determination of the thermal performance of a U-pipe borehole heat exchanger in Cyprus [J]. Applied Thermal Engineering, 2008, 28 (3): 157-163
    [95] Roth P, Georgiev A, Busso A et al. First in situ determination of ground and borehole thermal properties in Latin America [J]. Renewable Energy, 2004, 29(12):1947-1963
    [96] Signorelli S, Bassetti S, Pahud D et al. Numerical evaluation of thermal response tests [J]. Geothermics, 2007, 36(2): 141-166
    [97] Shonder J A, Beck J V. Determining effective soil formation thermal properties from field data using a parameter estimation technique [J]. ASHRAE Transactions, 1999, 105 (1): 458-468
    [98] Hellstrom G. Duct ground heat storage model, Manual for computer code [M]. Lund: University of Lund, 1989. 132-139
    [99]冯健美,高晓兵,屈宗长等.土壤热源热泵地下换热性能分析[J].太阳能学报, 2002, 6 (3): 349-353
    [100]张旭,高晓兵.华东地区土壤及土沙混合物导热系数的实验研究[J].暖通空调, 2004, 34(5): 83-89
    [101]庄迎春,谢康,孙友宏.砂土混合材料导热性能的试验研究[J].岩土力学, 2005, 2 (2): 261-264
    [102]于明志,方肇鸿.现场测试地下岩土平均热物性参数方法[J].热能动力工程, 2002, 9(5): 489-492
    [103]余传辉.地下土壤导热系数计算方法及结果分析: [硕士学位论文].吉林:吉林大学, 2004
    [104]马志同.浅层岩土热物性参数测量仪的研制: [硕士学位论文].北京:中国地质大学, 2006
    [105] Zogou O, Stamatelos A. Effect of climatic conditions on the design optimization of heat pump systems for space healing and cooling effect of climatic conditions on the design optimization of heat pump systems for space heating and cooling [J]. Fuel and Energy Abstracts, 1998, 39(3): 216
    [106] Sanlcaranarayanan K P. Modeling, verification and optimization of hybrid ground source heal pump systems in EnergyPlus [D]. Oklahoma: Oklahoma State University, 2005
    [107] Andrews J W, Metz P D. Computer simulation of ground coupled storage in a series solar assisted heat pump system [R]. Electric Power Research Institute (Report) EPRI EA, 1979. 787-791
    [108] Kavanaugh S P. A design method for hybrid ground-source heat pumps [J]. ASHRAE Transactions, 1998, 104(2): 691-698
    [109] Gilbreath C S. Hybrid ground-source heat pump systems for commerical applica -tions [D]. Alabama: University of Alabama, 1996
    [110] Kavanaugh S P, Rafferty K. Ground-source heat pumps: Design of geothermal systems for commercial and institutional buildings [M]. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 1997. 163-172
    [111] Gary P, William S. Performance of a hybrid ground-coupled heat pump system [J]. ASHRAE Transactions, 1998, 104(1): 763-770.
    [112] Yavuzturk C, Spiltler J D. Comparative study to investigate operating and control strategies for hybrid ground source heat pump systems using a short time-step simulation model [J]. ASHRAE Transactions, 2000, 106(2): 192-209.
    [113] Chiasson A D, Yavuzturk C. Assessment of the viability of hybrid geothermal heat pump systems with solar thermal collectors [J]. ASHRAE Transanctions 2003, 109 (2): 487-499.
    [114] Chiasson A D, Spitler J D, Rees S J et al. A model for simulating the performance of a shallow pond as a supplemental heat rejecter with closed-loop ground-source heat pump systems [J]. ASHRAE Transactions, 2000, 106(2): 107-121
    [115]杨卫波.太阳能——土壤源热泵系统(SESHPS)的理论研究: [硕士学位论文]。青岛:青岛理工大学, 2004
    [116]余延顺.寒区太阳能-土壤源热泵系统运行工况模拟研究: [硕士学位论文]。哈尔滨:哈尔滨工业大学, 2001
    [117]黄丽君.寒区单栋住宅应用太阳能-土壤源热泵的模拟研究: [硕士学位论文]。哈尔滨:哈尔滨工业大学, 2003
    [118]余延顺,马最良.土壤蓄冷与释冷过程的模拟研究[J].太阳能学报, 2005, 26(4): 487-492
    [119]范蕊.土壤蓄冷与热泵集成系统地埋管热渗耦合理论与实验研究: [博士学位论文]。哈尔滨:哈尔滨工业大学, 2006
    [120]王勇.动态负荷下地源热泵性能研究: [博士学位论文]。重庆:重庆大学, 2006
    [121] Bose J E, Parker J D, McQuiston F C. Design/data manual for closed-loop ground -coupled heat pump systems[R]. Atlanta: Oklahoma State University for ASHRAE, 1985. 76-81
    [122] Caneta Research Inc. Commercial/institutional ground-source heat pump enginner -ing manual [M]. Atlanta: ASHRAE, 1995. 351-354
    [123] Wang X, Cheng L. Three-dimensional simulation of a side discharge into a cross channel flow [J]. Computers and Fluids, 2000, 29(4): 415-433
    [124]陶文铨.数值传热学[M]. (第二版).西安:西安交通大学出版社, 2001. 349-351
    [125] Launder B E, Spalding D B. The numerical computation of turbulent fows [J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3: 269-89.
    [126]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社, 2004. 214-215
    [127] Wooding R A. Steady state free thermal convection of liquid in a saturated permeable medium [J]. Journal of Fluid Mech, 1957, (2): 273~285
    [128] Nield D A. Modeling high-speed flow of a compressible fluid in a saturated porous medium [J]. Transport in Porous Media, 1994, (14): 85~88.
    [129] Nield D A. Effects of local thermal non-equilibrium in steady convection processes in a saturated porous medium: forced convection in a channel [J]. Journal of Porous Media, 1998, (1): 181~186
    [130]王松平,陈清林,尹清华等.强化对流传热场协同唯象机制及其控制[J].工程热物理学报, 2004, 25(1): 97-99
    [131] Bejan A, Lorente S. Constructal multi-scale and multi-objective structures [J]. International Journal of Energy Research, 2005, 29(7): 689-710
    [132] Bejan, A. Constructal theory: Tree-shaped flows and energy systems for aircraft [J]. Journal of Aircraft, 2003, 40(1): 43-48
    [133] Bejan, A. Designed porous media: Maximal heat transfer density at decreasing length scales [J]. International Journal of Heat and Mass Transfer, 2004, 47(14): 3073-3083
    [134] Guo Z Y, Wang B X. A novel concept for convective heat transfer enhancement [J]. International Journal of Heat Mass Transfer, 1998, 41 (12) :2221-2225
    [135]过增元.对流换热的物理机制及其控制:速度场与热流场的协同[J].科学通报, 2000, 45(19): 2118-2122
    [136]过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社, 2004. 259-261
    [137]於仲义,胡平放,袁旭东等.混合式地源热泵系统优化设计[J].暖通空调, 2007, 37 (9): 105~109
    [138] Zhongyi Yu, Xudong Yuan, Bin Wang. Optimal design for a hybrid ground-source heat pump [C]. // The 6th International Conference for Enhanced Building Operations (ICEBO), 2006. Vol.Ⅷ-11-5
    [139]於仲义,胡平放,徐玉党等.现场浅层岩土热物性测试装置的研制[C]. //湖北省暖通空调制冷及热能动力学术年会论文集, 2007. 268-270
    [140]於仲义,胡平放,徐玉党等.地源热泵单位井深换热量测试与分析[C]. //湖北省暖通空调制冷及热能动力学术年会论文集, 2007. 238-241
    [141] Bokanowski Olivier, Lemou Mohammed. Fast multipole method for multivariable integrals [J]. SIAM Journal on Numerical Analysis, 2005, 42(5): 2098-2117.
    [142] Rudberg E, Salek P. Efficient implementation of the fast multipole method [J]. Journal of Chemical Physics, 2006, 125(8): 84~106
    [143] Bandyopadhyay A K, Tomassoni C, Mongiardo M et al. Generalized multipole technique without redundant multipoles [J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2005, 18(6): 413-427
    [144]奥齐西克.热传导[M].俞昌铭译.北京:高等教育出版社, 1983. 225-226
    [145]邵惠民编著.数学物理方法[M].北京:科学出版社, 2003. 438-443
    [146]张洪济.热传导[M].北京:高等教育出版社, 1992, 325-327
    [147] Hellstrom. Ground heat storage, Thermal analysis of duct storage systems [D]. Lund: University of Lund, 1991
    [148] INcopera F, Dewitt D. Introduction to heat transfer [M]. Newyork: John Wiley and Sons, 1996. 183-184
    [149] Bernier M A. Ground-coupled heat pump system simulation [J]. ASHRAE Transa -tions, 2001, 107(1): 605-616
    [150] Eskilson P, Claesson J. Simulation model for thermally interacting heat extraction boreholes [J]. Numerical Heat Transfer, 1988, 13(2): 149-165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700