柴达木盆地贝壳堤剖面有机分子化石与沉积环境
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚洲中部干旱区是世界上最大的非地带性温带干旱区,这里不但生态环境脆弱,气候环境变化剧烈,并对全球变化和人类活动响应敏感。青藏高原东北部的柴达木盆地,正处于此干旱区的中心,控制和影响我国气候系统的西风带、东亚季风和西南季风也交汇于此处,对于区域和全球气候变化响应敏感。有证据表明,此区地面覆盖变化(植被、雪盖等)和产生的巨量粉尘不但影响着区域乃至北半球的太阳幅射平衡,而且大气粉尘还影响海洋生物生产力并进而影响大气CO_2变化,是对由于温室气体效应导致全球变暖响应最强烈的地区之一。因此对柴达木盆地古环境、古气候变化的研究将有助于加深对亚洲中部干旱区对全球变化的响应和影响的理解。深入的研究中国西部、特别是青藏高原东北缘干旱、干寒区的气候变化具有十分重要的理论价值。
     为此,本论文选取柴达木盆地察尔汗湖贝壳堤剖面为研究对象,通过对此剖面分子化石、地球物理和地球化学指标的分析,结合AMS 14-C和常规14-C的年代控制,参考剖面中大量出现的贝壳化石瓣鳃类种现代的生长环境调查,重建了察尔汗盐湖晚更新世期间古环境变化的历史。本论文的主要结论和认识如下:
     1、贝壳堤剖面的正构烷烃显示,在39.6-35.5kaBP间,成熟度较高,低等菌藻类和水生生物来源的烃类相对丰度较高,可能指示湖泊发育早期外源较成熟有机质的输入占有较大的贡献,湖泊早期沉积的有机质中有一定的内源菌藻类和水生生物的参与,有机质以湖泊周边发育的木本植物为主要来源。在35.5-17.1kaBP间,成熟度较低,显示出湖泊发育和晚期沉积过程中,由于环境条件的变化,周边植被由木本退化为草本,显示出以草本植物为主要来源的趋势,有机质主要为湖泊发育时期沉积形成的。姥植比从剖面底部到顶部呈逐渐减小的趋势,表明湖泊沉积过程中还原环境的加强,显示了湖泊发育晚期逐渐咸化的过程。
     2、贝壳堤剖面湖相沉积还存在着特殊的含季碳长链支链烷烃类生物标志化合物。已鉴定5,5-二乙基支链烷烃、5-丁基,5-乙基支链烷烃、5-丁基,5-乙基支链烷烃系列三个(A-C)系列;其分布特征是:A、C系列为奇数碳分布,B系列为偶数碳分布。其相对丰度表现为A>B>C。A系列的高值区域对应于B、C系列的高值区域,这些特征指示它们来自同一生物源。而且根据在湖泊发育过程中A系列丰度较低,而在湖泊逐渐咸化的过程中A系列丰度增高,认为该系列化合物有可能来自更适宜湖泊咸化过程中所存在的某种菌藻类。同时,A系列主峰优势指示了湖泊早期输入的有机质成熟度较高,在湖泊晚期低成熟有机质相对富集,其主峰碳有向高碳数转移的趋势,认为A系列主峰的变化具有一定的古环境指示意义。剖面中A25/nC25变化有一定的规律,即在湖泊发育过程中A系列分布特征存在明显差异,表明这类支链烷烃的分布特征可能记录了湖泊演化的环境信息。
     3、贝壳堤剖面高分辨率的物理指标和化学指标揭示了湖泊演化的历史,39.6-35.5kaBP,为湖泊的发育时期,约39.2 ka BP左右湖水达到剖面处,35.5-33.3 ka BP,湖泊较前期退缩,区内温度较高,要远远高于现代。33.3-27.1 ka BP,湖泊水位虽有波动,但相对较高,此时间为区内水热配置最佳的时期,最高湖面也出现在此期。27.1-18.1 kaBP,气候温暖,湖泊开始退缩,自18.1 ka BP开始,湖泊快速的盐化,退出剖面点所在的位置,之后再也没有扩张至剖面所代表的范围。
     4、通过对瓣鳃类现生种的生长环境调查,可以确定剖面中大量出现的贝壳化石揭示了剖面所记录的湖泊沉积段温度较高,结合柴达木盆地现代的降水与温度资料,在35.5-17.5 ka BP期间,温度要比现代高出5-11℃;降均降水量增加600-800mm,与现代的环境截然不同。剖面的介形虫组合特征也表明,自38.2ka BP,湖泊开始形成,
The arid central Asia is the biggest non-zonal aid area in temperate zone on earth. The area has not only a fragile eco-environmental system with a changeable climate, but also is sensitive to the human induced global changes. Basin, which is situated at the northeastern Tibetan Plateau, is in the central part of this arid area, and is the conjunction area among the Westerly jet, southeastern Asia Monsoon and Southwestern Asia Monsoon that influence the climate of China and therefore, it is very sensitive to the regional and global changes, at the same time, the study results already show that the land surface changes in the area and huge amount of dust inputs into the atmospheric system not only influences isolation equilibrium and the marine life productivity, further influence the content of atmospheric CO2, the area is one of the most sensitive area that strongly response to human induced global warming. Detailed researches can promote our understandings of the climate change in the central Asia to the global changes and the mechanisms behind these changes. The study on the climate change history in the arid-cold area of the northeastern Tibetan Plateau is of great theoretical and applied importance.For these reasons, this thesis concentrate our attention on the Shell Bar section at the southeastern Cha'erhan salt lake, Qaidam Basin, based on the detailed discussions of the dating and chronology establishment, through analyses on the biomarkers of the organic matters, sedimentological characteristics and geochemical analyses, with the reference of the eco-climatic backgrounds of the living cubicula, ostrucod assemblages in the samples, the climate-environmental change history is reconstructed and the main results can be summarize as follows:1. the alkanes of the Shell Bar section show that between 39.6ka BP and 35.5kaBP, the maturity of the organic matter is high, the alkenes originated from the bacterial and alga, and water living creature are abundant, which implies that the main organic matters in this part of the section comes from the old materials with a high maturity organisms, and together with some lake organic matters. It indicates a main material input into the lake from the outside. Between 35.5 and 17.1kaBP, the maturity of the organic mater is low, implying that the degrading of the vegetations in the surrounding area of the lake that dominated by the grasses and the organism in the sediments originated mainly from lake itself. The Pr/Ph ratio is reduced from the lower part of the section to the upper part, which shows the reduction in the lake system increased and the saltification of the lake water in the later of the lake evolution history.2. from samples of the shell bar section, the branched aliphatic alkenes with quaternary substituted carbon atom (BAQCs) is identificated. It includes 5,5-diethylakanes of series A, 6,6-diethylakanes of series B and 5-butyl, 5-ethylakanes of series C;among them, A and C are the odd carbon number distribution pattern while B is of even carbon number distribution pattern and their abundant is A>B>C. The high value district of the series A corresponds to the high value of the B and C, indicating they share a similar source. Because the abundant of a series is lower in the earlier of the palaolake evolution than the late period, it can deduced that these three series originated most likely from kinds of bacteria and/or alga living in the
    warm mesohaline waters. This is of great importance to the palaoenvironmental reconstruction because such kind of bacteria and alga are extremely sensitive to the environments. At the same time, A25/nC25 ratios change systematically in the section and possibly bearing the environmental information of the lake evolution process.3.the sedimentary and geochemical indices of the samples from the Shell Bar section show the palaolake evolution processes, that are from 39.6 to 35.5ka BP is the period of lake formation, from 35.5-33.3ka BP the lake level was high and stable, temperature in the area was more warm-humid than that of today. The lake level reached it maximum between 33.3 and 27.1ka BP, both temperature and precipitation were higher than today. The living creatures were blooming and the spices are abundant. Between 27.1 and 18.1ka BP, the climate was still warm, but the lake level started to lowering, most likely is because of the reduction of the precipitation amount and the deterioration of the environments. Start from 18.1ka BP, the lake retreated abruptly with a very strong increase of the evaporation, resulted in the salt formation. Then the lake shrank further and never reached the level again.4. Based on the existence of the fossil cubicula and their living climate backgrounds, it can be deduced that between 35.5 and 17.5 ka BP the paleoclimate recorded by the Shell Bar section from the Cha'erhan was 5- 11°C higher and the precipitation was 600-800mm more than that of today, it means that the climate was completely different from that of today. The ostracod assemblages reveal that salt degree was higher in earliest stage of the lake formation and then reduced very much along with the fresh water input. The lake level increased continuously along with the increase of the water input amount from both the precipitation and river water from the surrounding mountains.5.Based on the regional correlations between elevated high Qaidam Basin and lower Tengger desert, it show a similar evolution patter because in both areas the palaolake level started to increase and lake areas started to advance. The climate reconstructed in both areas show that it was warm and humid between 35 and 21ka BP, with a substantial increase of the temperature and precipitation, especially precipitation, and resulted in high lake levels in both areas. The study results from the separated geological evidences prove that palaolake in such different areas not only posses a similar evolution pattern but also started synchronously, imply the climate change resulted from the regional changes which links to global changes, providing new data for understanding the mechanisms of the climate change.
引文
1. Adam P, Nouvelles structures organo-soufrees d'interet geochimique: Aspects moleculaires et macromoleculaires. Ph.D. Thesis, Universite Louis Pasteur, Strasbourg, 1991 An Z. S.,Wu X. H.,Wang P. X., et al., Changes in the monsoon and associated environmental changes in China since the last interglacial. In:Liu T S ed.Loess, Environmental and Global change. Beijing: ScienCe Press, 1990, 1-29
    2. An Z.S., Porter, S.C., Millennial-scale climatic oscillations during the last interglaciation in central China. Geology, 1997, 25(7):603-606
    3. Arishnamurthy R V, et al., Palacoclimatic changes deduced from 13C/12C and C/N ratios of Karewa lake sediments.. Nature, 1986,323:150
    4. Arouri K, Conaghan P J, Walter M R, Bischoff G C O, Grey K, Reconnaissance, sedimentology and hydrocarbon biomarkers of Ediacarian microbial mats and acritarchs, lower Ungoolya Group, Officer Basin. Precambrian Research, 2000.100:235-280
    5. Barber K. E.,Chambeers F. M.,Maddy D.,Stoneman R.,Brew J. S., A sensitive high-resolution record of late Holocene climatic change from a raised bog in northern England[J]. Holocene, 1994,4:198-205
    6. Bard E.,Bostek F.,Sonzogni C., Inte the mispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature, 1997,385:707-710
    7. Barron, E., and Pollard, D., High-resolution climate simulations of Oxygen isotope stage 3 in Europe. Quaternary Research, 2002,58, 296-309
    8. Bautista J.M., Gonzalez-Vila F.J., Martin F.et al., Supercritical-carbon-dioxide extraction of lipids from a contaminated soil. Journal of Chromatography A., 1999, 845:365-371
    9. Bender, M., Sowers, T., Dickson, M,L., Orchardo, J., Grootes, P., Mayewski, P.A., and Meese, D.A., Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature, 1994;372, 663-666
    10. Bernd R. T. Simoneit, R. E. Cox et al., Organic matter of the troposphere. Lipids in harmattan aerosols of Nigeria. Atmospheric Environment, 1998, 22(5):983~1004
    11. Bond G, Shower W, Cheseby M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., Bonani, G., A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 1997, 278:1257-1266
    12. Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., and Ivy, S., Evidence for massive discharges of icebergs into the North- Atlantic ocean during the last glacial period. Nature, 1992,360:245-249
    13. Boon J. J., Rijpstra, W. I. C., de Lange, F., de Leeuw J.W., Yoshioka M. and Shimizu Y., Black sea a-steroi molecular fossil for dinoflageliate blooms. Nature, 1979,Vol.277,125-127
    14. Bourdon S., Laggoun-Defarge F., Disnar J. et al., Organic matter sources and early diagenetic degradation in a tropical peaty marsh (Tritrivakely, Madagascar).Implications for environmental reconstruction during the Sub-Atlantic. Organic Geochemistry, 2000, 31:421-438
    15. Bozkurt S.,Lucisano M., Moreno I. et al., Peat as a potential analogue for the long-term evolution in landfills. Earth-Science Reviews, 2001, 53:95-147
    16. Brassell S. C. Engel M. H.,Macko S A., Applications of biomarkers for delineating marine paleoclimatic fluctuations during the pleistocene[A]. Organic Geochemistry:principles and applications[M]. Newyork: plenum Press, 1993,699-738
    17. Brassell S. C.,Eglinton G.,Marlowe I.T.,et al, Molecular stratigraphy:A new tool forclimatic assessment[J]. Nature, 1986,320:129-133
    18. Brincat D.,Yamada K.,Ishiwatari R., et al., Molecular isotopic stratigraphy of long-chain n-alkanes in lake Baikal Holocene and glacial age Sediments. Organic Geochemistry, 2000,31 : 287-294
    19. Brooks J.D., Gould K., Smith J., Isoprenoid hydrocarbons in coal and petroleum. Nature, 1969, 222:257-259
    20. Bull I.D.,van Bergen P.F., Nott C.J. et al., Organic geochemical studies of soils from the Rothamsted classical experiments-V. The fate of lipids in different long-term experiments. Organic Geochemistry, 2000, 31:389-408
    21. Cayet C., Lichtfouse E., δ 13C of plant-drived n-alkanes in soil particle-size fractions. Organic Geochemistry, 2001, 32:253-258
    22. ChaPman M. R,Shackleton N. J,Zhao M. et al., Raunal and alkenone reconstructions of subtropical North Atlantic surface hydrography and Paleotemperature over the last 28 ka. Paleocea- nography, 1996,11:343-357
    23. Chappellaz, J., Brook, E., Blunier, T., Malaize, B., CH4 and delta O-18 of O-2 records from Antarctic and Greenland ice: A clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice cores. Journal of Geophysical Research-Oceans, 1997,102(C 12): 26547-26557
    24. Chen T., Qin D.H., Li J.F.,et al., Study on climatic significance of fir tree-ring δ513C from Zhaosu county of Xinjiang Region, China[J]. Journal of Glaciology and Geocryology, 2000, 22(4): 347-352
    25. Chen, F.H., Bloemendal, Feng, Z.D., Wang, J.M., Parker, E., Guo, Z.T., East Asian monsoon variations during the last interglacial: evidence from the northwestern margin of the Chinese loess plateau. Quaternary Science Reviews, 1999, 18(8-9): 1127-1135
    26. Chen, F.H., Bloemendal, J., Wang, J.M., Li, J.J., Oldfield, F., Ma, H.Z., High-resolution multi-proxy climate records from Chinese loess: evidence for rapid climatic changes between 70ka and 10ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 130:323-335
    27. Chen, J. S. et al., Li, L., Wang, J. Y., Barry, D. A., sheng X. F., Gu, W. Z., XIA ZHAO* & Chen L., Water resources: Groundwater maintains dune landscape. Nature, 2004,432-459
    28. Chen, K. and Bowler, J.M., Late Pleistocene evolution of salt lakes in the Qaidam Basin, Qinghai Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 54:87-104
    29. Crafenstein U V. Erienkeuser H., Kleinmann A, et al., High-frequency climatic oscillations during the last deglaciation as revealed by oxygen-isotope records of benthic organisms (Ammersee, Southern Germany). Journal of Paleolimnology, 1994, 11 : 349-357
    30. Cranwell P A. Eglinton G, Robinson N., Lipids of aquatic organis ms as potential contributors to lacustrine sediments Ⅱ. Organic Geochemistry, 1987, 11(6):513~527
    31. Cranwell P. A., Chain-length distribution of n-alkanes from lake sediments in relation to postglacial environmental change[J]. Freshwater Biol, 1973,3:259-265
    32. Crichton,J. G. & Condle,K. C. , Trace elements as source indicators in cratonic sediments: A ease study from the early Proterozoic Libby Creek Group,Southeastern Wyoming.. The Journal Of the GeoLogy, 1993,101:319-330
    33. D.H.Williams, I. Fleming Spectroscopic Methods in Qrganic Chemistry.北京:世界图书出版公司,1998,5th Ed
    34. Dam, R. A. C., van tier Kaars, Kershaw, A. P., Introduction-Quaternary environmental change in the Indonesia region. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001,171, 91-95
    35. Dansgaard, W., Johnsen, S.J., Clausen, H.B, Dahljensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjornsdottir, A.E., Jouzel, J., Bond, G., Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 1993, 364:218-220
    36. Davison W., Iron and manganese in lakes. Earth Science Review, 1993, 34:119-163
    37. Degen,E.T., Biogeochemistry of stable carbon isotope. In : G.Eglinton, eds. Organic Geochemistry.Berlin: Springerverlag, 1969,304-329
    38. Deines P., The isotopic composition of reduced organic carbon[A].. Fritz P, Fontes J C. Handbook of Environmental Isotopic Geochemistry[C]. Amsterdan Elsevier, 1980,329-406
    39. Denbicki H. J. 3Possible ecological and environmental significance of the predominance of even-carbon number C20-C30 n-alkanes[J].. Gechim Cosmochim Acta, 1976, 40:203-208
    40. Derenne S, Largeau C, Berkaloff C, First example of an algeanan yielding aromatic-rich pyrolysate:possible geochemical implications on marine kerogen formation. Organic Geochemistry, 1996. 24:617-627
    41. Didky B. M., Organic geochemical indicator of paleoenvironment condition of sedimentation [J] . Nature, 1978, 272:216-222
    42. Dill H, Teschner M, Wehner H, Petrography, inorganic and organic geochemistry of lower Permian carbonaceous fan sequences (Brandschiefer Series) -Federal-Republic-of-Germany-Constraints to their Paleogeography and assessment of their source rock potential. Chemical Geology, 1988.67:307-325
    43. Duan Y., Ma L.H., Lipid geochemistry in a sediment core from Ruoergai Marsh deposit (Eastern Qinghai-Tibet plateau,China). Organic Geochemistry, 2001, 32:1429-1442
    44. Duan Y.,Wen Q.B., Zheng G.D. et al., Isotopic composition and probable origin of individual fatty acids in modern sediments from Ruoergai Marsh and Nansha Sea, China. Organic Geochemistry, 1997, 27:583-589
    45. Dupont L., Mook W. G., Palaeoclimate analysis of 2H/1H ratios in peat sequences with variable plant composition [J]. Chem. Geol., 1987, 66:323-333
    46. E.D.Lee, W. Muck et al. J.Am.. Chem.Sco., 1989, 111(13): 4600-4604
    47. E. 德比希尔,J.绍,王靖泰,柴达木盆地达布逊湖1号孔古地磁年代。冰川冻土,1985,7(3):229-232
    48. Eglinton G. and Calvin M., Chemical fossils. Sci. Am., 1967, 216:32-43
    49. Eglinton G.,Hamilton R. J., The distribution of alkanes[A]. Swain T. Chemistry plant taxonomy[M]. New York:.Acade mic Press, 1963, 187-217
    50. Evershed R. P., Dudd S. N., Charters S., et al., Lipids as carriers of anthropogenic signals fpom prehistory. Phil Trans R Soc Land, 1999, 354:19-31
    51. F.W. MeLafferty, F.Turecek. Interpretation of Mass Spctra, 1993, 4th Ed.,Uni.Sci.Books, California
    52. Fan P.,Zhang B.S., Yu X.K., Biomarkers from recent salt-lake sediments. Advance In Earth Sciences, 1994,9(3):6-17
    53. Farqubar G.D., O'Leary M. H.,Berry J. A., On the relationship between carbon isotope discrimination and interceliular carbon dioxide concenttration in leaves. Australian Journal of Plant Physiology, 1982, 9:121-137
    54. Farquhar G. D., Ehleringer J. R., Hubick K. T., Carbon isotope discrimination and photosynthesis[J]. Annu.Rev.Plant Physiol. Plant Mol. Biol., 1989, 40:503-537
    55. Feng, Z. D., Gobi dynamics in the Northern Mongolian Plateau during the past 20000+ yr: preliminary results. Quaternary International, 2001, 76/77: 77-83
    56. Flaviano C, Leberre F, Derenne S, Largeau C, Connan J, First indications of the formation of kerogen amorphous fractions by selective preservation-Role of nonhydrolyzable macromolecular constituents of eubacterial cell-walls. Organic Geochemistry, 1994. 22: 759-771
    57. Flückiger, et al, N2O and CH4 variations during the last glacial epoch: insight into global processes. Global Biogeochemical Cycles, 2004,vol 18, GB 1020
    58. Francey R. J., Farquhar G D., An explanation of 13C/12C variations in tree rings[J]. Nature, 1982, 297:28-31
    59. Francisco J. Gonzalez-Vilia, Oliva Polvillo, et al., Biomarker patterns in a time~ resolved holocene/terminal Pleistocene sedimentary sequence from the Guadiana river estuarine area (SW Portugal/Spain border). Organic Geochemistry, 2003, 34:1601-1613
    60. Freeman and Colarusso., Molecular and isotopic records of C4 grassland expansion in the late Miocene. Geochimica et Cosmochimica.Acta, 2001, 65(9): 1439-1454
    61. Freeman K. H.,Hayers J. M., Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons[J]. Nature, 1990,343:254-256
    62. Fry B,Sherr E B, Delta 13Cmeasurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib Mar Sci, 1984,27:13-47
    63. Fu Jiamo,Sheng Guoying and Liu Dehan., Organic Geochemical Characteristics of major types of terrestrial petroleum source rocks in China. In: Lacustrine Source Rooks (eds.Kelts,K.,Fleet,A.J. and Talbot, M.)Blackwells. Oxford., 1988,279-290
    64. Fu Jiamo,Sheng Guoying,Pcng pingan,Brassoll,S.C Eglinton,G. and Jiang Jigang, Poculiaritics of salt lake sediments as potential,source rocks in China In:Advances in Organic Goochemistry 1985(eds. Leythaeuser, D. and Rullkotter, J.). Org. Geochem, 1986,No. 10,119-126
    65. Gasse F., Arnold M., Li B. Y., et al., A 13000-year climate record from western Tibrt. Nature, 1999, 353(24): 742-745
    66. Gerard J. M.,Versteegh R. R.,De Leeuw J W, et al., U37K'values for Isochrysis as a function of culture temperature,light intensity and nutrient concentrations[J]. Organic Geochemistry, 2001,32:785-794
    67. GerLing T. E., Quade J., Wang Y., et al., Carbon isotopes in soil and Palaeosoils as ecology and palaeoecology indications[J]. Nature, 1989, 341:138-139
    68. Greenwood P F, Arouri K R, et al., Abundance and geochemical significance of C2n dialkylalkanes and highly branched C3n alkanes in diverse Meso-and Neoproterozoic sediments. Organic Geochemistry, 2004, 35:331-346
    69. GRIP Members, Climate instability during the last interglacial period recorded in the GRIP ice core. Nature, 1993,364:203-207
    70. Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., and Jouzel, J., Comparison of oxygen-isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 1993,366:552-554
    71. Guo, Z.T., Peng, S.Z., Wei, L.Y., Liu, T.S., Weathering Signals of Millennial-scale oscillations of the eastern Asian summer monsoon over the last 220 ka. Chinese Science Bulletin, 1999,44(Sup.1):20-25
    72. Guo, Z.T., Petit-Maire, N., Kropelin, S., Holocene non-orbital climatic events in present-day arid areas of northern Africa and China. Global and Planetary Change, 2000, 26:97-103
    73. H.C. Zhang, B. Li, M. S. Yang, G. L. Lei, H. Ding, J. Niu,H. F. Fan, W. X. Zhang and F. Q. Chang, Dating paleosol and animal remains in loess deposits. Radiocarbon, 2006,48(1), 1-8
    74. H.C. Zhang, Y.Z. Ma, J.J. Li et., Palaeolake evolution and abrupt climate changes during Last Glacial Period in NW China. Geophysical research Letters, 2001, 28(16): 3203 - 3206
    75. Harry Dembicki, JR.,W.G.Meinschein, Possible ecological and environmental significance of the predominance of even-carbon number C20-C30 n-aikanes. Geochimica et Cosmochimica.Acta, 1976, 40:203-208
    76. Hedges J. I., Hu F.S., Devol A.H., Hartnett, H. E., Tsamakis E., Keil R., Sedimentary organic matter preservation:a test for selective degradation under oxic conditions.. American Journal of Science, 1999, 299:529-555
    77. Hedges J. I.,Mann D. C., The characterization of plant tissues by their lignin oxidation products[J]. Geochim. Cosmochim. Acta, 1979,43:1803-1807
    78. Hernandez, M. E., Mend, R., Peralba, M. C., Jaffe, R., Origin and transport of n-alkan-2-ones in a subtropical estuary., potential biomarkers for seagrass~derived organic matter. Organic Geochemistry, 2001, 32:21~32
    79. Hinrichs K.,Hmeto L. R.,Sylva S., Pmolecular fossil record of elevated mthane levels levels in late pleistocene coastal waters. Science, 2003,299:1214-1217
    80. Hinrichs K.U.,Schneiger R. R.,Muller P. J.,et al., A biomarker perspective on plaeoproductivity variations in two Late Quaternary sediment sections from southeast Atlantic ocean[J]. Organic Geochemistry, 1999,30:341-366
    81. Hiumphrey J D,Ferring C R., Stable isotopic evidence for latest pleistocene and holocene climatic change in North-Central Texas[J]. Quaternary Research, 1994, 41:200-213
    82. Hu J.,Peng P.,Jia G.,et al., Biological markers and their carbon isotopes as an approach to the paleoenvironmental recon-struction of Nansha area, South China Sea, during the last 30ka[J]. Organic Geochemistry, 2002,33: 1197-1204
    83. Huang Weiwen., The Prehistoric human occupation of the Qinghai-Xizang Plateau. Gottingen Geographishe Abhandungen, Heft, 1997,95:201-219
    84. Huang Y.,Freeman K. H.,Eglinton T. l.,et al., 13C analyses of individual lignin phenols in the lacustrine environment: A novel proxy for deciphering past terrestrial vegetation changes[J]. Geology, 1999,27:471-474
    85. Huang Y.,Street Perott F.A.,Perrott R. A. et al., Glacial-interglacial environmental changes inferred from molecular and compound-specifiδ13C analyses of sediments from sacred Lake,Mt. Kenya. Geochimica et Cosmochimica.Acta, 1999,63: 1383-1404
    86. Huang Y.,Street Perrott F.A.,Metcalfe S.E. et al., Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science, 2001,293: 1647-1651
    87. Huang,W.P.and Ji,H.X., The climate and uplift of the Qinghai-Xizang (Tibet)Plateau, in the Late Pleistocence and Holocene Geological and Ecological Studies of Qinghai-Xizang Plateau. Science Press, 1981,225-230
    88. Hughen, et al, 14C activity and global carbon cycle changes over the past 50,000 years. Science, 2004,303, 5655
    89. Jaffe, R., Wolff, G. A., Cabrera, A. C., Carvajal-Chitty, H., The biogeochemistry of lipids in rivers from the Orinoco Basin. Geochimica et Cosmochimica.Acta, 1995, 59:4507-4522
    90. Jenkyns H. C.,Forster A.,Schouten S. et al., High temperatures in the late Cretaceous Arctic ocean[J]. Nature, 2004,432:888-892
    91. Jones B F, Bowers C J., Mineralogy and linked chemistry of lake sediments. In: Lerman A (ed.), Lakes: Chemistry Geology Physics. New York: Spinger-Verlag, 1978
    92. Jvillanueva J.,Flores J. A.,Grimalt J. O., A detailed comparison of U37K' and cocolith records over the past 290k years:implications to the alkenone paleotemperature method[J]. Organic Geochemistry, 2002,33:897-905
    93. Kawamura K.,Ishiwatar I. R., Polyunsaturated fatty acids in a lacustrine sediment as a possible indicator of plaeoclimate [J]. Geochimica et Cosmochimica.Acta, 1981,45:149-155
    94. Kenast M.,Steinke S.,Stattegger K. et al., Synchronous troPical South China Sea SST change and Greenland warming during deglaciation. Science, 2001,291:2132-2134
    95. Kenig F, Simons D J H, Crich D, Cowen J P, Ventura G T, Brown T C, Rehbein T, Aikanes with a quaternary carbon centre: a 2, 200 Myr record of sulfide oxidizing bacteria. Geochimica et Cosmochimica.Acta, 2002.66:A393
    96. Kenig F, Simons D J H, Crich D, Cowen J P, Ventura T, Rehbein-Khalily, T., Brown, T.C., Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geologic samples. Proceedings of the National Academy of Science of the USA, 2003. 100: 12554-12558
    97. Kenig F, Sinninghe-Damste J S, Kock-van Dalen A C, Rijpstra W I C, Huc A Y, de Leeuw J W, Occurrence and origin of mono-, di-, and trimethylalkanes in modern and Holocene cyanobacteri mats from Abu Dhabi, United Arab Emirates. Geochimica et Cosmochimica Arab Emirates. Geo chimica et Cosmochimica Acta, 1995.59:2999-3015
    98. Kenig E, Simons D. H., Crieh D,et al., Structure and distribution of branched aliphatic alkanes. with quaternary carbon atoms in Cenomanian and Turonian black shales of Pasquia Hills (Saskatchewan, Canada). Organic Geochemistry, 2005, 36:117-138
    99. Kissin Y V, Feulmer G P, Payne W B, Gas chromatographic analysis of polymethyl-substituted alkanes. Journal of Chromatographic, Science, 1986.24:164-169
    100. Korner Ch., Farquhar G.D., Wong S.C., Carbon isotope discrimination by plants latitudinal and altitudinal trends. Gecologia, 1991, 88:30-40
    101. Kracht O.,Gleixner G., Isotope analysis of pyrolysis products from Sphagnum peat and dissolved organic matter from bog water. Organic Geochemistry, 2000, 31:645-654
    102. Krinner, G., Mangerud, J., et al, Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes. Nature, 2004,427, 429-432
    103. Kuder T.,Kruge M. A., Preservation of biomolecules in sub-fossil plants from raised peat bogsa potential palemnvironmental Proxy [J] . Organic Geochemistry, 1998, 29:1355-1368
    104. L.G.Thompson, T.Yao, M.E.Davis,et al., Tropical climate Instability: The last glacial cycle from a Qinghai-Tibetan icecore. Science, 1997,276:1821-1825
    105. Langbehn, A., Steinhart.H., Biodegradation studies of hydrocarbons in soils by analyzing metabolites formed. Chemosphere, 1995, 30(5):855~868
    106. Lichtfouse E.,Berthier G., Houot S.et al., Stable carbon isotope evidence for the microbial origin of C 14-C 18 n-alkanoic acids in soils. Organic Geochemistry, 1995, 23: 849-852
    107. Liu T. S., Ding Z. L., Stepwise coupling of monsoon circulations to global ice volume variations during the last Cenozoic. Global and Planetary Change, 1993, 7:119-130
    108. Logan G A, Hinman M C, Walter. M R, Summons R E, Biogeochemistry of the 1640 Ma McArthur River(HYC) lead-zinc ore and host sediments, Morthern Territory, Australia. Geochimica et Cosmochimica.Acta, 2001. 65:2317-2336
    109. Lsayeva L.L., In Late Quaternary Environment of the Soviet Union (A.A.Velichko ed.). Longman, 1984, 21-30
    110. Mackenzie,A.S.,Brassell,S.C.,Eglinton,G. and Maxwcll,J R., Chemical fossils-the geological fate of streoids. Science, 1982,Vol.217,491-504
    111. Mangerud, J. et al, The chronology of a large ice-dammed lake and the Barents-Kara ice sheet advances, Northern Russia. Global and Planetary Change, 2001,31,321-336
    112. Mangerud, J., et al, Hugh ice-age lakes in Russia. Journal of Quaternary Science, 2001,16(8), 773-777
    113. Maria E.,Hernandez, Ralph Mead, Maria C.Peralba, Rudolf Jaffe., Origin transport of n-alkane-2-ones in a subtropical estuary: potential biomarkers for seagress-drived organic matter. Organic Geochemistry, 2001, 32:21-32
    114. Mark B. Yunker, Robie W.Macdonald., Alkane and PAH depositional istory, sources and fluxes in sediments from the Fraser River Basin and Strait of Georgia,Canada. Organic Geochemistry, 2003, 34:1429-1454
    115. Maxwell J R, Douglas A G, Eglinton G, McCormick A, The Botryococcenes-Hydrocarbons of novel structure from the alga Botryococcus braunii, Kutzing. Phytochemistry, 1968. 7:2157-2171
    116. McClure,H.A., Radiocarbon Chronology of late Quaternary lakes in the Arabian Desert. Nature, 1976,263:755
    117. Mckirdy, D.M,Cox,R.E volkman,J.K.and Howell.V J., Botryocoocane in a new class of non-marine crude oils. Nature, 1986,Vol.320,57-59
    118. McManus, J.F., Oppo, D.W., Cullen, J.L., A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science, 1999,283(5404): 971-975
    119. Menot G., Burns S. J., Carbon isotopes in ombrogenic peat bog plants as climatic indicators: calibration from an altitudinal transect in Switzerland. Organic Geochemistry, 2001, 32:233-245
    120. Mertz c., K|eber M., Jahn R., Soil organic matter stabilization pathways in clay sub-fractions from a time series of fertilizer deprivation. Organic Geochemistry, 2005, 36:1311-1322
    121. Meyer P A, Ishiwatari R., Lacustrine organic geochemistry:An overview of indicators of organic matter sources and diagnesis in lake sediments. Organic Geochemistry, 1993, 20(7):867~900
    122. Meyers P, et al., An organic carbon isotopic of glacial-postglacial change in armospheric pCO2 in the sediments of Lake Biwa, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993,105:171
    123. Miedema R., Koulechova I.N.,Gerasimova M.I., Soil formation in Geryzems in Moscow district: micromophology, chemistry, clay mineralogy and particle size distribution. Catena, 1999, 34:315-347
    124. Mitra S ,Bianchi T,S Guo L,et al., Terrestrially derived dissolved organic matter in the Chesapeake Bay and the Middle Atlantic Bight. Geochimica et Cosmochimica.Acta, 2000, 64:3547-3557
    125. Mook W G, Bommerson J C,Staverman W H., Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide[J]. Earth Planet Sci Lett, 1974,22(2): 169-176
    126. Morselli L., Setti L., Iannueeilli A. et al., Supercritieal fluid extraction for the determination of petroleum hydrocarbons in soil. Journal of Chromatography A., 1999, 845:357-363
    127. Mycke B, Michaelis W, DegensE T., Biomarkers in sedimentary sulfides of Precambrian age. Organic Geochemistry, 1988. 13:619-625
    128. Nam P., Kapila S., Liu Q. et al., Solvent extraction and tandem dechlorination for decontamination of soil. Chemosphere, 2001, 43:485-491
    129. Nelson B K, Depaolo D J., Compairsion of isotope and petrographic provenance indicatoes in sediments from Tertiary comtinental basins of New Mexico [J]. J Sediment Petrol, 1988,58:348-357
    130. Neunlist S.,Rodier C.,Llopiz E, Isotopic biogeochemistry of the lipids in recent sediments of lake Bled (SloVenia) and Baldeggersee (SwitZerland)[J]. Organic Geochemistry, 2002,33: 1183-1195
    131. Oana S.,Deevey E., Carbon 13 in Lake waters and its Pussible Bearing on Paleolimnology [J]. American Journal of Science, 1960, 258A: 253-272
    132. Pachur, H. -J. and Wünnemann, B., Late Pleistocene Lake Deposits in the Great Sand Sea of Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology (in printing)
    133. Pachur, H.-J. B.Wuennemann.H.Zhang., Lake evolution in the Tengger Desert, Northwestern China, during the Last 40000 years. Quaternary Research, 1995, 44:171-180
    134. Pearson,EJ.,Coplen,T.B., Stable isotope studies of lake.. In : A Lerman.Ed.Lakes : Chemistry, Geology, Physics. New York: Springer—verlag, 1978,235-236
    135. Pendall E., Markgraf V., White J. W.C.et al., Multiproxy Record of Late Pleistocene-Holocene Climate and Vegetation Changes from a Peat Bog in Patagonia. Quaternary Research, 2001, 55:168-178
    136. Person A.,Me Nichol A.P.,Benitez-Nelson B. C., et al., Origins of lipid biomarkers in Santa Monica Basin surface sediment:A case study using compound Specific Δ14C analysis. Geochimica et Cosmochimica.Acta, 2001,65:3123-3137
    137. Peters K.,Moldowan J. M., The Biomarker Guide:Interpreting Molecular Fossils in Petroleum and Ancient Sediments[M]. New Jersey:Prentice Hall, 1993
    138. Philp R.P., Correlation of crude oils from the San Jorges Basin, Argentina. Geochim. Cosmochim.Acta, 1983, 47:267-277
    139. Porter, S.C. and An, Z.S., Correlation between climate events in the North-Atlantic and China during last glaciation. Nature, 1995,375:305-308
    140. Powell T.and Mckirdy D.M., Relationship between ratio of pristane to phytane, crude oil composition and geological environments in Australia. Nature, 1973, 243:37-39
    141. Prins M A, Postma G, Weltje G., Controls on the terrigenous sediment supply o the Arabian Sea during the late Quaternary: The Makran continental slope. Marine Geology, 2000, 169: 351-371
    142. rassell, S.C.,Wardroper, A.M.K.,Thomson,I,D.,Maxwell,J.R.and Eglinton,G., Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments. Nature, 1981 ,Vol.290,693-696
    143. Reddy C.M., Eglinton T. I., Palic R. et al., Even carbon number predominance of plant wax n-alkane:A correction. Organic Geochemistry, 2000,31: 331-336
    144. Rhodes,T.E.,Gasse F.,Lin,R.et al., A late Pleistocene-Holocene lacustrine record from Lake Manas,Zunggar(northern Xinjiang, western China). Palaeogeography, Palaeoclimatology, Palaeoecology, 1996,120:105-21
    145. Rieley G.,Collier R. J.,Jones D. M.,et al., Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds[J]. Nature, 1991,352:425-427
    146. Roberts N., Erol O., de Meester T.and Uerpmann H.P., Radiocarbon chronology of the late Pleistocene Konya Lake. Turkey. Nature, 1979,281:662-664
    147. Roymo, M.E., Ganley, K., Carter, S., Oppo, D.W., McManus, Millennial-scale climate instability during the early Pleistocene epoch. Nature, 1998, 392 (6677): 699-702
    148. Schiegl W. E., Deuterium content of peat as a paleoclimatic recorder[J]. Science, 1972,175:512-513
    149. Schouten S.,Hopmans E. C.,Sinninghe Damste J. S., The effect of maturity and depositional redox conditions on archaeal tetraether lipid paleothermometry[J]. Organic Geochemistry, 2004,35:567-571
    150. Sheng G Y, Cai K Q, Yang X X, et al., Long-chain alkenones in Hotong Qagan Nurlake sediments and its paleoclimatic implications. Chinese Science Bulletin, 1999, 44(3):259-263
    151. Sikes E. L.,Keigwin L. D., A reexamination of northeast Atlantic sea surface temperature and salinity over the last 16 ka. Paleocea-nography, 1996,11:327-342
    152. Simoneit B. R. T., Application of muiecular marker analysis to vehicular exhaust for source reconciliation, Int. j. envir, analyt. Chem., 1985, 22:203~233
    153. Simoneit B. R. T., Cardoso J. N., Robinson N., An assessment of terrestrial higher molecular weight lipid compounds in aerosol particulate matter over the south Atlantic from about 30-70S. Chemosphere, 1991, 23:447-465
    154. Simons D J H, Kenig F, Crich D, Schroder-Adams C J, Significance of novel branched alkanes with quaternary carbon centers in black shales. Geochimica et Cosmochimica.Acta, 2002.66: A718
    155. Stefan Schouten, Sebastiaan W. Rampen, Jan A.J. Geenevasen, Jaap S.Sinninghe Damste., Structural identification of steryl alkyl ethers in marine sediments. Organic Geochemistry, 2005, 36:1323-1333
    156. Stewart G.R., Turnbull M.H., Schmidt S.et al., 13C abundance in plant communities along a rainfall gradiment:A biological indicator of water availability. Australian Journal of Plant Physiology, 1995, 22:51-55
    157. Street-Perrott F. A., Huang Y., Perrott A, et al., The impact of lower atmospheric CO2 on tropical mountain ecosystems. Science, 1997, 278:1422-1426
    158. Stuiver M,Yang I C,Denton G H, et al., Climate versus changes in13 C content of the organic component of lake sediments during the late quaternary. Quaternary Research, 1975,5:251-262
    159. Stuiver M., Braziunas T. F., Tree cellulose 13C/12C iostope ratio and climatic change. Nature, 1987, 328:58-60
    160. Talbot M R. , A review of the palaeo—hydrological interpretation of carbon and oxygen ratios in primary lacustrine carbonates. Chemical Geology, 1980,80:261-299
    161. Taylor S R,Mclennan S M., The Continental Crust: Its Composition and Evolution [M]. Oxford: blackwell, 1985.1-328
    162. Ten Haven,H.L.,de Leeuw, J.W and Schenck,P.A., Organic geochemical studies of a Messnian evaporitic basin, northern Apennmes(Italv). Ⅰ-Hydrocarbon biological markers for a hyperialme environment, Geochim. Cosmochem. Acta., 1985, 49:2181-2191
    163. Ten Haven.H.L. de Leeuw,L.W.Sinninghe Damste,J.S.,Schenck, P.A., Palmer,S.E and Zumbergc J.E.(1988)., Application of biological marker in the recongnition of palaeohypersaline environment:In Lacustrine Petroleum Source Rocks (Eds.K. Kelts,A.Fleet and Talbot,M.).Blackwell. Oxford., 123-130
    164. Tissot.B.p., Pelet,R.,Roucache,J.and Combaz: A., Alkanes as geochemical foosils indicators of geological environments. In:Advance in Organic Geochemistry(Eds.campos R.and Goni,J.). Enadimsa Madrid, 1977, 117-154
    165. Van Andel, T. h., Reconstructing climate and landscape of the last midpleniglacial in Europe-the Stage 3 Project. Quaternary Research, 2001,57, 2-8
    166. Van Geel B, Middeldorp A. A., Vegetational history of Carbury Bog (Co. Kildare, Ireland) during the last 850 years and a test of the temperature indicator value of 2H/1H measure ments of peat samples in relation to historical sources and meteorological data [J]. New phytologist, 1988, 109:377-392
    167. Vanaarssen B G,Alexander R,Kagi R. I., Higher Plant biomarkers reflect Palaeovegetation changes during Jurassic times. Geochimica et Cosmochimica.Acta, 2000,64:1414-1424
    168. Villanueva J.,Grimalt J. O.,Cortijo E. et al., A biomarker approach to the organic matter deposited in the North Atlantic during the last climatic cycle. Geochimica et Cosmochimica.Acta, 1997,61:4633-4646
    169. Volkman J. K., Barrett S. M., Blackburn S. I., et al., Alkenones in gephyrocapsa oceanica: implications for stuides of paleoclimate. Geochimica et CosmochimicaActa, 1995, 59: 513-520
    170. Wang Suming, Zhang Zhenke, New progress of lake sediments and environmental changes research in China. Chinese Science Bulletin, 1999, 44(19): 1744-1754
    171. Wang,Y.J.,Cheng,H.,Edwards,R. L.,An,Z.S.,Wu,J.Y., Shen, C.-C, Dorale, J. A., A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science, 2001,294,2345 - 2348
    172. Wenbo Yang, Ronald J. Spencer, H.Roy Krouse, et.al, Stable isotopes of lake and fluid inclusion brines, Dabusn lake, Qaidam Basin, western China: Hydrology and paleoclimatology in arid environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995,117:279-290
    173. Wu J. L., Composition of 180 and 13C in various carbonates of core RM in the Zoige basin and climatic significance. Chinese Geographical Science, 1996, 17(1): 18
    174. Wunnemann, B., Pachur, H.J. & Zhang, H. C, Climatic and environmental changes in the deserts of Inner Mongolia, China, since the Late Pleistocene. In Quaternary Deserts and Climatic Changes (Alsharhan, A. S., Glennie, K. W., Whittle, G. L. & Kendall, C. G. St. C. eds.), Balkema, Rotterdaman and Brookfield, 1998,381-394
    175. Xie S C, Evershed R P., Peat molecular fossils recording paleoclimatic matter in replacement. Chinese Science Bulletin, 2001, 46(20): 1749-1752
    176. Xie S. C, Yi Y, Huang J. H., et al., Lipid distribution in a subtropical southern China stalagmite as a record of soil ecosystem response to paleolimate change. Quaternary Research, 2003c, 60:340-347
    177. Xie S. C.,Lai X.L.,Yi Y. et al., Moleecular Fossils in a Pleistocene river terrace in sollthern China related to Paleoclimate variation. Organic Geochemistry, 2003b,34: 789-797
    178. Xie S. C.,Yao T.,Kang S.et al., Geochemical analysis of a Himalayan snowpit profllerlmPlication for atmospheric pollution and climate. Organic Geochemistry, 2000b,31: 15-23
    179. Xie S.,Nott C. J.,Avsejs L. A.,et al., Palaeoclimate records in com-Pound-sp ecific δD-values of a lipid biomarker in ombrotrophlc peat. Organic Geochemistry, 2000a,31: 231-235
    180. Xie S.C., Chen F, H., Wang Z. Y. et al., Lipid distribution in loess~paleosol sequences from Northwest China. Organic Geochemistry, 2003d, 34(8): 1071-1079
    181. XIE S.C., YI Y.,Liu Y.Y. et al., The Pleistocene vermicular red earth in South China signaling the global climatic change:The molecular fossil record. Science in China, 2003a, 46(11): 1113-1120
    182. Yamamoto S, Ishiwatari R, Machihara T, Morigana S., Characterization of hydrocarbons from sediments of the Panama Basin (ODP Hole 677A and 678B). Re earches in Organic Geochemistry (Journal of the Japanese Association of Organic-Geochemists ), 1990. 7:41 -42
    183. Zhang Hucai, Ma Yuzhen, Pen Jinlan, Li Jijun, Cao Jixiu, Chen Guangjie, Fang Hongbing, Mu Defen, H. J. Pachur, B. Wiinnemann & Feng Zhaodong, Palaeolake and palaeoenvironment between 42 - 18ka BP BP in Tengger Desert, NW China. Chinese Science Bulletin, 2002,Vol.47, No23, 1946-1956
    184. Zhang, H. C. and Ming, Q. Z., Hydrology and lake evolution in northwestern China and the mystery of megadune in Dadain Jaran desert. 地球科学进展, 2006
    185. Zhang, H. C., B. Wünnemann, Ma, Y. Z. Peng J. L., Pachur, H. -J., Li, J. J., Qi, Y., Chen, G. J., Fang, H. B. and Feng, Z. D., Lake level and climate changes between 42,000 and 18,000 14C yr B.P. in the Tengger desert, Northwestern China. Quaternary Research, 2002,58, 62-72
    186. Zhang, H. C., Li, J. J., Ma, Y. Z., Qi, Y., Chen, G. J., Fang, H. B. Wünnemann, B. and Pachur, H. -J., Paleolake evolution and abrupt climate changes during last glacial period in NW China. Geophysical research Letters, 2001,28, 3203-3206
    187. Zhang, H. C., Ma, Y. Z., Wünnemann, B. and Pachur, H. -J., A Hoiocene climatic record from arid Northwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000,162, 389-401
    188. Zhang, H. C.,J.L. Peng, Y.Z. Ma, G.J. Chen, Z.-D. Feng, B. Li,H.F. Fan, F.Q. Chang, G.L. Lei, B. Wünnemann., Late Quaternary palaeolake levels in Tengger Desert, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004,211,45-58
    189. Zhou. W. J., Xie S.C., Philip A. M. et al., Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence. Organic Geochemistry, 2005, 36:1272-1284
    190.安芷生,Porte S,Kukia G,等,最近13万年黄土高原季风变化的磁化率证据.科学通报,1990,35(7):529-531
    191.安芷生,吴锡浩,卢演俦,最近2万年中国古环境变迁的初步研究.<黄土第四纪地质、全球变化>,刘东生主编,第二集,1-26
    192.陈辉,吕新苗,李双成,柴达木盆地东部表土花粉分析.地理研究,2004,23(2):201-210
    193.陈建芳,古海洋与古气候演化的生物标志化合物记录.海洋通报,1996,15(5):33-37
    194.陈敬安,万国江,唐德贵,黄荣贵,洱海近代气候变化的沉积物粒度与同位素记录[J].自然科学进展,2000(3):253-259
    195.陈敬安,万国江,汪福顺等,湖泊现代沉积物碳环境记录研究.中国科学(D辑),2002,32:73-80
    196.陈敬安,万国江,徐经意,洱海沉积物粒度记录与气候干湿变迁.沉积学报,2000,18(3):341-345
    197.陈敬安,万国江,张峰,David Dian Zhang,黄荣贵,不同时间尺度下的湖泊沉积物环境记录-以沉积物粒度为例.中国科学(D辑),2003,33(6):563-568
    198.陈敬安、万国江、陈振楼等,洱海沉积物化学元素与古气候演化.地球化学,1999,28(6):562-570
    199.陈骏,安芷生,汪永进,等,最近800ka洛川黄土剖面中Rb/Sr分布和古气候变迁.中国科学(D辑),1998,28(6):498-504
    200.陈克造,J.M.Bowler,柴达木盆地察尔汗盐湖沉积特征古气候及其演化的初步研究.中国科学(D辑),1985,5463-473
    201.陈克造,J.M.Bowler,K.Kelts,四万年来青藏高原的气候变迁.第四纪研究,1990,3(1):21-31
    202.陈克造,J.M.鲍勒,柴达木盆地晚更新世盐湖演化.中国-澳大利亚第四纪学术讨论会论文集,科学出版社,1987,83-91
    203.陈诗越、王苏民、金章东等,青藏高原中部湖泊沉积物中Zr/Rb值及其环境意义.海洋地质与第四纪地质,2003,23(4):35-38
    204.陈拓,秦大河,何元庆,等,祁连圆柏中稳定碳同位素分布特征.冰川冻土,2002,24(5):571-573
    205.陈拓,杨梅学,冯虎元,等,青藏高原北部植物叶片碳同位素组成的空间特征.冰川冻土,2003,25(1):83-87
    206.陈衍景、杨忠芳、赵太平等,沉积物微量元素示踪物源区和地壳成分的方法和现状.地质地球化学,1996,(3):7-11
    207.戴俊生,叶兴树,汤良杰等,柴达木盆地构造分区及其油气远景.地质科学,2003,38(3):291-296
    208.邓宏文,钱凯,沉积地球化学与环境分析[M].兰州:甘肃科学技术出版社,1993,46-47
    209.段毅,王智平.,南沙海洋沉积单体长链正构烷烃成因的碳同位素证据.科学通报, 2001,46(23):2003-2006
    210.段毅,文启彬,罗斌杰,沼泽沉积物中单体正构烷烃碳同位素研究.科学通报,1995,40(19):1791-1794
    211.段毅,张辉,吴保祥,等,柴达木盆地原油单体正构烷烃碳同位素研究.矿物岩石,2003,23(4):91-94
    212.段毅,张辉,郑朝阳,等,沼泽沉积环境中植物和沉积脂类单体碳同位素组成特征及其成因关系研究.中国科学(D辑),2004,34(12):1151-1156
    213.段毅.,甘南沼泽沉积脂类生物标志化合物的组成特征.地球化学,2002,31(6):525-531
    214.樊红芳,张虎才,常凤琴,杨明生,陈玥,牛洁,雷国良,张文翔,中国大陆河蚬现生种的分布及其生态环境意义(待刊中).,2006
    215.傅家谟,盛国英,环境有机地球化学初探.地学前缘,1996,3:127-132
    216.傅家漠,盛国英,分子有机地球化学与古气候、古环境研究.第四纪研究,1992,4:306-320
    217.傅家漠,盛国英,许家友等,应用生物标志化合物参数判识古沉积环境.地球化学,1991,1:1-12
    218.傅家漠主编,有机地球化学.北京:科学出版社,1982,354
    219.高章洪,柴达木盆地某些盐湖碎屑沉积层中碳酸盐的初步研究.中国-澳大利亚第四纪学术讨论会论文集,科学出版社,1987,142-152
    220.龚一鸣,徐冉,汤中道,等,晚泥盆世F-F之交菌藻微生物繁荣与集群绝灭的关系:来自碳同位素和分子化石的启示.中国科学(D辑),2005,35(2):140-148
    221.郭振堂,吴海斌,魏建晶,等,用古土壤有机质碳同位素探讨青藏高原东南缘的隆升幅度.第四纪研究,2001,21(5):392-397
    222.韩家反,姜文英,吴乃琴,等,黄土中钙结核的碳氧同位素研究(一)氧同位素及其古环境意义.第四纪研究,1995,2:130-138
    223.何华,倪坤仪,现代色谱分析.北京:化学工业出版社,2004,173
    224.洪冰,林庆华,朱永煊,等,红原泥炭苔草的碳同位素组成与全新世季风变化.矿物岩石地球化学通报, 2003,22(2):99-103
    225.胡东生,张华京,李炳元,等,青藏高厚腹地湖泊沉积序列与古气候变化.地质学报,2000,74(4):363-369
    226.胡建芳,彭平安,贾国东等,三万年来南沙海区古环境重建生物标志物定量与单体碳同位素研究.沉积学报,2003,21(2):211-218
    227.胡守云,邓成龙,E.Appel,K.Verosub,湖泊沉积物磁化性质的环境意义.科学通报,2001,46(17):1491-1494
    228.黄麒,蔡碧琴,察尔汗盐湖沉积物年代学初步研究.中国-澳大利亚第四纪学术讨论会论文集.科学出版社.1987,106-114
    229.黄麒,蔡碧琴,察尔汗盐湖沉积物年代学的初步研究.中国-澳大利亚第四纪学术讨论会论文集,科学出版社,1987,106-114
    230.黄麒,陈克造,七十三万年来柴达木盆地察尔汗盐湖古气候波动的形式.第四纪研究,1990,9(3):205-211
    231.黄麒,陈克造,七十三万年来柴达木盆地察尔汗盐湖古气候波动的形式.第四纪研究,1990,9(3):205-211
    232.黄麒,孟昭强等,柴达木盆地察尔汗湖区古气候波动模式的初步研究[J].中国科学(D辑),1990,10(6):652-663
    233.黄慰文,陈克造,袁宝印,青海小柴达木湖的旧石器.中国-澳大利亚第四纪学术讨论会论文集,科学出版社,1987,168-175
    234.黄镇国,张伟强,陈俊鸿.,中国红土与自然地带变迁[J].地理学报,1999,54(3):193-203
    235.贾容芬,邢福建,赵林,等,从渭南剖面有机质类型的差异探讨黄土地区温度的演变趋势.地球化学,1995,24:66-74
    236.贾容芬,赵林,刘友梅,等,黄土地区气候变化的有机地球化学标志.地理科学,1996,16(2):97-105
    237.贾玉连,施雅风,王苏民等,40ka以来青藏高原的4次湖涨期及其形成机制初探.中国科学(D辑),2001,31(增刊),241-251
    238.江德昕,杨惠秋,青海达布逊湖50万年以来气候变化的孢粉学证据.沉积学报, 2001,19(1):101-106
    239.金章东,王苏民,沈吉,全新世俗海流域化学风化及其对气候事件的响应.地球化学,2004,33(1):29-36
    240.景民昌,孙镇城,杨革联等,柴达术盆地达布逊湖地区3万年来气候演化的微古生物记录。海洋地质与第四纪地质,2001,21(2):55-58
    241.景民昌,杨革联,孙乃达,末次间冰期-末次冰期柴达木盆地东部气候演化形式.地球科学与环境学报,2004,26(3):83-87
    242.康安,朱筱敏,韩德馨等,柴达木盆地第四纪孢粉组合及古气候波动.地质通报,2003,22(1):12-15
    243.康跃惠,盛国英,傅家漠,珠江澳门河口沉积物柱样品正构烷烃研究.地球化学,2000,29(3):302-310
    244.冷雪天,王升忠,王树生等,关于高位泥炭形成时代的研究.东北师大学报自然科学版,1997,3:104-111
    245.冷雪天,王升忠,赵红艳,等,我国贫营养泥炭沉积的物质组成、理化特性及水化学环境分析.矿物岩石地球化学通报,2003,22(2):114-119
    246.李秉孝,柴达木盆地盐湖盐类矿物及其沉积条件.中国-澳大利亚第四纪学术讨论会论文集,科学出版社,1987,133-141
    247.李炳元,青藏高原大湖期.地理学报,2000,55(2)
    248.李炳元,张青松,王富葆,喀喇昆仑山—西昆仑山地区的湖泊演化.第四纪研究,1991,(1):64-71
    249.李吉均,朱俊杰,康建成,等,末次冰期旋回兰州黄土剖面与南极东方站冰岩芯的对比.中国科学(D辑),1990,10:1086-1094
    250.李明启、靳鹤龄、董光荣等,萨拉乌苏河流域微量元素揭示的气候变化.中国沙漠,2006,26(2):172-179
    251.李任伟,李哲,王质珍,等,分子化石指标在中国东部盆地古环境分析中的应用[J].沉积学报,1988,6(4):108-119
    252.李双林,南黄海HY126YA1孔末次冰期多层泥炭的发现及其古气候意义.海洋地质动态,1999,196(3):3-5
    253.李相博,陈践发,张平中,等,青藏高原(东北部)现代植物碳同位素组成特征及其气候信息.沉积学报,1999,17(2):325-329
    254.李玉梅,刘东生,吴文祥,韩家,洪业汤,黄土高原马兰黄土记录的MIS3温湿气候.第四纪研究,2003,23(1):69-76
    255.梁斌,谢树成,顾延生,等,安徽宣城更新世红土正构烷烃分布特征及其古植被意义.地球化学,2005,30(2):129-132
    256.梁青生,黄麒,青海察尔汗盐湖达布逊区段和别勒滩区段的成盐年代.沉积学报,1995,13(3):126-131
    257.林金辉,伊海生,邹艳荣.,藏北高原海陆相油页岩生物标志化合物对比研究.地球化学,2004,33(1):57-64
    258.刘东生,安芷生,陈明杨等,最近0.6Ma南北半球古气候对比初探.中国科学(D辑),1996,26(2):97-102
    259.刘东生等,黄土与环境.北京:科学出版社,1985,1-251
    260.刘建华,祁士华,张干,等,湖北梁子湖沉积物正构烷烃与多环芳烃对环境变迁的记录.地球化学,2004,33(5):501-506
    261.刘兴起,王苏民,沈吉,青海湖QH-2000钻孔沉积物粒度组成的古气候古环境意义.湖泊科学,2003,15(2):112-117
    262.刘志礼,化石藻类学导论.北京:高等教育出版社,1990,395
    263.卢冰,陈荣华,王自磐,等,亚北极白令海近百年海洋环境变化—来自分子化石的证据.中国科学(D辑),2004,34(4):67-374
    264.卢鸿,李超,肖中尧,等,轮南油田代表性原油正构烷烃单体氢同位素组成、分布与母源信息.中国科学(D辑),2004,34(12):1145-1150
    265.卢粤晗,孙永革,翁焕新,湖泊沉积有机质的地球化学记录与古气候古环境重建.地球化学,2004,33(1):20-28
    266.鹿化煌,安芷生.,黄土高原黄土粒度组成的古气候意义.中国科学(D辑),1998,28(3):278-284
    267.吕厚远,顾兆炎,吴乃琴,等,海拔高度的变化对青藏高原表土δ13CnrR的影响.第四纪研究,2001,21(5):399-406
    268.马玉贞,李吉均,方小敏.,临夏地区3016~510 Ma红层孢粉植物群与气候演化记录.科学通报,1998,43(3):301-304
    269.马玉贞,张虎才,李吉均,H.J.Pachur,B.Wuennemann.,腾格里沙漠晚更新世孢粉植物群与气候环演变.植物学报,1998,40(9):871-879
    270.梅博文,刘希江.,我国原油中异戊间二烯烃的分步及其与地质环境的关系[J].石油与天然气地质,1980,1(2):99-115
    271.莫晓勇,沉积有机质分子地球化学应用于古气候古环境研究.地球与环境,2005,33(2):85-90
    272.钱君龙,王苏民,薛滨等,湖泊沉积研究中一种定量估算陆源有机碳的方法[J].科学通报,1997,42(8):1655-1657
    273.任松,陈卫卫,卜建平,等,超声波提取在近海沉积物油类测定中的应用.海洋环境科学,2005,24(1):35-37
    274.沈才明,唐领余,王苏民,若尔盖地区年以来的植被与气候.微体古生物学报,1996,13(4):401-406
    275.沈吉,刘兴起,R.Matsmoto,王苏民,羊向东,晚冰期以来青海湖沉积物多指标高分辨率的古气候演化.中国科学D辑,2004,34(4):582-589
    276.沈吉,汪勇,羊向东,张恩楼,杨保,季峻峰,湖泊沉积记录的区域风沙特征及湖泊演化历史:以陕西红碱淖湖泊为例.科学通报,2006,51(1):87-92
    277.沈吉,王苏民,羊向东,湖泊沉积物中有机碳稳定同位素测定及其古气候环境意义[J]..海洋与湖沼,1996,27(4):400—403
    278.盛国英,有机地球化学.地球科学进展,1992,7(3):91-93
    279.盛国英,蔡克勤,阳学贤,等,合同察汗(碱)湖沉积物的长链不饱和酮及其古气候意义.科学通报,1998,43(10):1090-1093
    280.施祺,石羊河流域终闾湖泊演变及气候变化研究.兰州大学博士学位论文,1999
    281.施雅风,末次冰期各阶段的气候与环境变化.见施雅风,李吉均,李炳元主编:青藏高原晚新代隆升与环境变化.广州科技出版社出版,1997,422-431
    282.施雅风,刘晓东,李炳元,姚檀栋.,距今40~30ka BP青藏高原特强夏季风事件及其与岁差周期关系.科学通报,1999,44(14):14751480
    283.时兴合,赵燕宁,戴升等,柴达木盆地40多年来的气候变化研究.中国沙漠,2005,25(1):123128
    284.宋建中,于赤灵,贾国东,等,南海北部4Ma B.P.以来古海洋变迁的长链烯酮记录.第四纪研究,2003,23(5):512-520
    285.隋淑珍,姚小峰,中国南方第四纪红土地层[J].第四纪研究,2000.20(2):182-185
    286.孙东怀,鹿化煜,David Rea,孙有斌,吴胜光,中国黄土的双峰分布及其古气候意义.沉积学报,2000,18(3),327-324
    287.孙广友,罗新正,Turner R.E.,青藏东北部若尔盖高原全新世泥炭沉积年代学研究.沉积学报,2001,19(2):177-181
    288.孙千里,周杰,肖举乐.,岱海沉积物粒度特征及古环境意义.海洋地质与第四纪地质,2001,21(1),93-95
    289.孙青,储国强,李胜强,等,硫酸盐型盐湖中的长链烯酮及古环境意义.科学通报,2004,49(17):1789-1792
    290.孙艳荣,崔海亭,穆治国,等,广东现代樟树树轮纤维素的碳同位素与厄尔尼诺事件的关系.地球学报,2003,24(6):505-510
    291.孙有斌,高抒,李军.,边缘海陆源物质中环境敏感粒度组分的初步分析.科学通报,2003,28(1),83-86
    292.孙镇城,曹丽,张海泉等,柴达木盆地全球末次冰期介形类动物的演变.古地理学报,2003,5(3):365-377
    293.唐恢同,有机化合物的光谱鉴定.北京:北京大学出版社,1994
    294.唐领余,沈才明.,青藏高原晚新生代植被史及其气候特征.微体古生物学报,1996,13(4):321-337
    295.唐小玲,毕新慧,陈颖军,等,广州市空气颗粒物中烃类物质的粒径分布.地球化学,2005,34(5):508-514
    296.唐渊,柴达木盆地盐湖水化学特征.中国-澳大利亚第四纪学术讨论会论文集,科学出版社,1987,115-123
    297.万大娟,李顺义,舒月红,等,土壤和沉积物中1,2,4-三氯苯的超声波提取.中山大学学报(自然科学版),44(3):102-104
    298.汪卫国,蒙古高原北部全新世气候与环境变化研究.兰州大学博士学位论文
    299.王春江,夏燕青,张中宁,吐哈盆地侏罗系煤系有机质中支链烷烃的化学结构及地球化学意义.地球化学,1997,26(1):72-84
    300.王大珍,马贵宏,田新玉等,大柴达木湖中极端嗜盐菌的新种.中国-澳大利亚第四纪学术讨论会论文集,科学出版社,1987,176-182
    301.王富葆,韩辉友,阎革,等,青藏高原东北部30ka以来的古植被与古气候演变序列.中国科学(D辑),1996,26(2):111-117
    302.王富葆,阎革,林本海,等,若尔盖高原泥炭δ13C的初步研究[J].科学通报,1993,38(1):65-67
    303.王国安,稳定同位素在第四纪古环境研究中的应用.第四纪研究,2003,23(5):471-484
    304.王红梅,刘育燕,王志远,四川剑门关侏罗-白垩系红层分子化石的古环境和古气候意义.地球科学—中国地质大学学报,2001,26(3):229-234
    305.王华,洪业汤,朱咏煊等,红原泥炭腐殖化度记录的全新世气候变化.地质地球化学,2003,31(2)51-56
    306.王建,黄巧华,柏春广等,2.5Ma以来柴达木盆地的气候干湿变化特征及其原因.地理科学2002,22(1):34-38
    307.王靖泰,E.德比希尔,张勇等,柴达木盆地第四纪研究的新进展。科学通报,1985,12:936-940
    308.王靖泰,焦克勤.,柴窝堡—达坂城地区地貌,第四纪沉积及湖面变化.柴窝堡—达坂城地区水资源与环境(施雅风、曲耀光等,编著)科学出版社,1989,11-22
    309.王朋岭,贾玉连,朱诚,马春梅,青藏高原末次冰消期气候演化特点及其与格陵兰、欧洲的异同.冰川冻土,2004,26(1):33-41
    310.王绍武,叶瑾琳,龚道溢.,中国小冰期的气候[J].第四纪研究,1998,1:54-64
    311.王志远,刘占红,易轶,等,不同气候和植物区现代土壤类脂物分子特征及其意义.土壤学报,2003,40(6):967-970
    312.王志远,谢树成,陈发虎,等,临夏源堡黄土地层S1古土壤中的正构烷烃及其古植被意义.第四纪研究,2004,24(2):231-235
    313.王志远,喻建华,顾延生,等,浙江长兴更新世红土中的分子化石及其古环境意义.海洋地质与第四纪地质,2002,22(1):97-102
    314.旺罗,吕厚远,吴乃琴,等,青藏高原现生禾本科植物的δ13C与海拔高度的关系.第四纪地质,2003,23(5):573-580
    315.韦刚健,陈毓蔚,李献华等,NS93-5钻孔沉积物不活泼微量元素记录与陆源输入变化探讨[J].地球化学,2001,30(3):208-216
    316.卫克勤,林瑞芬.,内陆封闭湖泊自生碳酸盐氧同位素剖面的古气候意义.地球化学,1995,24(3):215-223
    317.文启忠,刁桂仪,贾容芬,等,末次间冰期以来渭南黄土剖面地球化学指标所反映的古气候变化.地球化学,1996,25(6):529-535
    318.邬光剑,姚檀栋,L.G.Thompson,李忠勤.,末次间冰期以来古里雅冰芯微粒记录与极地冰芯的对比.科学通报,2004,49(5):475-479
    319.吴敬禄,G.H.Schleser,Andreas Lucke,李世杰,王苏民,青藏高原东部兴措湖生物壳体元素及同位素记录的气候环境信息.湖泊科学,2001b,13(3):220-226
    320.吴敬禄,Luecke A.,李世杰等,兴措湖沉积中有机碳及其同位素记录揭示的近代气候与环境.海洋地质与第四纪地质,2000a,20(1):37-42
    321.吴敬禄,王苏民,施雅风,等,若尔盖盆地200ka以来氧同位素记录的古温度定量研究.中国 科学(D辑),2000b,30(1):73-80
    322.吴敬禄、王苏民,湖泊沉积物有机质所揭示的环境气候信息.湖泊科学,1996,8:114-117
    323.吴敬禄、王苏民,湖泊沉积物中有机碳同位素特征及其古气候.海岸地质与第四纪地质,1996,16(2):103-108
    324.吴敬禄.,青藏高原东部兴措湖生物壳体同位素记录的气候环境信息.海洋地质与第四纪地质,2001a,219(4):19-23
    325.项目组(黑河流域地表水与地下水转换关系研究项目组),提出学术观点,依据要充分可靠-质疑陈建生教授关于巴丹吉林沙漠和额济纳盆地地下水来源的观点.科学时报,2005年1月3日A3
    326.谢树成,Evershed R P,泥炭分子化石记录气候变迁和生物演替的信息.科学通报,2001,46(10):863-866
    327.谢树成,梁斌,郭建秋,等,生物标志化合物与相关的全球变化.第四纪研究,2003a,23(5):521-528
    328.谢树成,黄俊华,王红梅,等,湖北清江和尚洞石笋脂肪酸的古气候意义.中国科学(D辑),2005,35(5):246-251
    329.谢树成,王志远,王红梅,等,末次间冰期以来黄土高原的草原植被景观:来自分子化石的证据.中国科学(D辑).2002,32(1):28-35
    330.谢树成,姚檀栋,康世昌,等,青藏高原希夏邦马峰地区雪冰有机质的气候与环境意义.中国科学(D辑),1999,29(5):457-465
    331.谢树成,易轶,梁斌,等,泥炭分子化石单体碳氢同位素的古气候意义.矿物岩石地球化学通报,2003b,22(1):8-13
    332.谢树成,易轶,刘育燕,等,中国南方更新世网纹红土对全球气候变化的响应:分子化石记录.中国科学(D辑),2003c,33(5):411-417
    333.熊永强,耿安松,潘长春,等,陆相有机质中单体烃的氢同位素组成特征.石油勘探与开发,2004,31(1):60-63
    334.徐昶,中-澳(澳大利亚)某些盐湖沉积物中的粘土矿物.中国-澳大利亚第四纪学术讨论会论文集,科学出版社,1987,153-161
    335.徐海,洪业汤,朱咏煊,等,安图红松树轮稳定碳同位素记录的低云量信息.地球化学,2002,4:309-313
    336.颜备战,贾蓉芬,胡凯,等,陕西谓南黄土剖面系列链烃化合物的分布与古气候意义.地球化学,1998,27(2):180-186
    337.阳学贤,盛国英,卢家烂,等,内蒙古湖洞察汗淖(碱)湖沉积物中的生物标志物特征及其古环境意义.地球化学,1996,25(6):536-544
    338.杨保,康兴成,施雅风.,近2000年都兰树轮10年尺度的气候变化及其与中国其它地区温度代用资料的比较.地理科学,2000,20(5):397-402
    339.杨保,施雅风,40—30 KaB.P.中国西北地区暖湿气侯的地质记录及成因探讨.第四纪研究,2003,23(1):60-68
    340.杨藩,孙镇城,马志强等,柴达木盆地第四系介形类化石带与磁性柱.微体古生物学报,1997,14(4):378-390
    341.杨浩,李小平,赵其国,等,宣城风积—红土系列剖面有机碳同位素的特征及意义[J].土壤学报,1995,32(增刊):177-183
    342.杨明生,张虎才,丁虎,雷国良,樊红芳,常凤琴,李斌,张文翔,牛洁,陈玥,黄土剖面古土壤和生物化石C14测年对比.地球科学-中国地质大学学报,2005,30(5),589-596
    343.杨小平,巴丹吉林沙漠地区钙质胶结层的发现及其古气候意义.第四纪研究,2000,20(3),295
    344.杨小平,巴丹吉林沙漠腹地湖泊的水化学特征及其全新世以来的演变[J].第四纪研究,2002,(2):97-104
    345.姚檀栋,L.G.Thompson,施雅风等,古里雅冰芯中末次间冰期以来气候变化记录研究.中国科学(D辑),1997,127(5):447-452
    346.伊海生,林金辉,王成善,等,藏北可可西里地区中新世湖相油页岩的生物分子标识及碳同位素异常.成都理工学院学报,2002,29(5):473-480
    347.于革,赖格英,刘建,施雅凤,MIS3晚期典型阶段气候模拟的初步研究.第四纪地质, 2003,23(1),12-24
    348.于志强,彭平安,盛国英,等,茂名与江汉第三系油页岩中生物标志物碳同位素研究.科学通报,2000,45:2783-2789
    349.余俊清,Kelts K.,未次冰期晚期青藏高原东北部气候变化.第四纪研究,2002,22(5):413-421
    350.袁宝印,达布逊湖沉积中的黄土.中国-澳大利亚第四纪学术讨论会论文集,科学出版社,1987,162-167
    351.袁林旺,陈晔,刘泽纯,柴达木盆地深钻孔轨道调谐时间标尺的再研究.南京师大学报(自然科学版),2003,26(2):87-93
    352.袁林旺,陈晔,周春林,刘泽沌,柴达木盆地自然伽玛曲线与古里雅冰芯记录的末次间冰期以来气候环境变化过程对比.冰川冻土,2000,22(4):327-332
    353.袁林旺,刘泽纯,陈晔,柴达木盆地自然伽玛曲线记录的古气候变化对太阳辐射响应关系的对比研究.冰川冻土,2004,26(3):298-304
    354.曾永年,冯兆东,曹广超,末次冰期以来柴达木盆地沙漠形成与演化.地理学报,2003,58(3):452-457
    355.翟秋敏,全新世安固里淖易溶盐沉积与环境[J].古地理学报,2001,(1):91-96
    356.张保珍,范海波,张彭熹等,察尔汗盐湖石盐的流质包裹体氢氧稳定同位素分析及其地球化学意义.沉积学报,1990,8(1):3-17
    357.张保珍,雷家骏,张北青,青藏高原盐湖氘的分布规律研究.中国-澳大利亚第四纪学术讨论会论文集,科学出版社,1987,124-132
    358.张成君,陈发虎,施祺等,西北干旱区全新世气候变化的湖泊有机质碳同位素记录—以石羊河流域三角成为例.海水地质与第四纪地质,2000,20(4):93-97
    359.张干,盛国英,傅家谟,等,固城湖GS-1孔11.87-12.28m古环境变更线的分子有机地球化学证据.科学通报,1999,44(7):775-779
    360.张洪、靳鹤龄、肖洪浪等,东居延海易溶盐沉积与古气候环境变化.中国沙漠,2004,24(4):409-415
    361.张虎才,元素表生地球化学特征及理论基础.兰州大学出版社,1997
    362.张虎才,柴达木察尔汗湖贝壳堤剖面有机分子和古环境意义.中国科学(特刊)
    363.张虎才 Wuennemman,B.,腾格里沙漠南缘全新世古气候变化初步研究.科学通报,1998,4(12):1252-1258
    364.张虎才,马玉贞,彭金兰,李吉均,曹继秀,祁元,陈光杰,方红兵,穆德芬,H.J.Pachug B.Wuennemann.,距今42-18ka腾格里沙漠古湖泊及古环境.科学通报,2002,47(24).1847-1857
    365.张虎才,B.Wuennemann,腾格里沙漠晚更新世以来湖相沉积年代学及高湖面期的初步确定.兰州大学学报,1997,33(2):97-91
    366.张虎才,雷国良,杨明生,樊红芳,古湖泊碳酸盐沉积和化石贝壳87Sr/86Sr及其意义.地球学报,2005,26卷(增刊),1-2,237-238
    367.张虎才、马玉贞、彭金兰等,距今42—18Ka腾格里沙漠古湖泊及古环境.科学通报,2002,47(24):1847-1857
    368.张虎才、张林源、张维信.,兰州九州台黄土剖面碳氧同仪素及黄上沉积环境研究.兰州大学学报(自然科学版),1990,28(3):117-126
    369.张虎才等,腾格里沙漠南缘武威黄土沉积元素地球化学特征.兰州大学学报(自然科学版),1998,(4):157-164
    370.张彭熹,张保珍,柴达木地区近三百万年来古气候环境演化的初步研究。地理学报,1991,46(3):327-335
    371.张彭熹,张保珍,钱桂敏,等,青海湖全新世以来古环境参数的研究.第四纪研究,1994,(3):225-336
    372.张彭熹,张保珍.T.K,洛温斯坦等,古代异常钾盐蒸发的成因—以柴达木盆地察尔汗盐湖钾盐的形成为例.北京:科学出版社,1993,10-48
    373.张平中,王先彬,陈践发,等,湖相有机质的氢指数及碳同位素组成-湖面波动评价的指标-以RH孔为例[J].科学通报,1995,40(18):1682-1685
    374.张则有.,我国冻土区泥炭沼泽形成的特征.冰川冻土,1993,15(2):225-229
    375.张振克,王苏民,吴瑞金.,全新世中期洱海湖泊沉积记录的环境演化与西南季风变迁.科学通报,1998,43(19):2127-2128
    376.赵其国,杨浩,中国南方红土与第四纪环境变迁的初步研究[J].第四纪研究,1995,(2):107-116
    377.赵强,王乃昂,程弘毅,谌永生,郭剑英,青土湖沉积物粒度特征及其古环境意义.干旱区地理,2003,(1).2-6
    378.郑绵平,向军,青藏高原盐源.北京:科学技术出版社,1989,14-33,203-219
    379.郑艳红,程鹏,周卫建,等,正构烷烃及单体碳同位素的古植被与古气候意义.海洋地质与第四纪地质,2005,25(1):99-104
    380.中国科学院地球化学研究所,铁的地球化学.科学出版社,1981
    381.周昆叔,距今两万至三万年间中国北方河谷、平原区云杉、冷杉植被分布意义.第四纪孢粉分析与古环境.中国科学院地质研究所孢粉分析组,同济大学海洋地质系孢粉分析室著.北京,科学出版社,1984,15-24
    382.周卫建,卢雪峰,武振坤,等,若尔盖高原全新世气候变化的泥炭记录与加速器放射性碳测年.科学通报,2001,46(12):1040-1044
    383.朱艳.,庐山地区中更新世晚期地层最佳剖面--下岸角剖面[J].地层学杂志,1998,22(2):137-142
    384.朱照宇,王俊达,黄宝林,等,红土·黄土·全球变化[J].第四纪研究,1995,(3):267-275

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700