CPC热管式真空管集热器传热模型的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对CPC型热管式真空管集热器进行了理论研究,得出了复合抛物面的系统方程,构建了复合抛物面对太阳辐射的吸收模型和热管式真空管的传热模型,并通过计算分析得出了CPC型热管式真空管集热器瞬时集热效率与流体温差的变化关系。
     文章首先简要介绍了目前我国的能源状况,我国太阳能开发利用的优势,以及太阳能的热利用状况,在此基础上提出了本文的研究课题。CPC型热管式真空管集热器将复合抛物面和热管式真空管技术相结合,作为创新点,本文采用的热管式真空管中的热管为分离式热管。第二个创新点是将太阳能选择性吸收涂层涂在热管外表面和肋片表面,不同于以前涂在真空管内管表面。
     其次,根据杭州市的地理位置计算得出了杭州市的太阳辐照强度,可以看出杭州一年中7月份的太阳辐射最强,每小时太阳辐照强度的月平均值达到了819.63W/m~2,平均每天日照时间最长为13.95h。然后根据CPC型热管式真空管集热器复合抛物面的结构、安装位置和传热学基本原理,建立了CPC复合抛物面的系统方程以及对太阳辐射的吸收模型,最后计算出了7月份到达CPC型热管式真空管集热器接收器上的太阳辐射量。
     最后,应用传热学基本原理,构建了CPC型热管式真空管集热器中热管式真空管的传热模型。热管式真空管的内、外管之间是真空状态,所以对流和导热可以忽略不计。但是真空管内管与热管都存在着对流换热和热辐射。本文分析了CPC热管式真空管集热器的传热模型,并对CPC热管式真空管集热器进行了光学分析和传热学分析,最终得出了集热器的效率公式以及集热器瞬时集热效率与流体温差的变化关系。由于真空管内部采用分离式热管后,管内强制对流沸腾,过程很复杂,通常采用试验数据拟合的方法给出对应沸腾换热系数的关系式。
     计算结果表明根据CPC型热管式真空管集热器充分发挥了聚焦后能量密度提高的优势,适合在类似杭州这种江南典型气候地区使用,这种集热器在今后的发展中将有很大的潜力。
CPC heat pipe evacuated tubular collector was studied in this thesis. The system equation of the compound parabolic was obtained, the solar radiation absorption model of the compound parabolic and the heat transfer model of the heat pipe evacuated tubular were constructed. The relationship of the instantaneous collector efficiency of CPC heat pipe evacuated tubular collector and the temperature difference of the fluid was solved.
     Firstly, the current situation of the energy development and the advantages to exploit solar energy in China were briefly introduced, the heat utilization condition of the solar is also expounded, which is the basis of this study. CPC heat pipe evacuated tubular collector integrate the compound parabolic and the heat pipe evacuated tubular technology, as an innovation, the separated type heat pipe was used in the heat pipe evacuated tubular in this paper. The other innovation is that the selective coating was covered on the surface of the heat pipe and the fins, not on the surface of inner tube of the evacuated tubular as before.
     Secondly, according to the location of Hangzhou, the solar radiation intensity in Hangzhou was obtained, and it is obvious that the solar radiation of July is the strongest in Hangzhou, Hourly average intensity of solar radiation reaches 819.63 W/m~2 in every month. The daily average sunshine which is the longest time in a year is 13.95h. According to the compound parabolic structure of CPC heat pipe evacuated tubular collector, the installation location and the heat transfer theory, the solar radiation absorption model was established. Then the amount of solar radiation of the receiver in CPC heat pipe evacuated tubular collector in July in Hangzhou was calculated.
     Finally, according to the basic principles of heat transfer, the heat transfer model of heat pipe evacuated tubular was proposed. For the heat pipe evacuated tubular, because it is vacuum between the inner and the outer tube, the convection and conduction can be neglected, but there is convective and radiation for the inner tube of the evacuated tubular and the heat pipe. The heat transfer model of CPC heat pipe evacuated tubular collector was studied, then the instantaneous collector efficiency equation was obtained through the optical analysis and heat transfer analysis for the collector, as well as the relationship of the instantaneous collector efficiency of CPC heat pipe evacuated tubular collector and the temperature difference of the fluid. The evaporation section of the separated type heat pipe is vertical, when the forced convection boiling is occurred in the heat pipe, the process is very complicated, what we can do is to fit the corresponding boiling heat transfer relationship according to the previous experimental data.
     The calculated results indicated that CPC heat pipe evacuated tubular collector fully played the advantages of enhancing energy density after focusing, meanwhile it is easy to combine with the construction in Hangzhou, therefore there will be great potential for CPC heat pipe evacuated tubular collector in the future.
引文
[1] 姚伟龙,邢涛.中国能源状况与发展对策分析[J].能源研究与信息.2006,22(4):187-193.
    [2] 曾志强,刘定平.从能源现状看中国能源的战略储备[J].广东电力.2006,19(5):1-5.
    [3] 李登伟,张烈辉,郭了平等.中国21世纪可替代能源和可再生能源[J].天然气工业.2006,26(5):1-5.
    [4] 焦冬生.透明蜂窝应用于太阳能热水器的实验与理论研究[D].2003:3-4.
    [5] 王刚.真空管太阳能热水器热效率及经济性研究[D].2002:4-5.
    [6] 王世锋.真空玻璃盖板热管平板式太阳能热水器的理论与实验研究[D].2004:15.
    [7] 潘身明.应用全息技术提高太阳能热水器效率的研究[J].广西民族学院学报,2004(4):66.
    [8] 陆维德,罗振涛.我国太阳能热利用进展[J].太阳能.2003,1:15-19.
    [9] 姚伟.太阳能利用与可持续发展[J].中国能源.2005,27(2):49-52.
    [10] 王亦楠.高效率低成本是太阳能热发电实现商业化的关键[J].科学新闻.2006,14.
    [11] 陈晓夫,高援朝,仁宏琛.我国太阳灶技术进展和应用[J].可再生能源.2002,3:9-12.
    [12] 高文娟,陈晓光.聚光太阳灶光学效率特性分析[J].农业工程学报.1988,(4).
    [13] 缪仁杰,李淑兰.太阳能利用现状与发展前景[J].应用能源技术.2007,5:28-33.
    [14] 陈艺锋,王宇菲.管板式太阳能热水器的性能分析[J].新能源.1996,18(8):72-75.
    [15] 何梓年等.真空集热管内不同形状吸热体表面相对太阳辐照强度的实验研究[J].太阳能学报,1995,16(4):361-366.
    [16] 葛洪川等.真空集热管内不同形状吸热体能量收益的研究[J].太阳能学报,1996,17(1):15-21
    [17] Ugur Ortabasit, Francis P Fehlner. Cusp mirror heat-pipe evacuated tubular solar thermal coll-ector [J]. Solar Energy, 1980, (24): 477-489.
    [18] Ortabasi U. A tubular evacuated solar collector utilizing a heat pipe as absorber[J]. Revue Int. D' Heliotech, 1976, (2): 14-21.
    [19] 何梓年,蒋富林,葛洪川等.热管式真空管集热器的热性能研究[J].太阳能学报,1994,(15):73-82.
    [20] 葛新石,叶宏.复合抛物聚光器(CPC)特性[J].太阳能.2001,04(11):20-21.
    [21] 刘灵芝,李戬洪.复合抛物面聚光器(CPC)光学分析研究[J].能源技术,2006,27(2):52-56.
    [22] [美]爱德华·安德逊著.太阳能基础原理及其在工程中的应用(二)太阳能转换基础[M].西安:西安地区新能源技术开发服务中心西安太阳能利用所,1986.
    [23] Srinivasan M, Kulkami L V, Pasupathy C S. Simple Technique of Fabrication of Paraboloidal Concentrators [J]. Solar Energy, 1979, 22 (5): 463-465.
    [24] Rabl A, O'Gallagher J, Winston R. Design and Test of Non - Evacuated Solar Collectors With Compound Parabolic Concentrators [J]. Solar Energy, 1980, 25 (4): 335-351.
    [25] Chew T C, Wijeysundera N E, Tay A O. Experimental study of free convection in compound parabolic concentrator (CPC) cavities[J]. Journal of Solar Energy Engineering, Transactions of the ASME, 1988, 110 (4): 293-298.
    [26] Suresh D, O'Gallagher J, Winston R. Thermal and optical performance test result s for compound parabolic concentrators (CPCs) [J]. Solar Energy, 1990, 44 (5): 257-270.
    [27] Eames P C, Norton B. Detailed parametric analyses of heat transfer in CPC solar energy collectors [J]. Solar Energy, 1993, 50 (4): 321-338.
    [28] Farouk Kothdiwala A, Norton B, Eames P C. The effect of variation of angle of inclination on the performance of low-content ration-ratio compound parabolic concentrating solar collectors[J]. Solar Energy, 1995, 55 (4): 301-309.
    [29] Collares Pereira M, Duque J, Joyce A, Delgado M, Serrudo G, Rego-Teixeira A. 3X CPC Type concentrator with tubular receiver and tubular glass envelope to reduce convective losses -description and performance[J]. Pergamon Press, 1982, 2: 1718-1722.
    [30] Collares-Pereira M. Description and testing of A Non - evacuated 1.5 multiplied by CPC Collector thermal performance comparison with other collector types[J]. Journal of Solar Energy Engineering, Transactions of the ASME, 1985, 107(4): 277-280.
    [31] R Oommen, S J ayaraman. Development and performance analysis of compound parabolic solar concentrators with reduced gap losses-oversized reflector [J]. Energy Conversion and Management, 2001, 42: 1379-1399.
    [32] Rachel Oommen, S J ayaraman. Development and performance analysis of compound parabolic solar concentrators with reduced gap losses-'V'groove reflector[J]. Renewable Energy, 2002, 27: 259-275.
    [33] 袁胜利,杨从明.用于发电的太阳能聚光热管集热器[J].节能,2002,8:14-17.
    [34] Carvalho M J, Collares-Pereira M, Gordon J M, Rabl. A. Truncation of CPC solar collectors and its effect on energy collection[J]. Solar Energy, 1985, 35(5): 393-399.
    [35] 雷桂林.θ_(max)较大时CPC装置的性质研究[J].河南农业大学学报,2001,35(1):89-91.
    [36] Rabl A, Goodman N B, Winston R. Practical design considerations for CPC solar collectors[J]. Solar Energy, 1979, 22 (4): 373-381.
    [37] H E I KHON KAR, A A M SA YIGH. Optimization of the tubular absorber using a compound parabolic concentrator[J]. Renewable Energy, 1995, 6 (1): 17-21.
    [38] 刘芳,邢永杰.CPC在太阳能集热器中的应用[J].太阳能学报,2001,(2):18-19.
    [39] 许雪松.CPC型热管式真空集热器的研究[D].南京:南京工业大学机械与动力工程学院,2004,26(6):53-56.
    [40] 李业发.郑迎松,邱国等.配有多根真空管的CPC各构件吸收光能的理论分析[J].太阳能学报,1999,(1):69-73.
    [41] 袁胜利.何剑斌.复合抛物面太阳能聚光热管集热器及换热器[J].新能源,1991,(12):1-6.
    [42] 任云锋,鱼剑琳,赵华.一种CPC型热管式太阳能集热器的实验研究[J].西安交通大学学报.2007,41(3):291-294.
    [43] 孟华,葛新石,乔力.CPC接收面上光强分布及其影响因素的理论和实验研究[J].太阳能学报,1996,(2):151-156.
    [44] Tripanagnostopoulos Y, Souliotis M, Nousia T H. CPC type integrated collector storage systems[J]. Solar Energy, 2002, 72 (4): 327-350.
    [45] Tripanagnostopoulos Y, Souliotis M. ICS solar systems with horizontal (E2W) and vertical (N2S) cylindrical water storage tank [J]. Renewable Energy, 2004, 29 (1): 73-96.
    [46] Souliotis M, Tripanagnostopoulos Y. Experimental study of CPC type ICS solar systems [J]. Solar Energy, 2004, 76(4): 389-408.
    [47] Ronnelid M, Karlsson B. Experimental investigation of heat losses from low concentrating non-imaging concentrators[J]. Solar Energy, 1996, 57 (2): 93-109.
    [48] Hussein H M S, Mohamad M A, E1-Asfouri A S. Optimization of a wickless heat pipe flat plate solar collector [J]. Energy Conversion & Management, 1999, 40(18): 1949-1961.
    [49] Hussein H M S, Mohamad M A, E12Asfouri A S. Theoretical analysis of laminar-film condensation heat transfer inside inclined wickless heat pipes flat plate solar collector [J]. Renewable Energy, 2001, 23 (34): 525-535.
    [50] Ortabasit U, Buehl W M. An internal cusp reflector for an evacuated tubular heat pipe solar thermal collector[J]. Solar Energy, 1980, 25(1): 67-68.
    [51] 郑飞,李安定.一种新型复合抛物面聚光器[J].太阳能学报,2004,25(5):663-665.
    [52] 赵玉兰,张红,战栋栋等.CPC热管式真空管集热器开发及其传热分析[J].石油化工设备,2006,35(4):28-30.
    [53] 李明华,程如光,沈鼎成.组合式玻璃真空管集热器的热设计[J].太阳能学报,1983,4(4):425-428.
    [54] 苏俊林,陈岚,王震坤.分离式热管换热器传热特性研究[J].农机化研究.2006,7:161-162.
    [55] 陈远国.分离式热管换热器的研究、应用与评价[A].第三届全国热管会议论文集[C].重庆:重庆大学出版社,1991:17-25.
    [56] 方书起,张建立.分离式热管的研究进展[J].内蒙古石油化工.2006,5:15-18.
    [57] PARK Y J, KAN G H K, KIM C J. Heat transfer characteristics of a two-phase closed thermosyphon to the fill charge ratio[J]. International Journal of Heat and Mass Transfer, 2002, 45(23): 4655-4661.
    [58] ZHU Hua, GUAN Jian2chun, HONG Rong2hua, et al. Experimental study on semi-open heat pipes and it applications[J]. Journal of Zhejiang University: Science, 2001, 2(4): 426-430.
    [59] FARSI H, JOL Y J L, MISCEVIC M, et al. An experimental and theoretical investigation of the transient behavior of a two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2003, 23(15): 1895-1912.
    [60] 李金华,宋宽秀,王一平[J].中高温太阳光谱选择性吸收涂层的研究进展[J].2004,21(6):432-437.
    [61] ZHANGQ C, ZHAO K, ZHANG B C, et al. New cermets solar coatings for solar thermal electricity applications[J]. Solar Energy, 1998, 64(1-3): 109-114.
    [62] 杨晓继,殷志强,史月艳.干涉型太阳选择性吸收涂层的光学性能设计[J].太阳能学报,1997,18(1):7-12.
    [63] 谢光明,赵玉文.热管式真空集热管选择性黑的研制[J].太阳能学报,1990,11(3):307-11.
    [64] ENRIQUE BARRERA, TOMAS VIVEROS, ASCENCION MONTOYA, et al. Titanium-tin oxide protective black cobalt photothermal absorber[J]. Solar Materials and Solar Cells, 1999, 57: 127-140.
    [65] BERGHAUS A, DJAHANBAKHSH A, THOMAS L K. Characterization of CVD-tungsten-alumina cermets for high-temperature selective absorbers[J]. Solar Energy Materials and Solar cells, 1998, 54: 19-26.
    [66] 吕坤,王海英,董华.太阳能选择性吸收涂层的现状及发展[J].国内外涂料工业.2003.4:36-40.
    [67] 文明芬,郭忠诚.太阳能吸收涂层简介.太阳能,1998,4:18-19.
    [68] 舒畅,邓纶浩,何柳.太阳能吸热涂层的研究现状[J].电镀与环保,1999,5:3-5.
    [69] 蒋德源.太阳能选择性吸收涂层的近期发展[J].新能源,2000,22(6):3940.
    [70] Oommen R, ayaraman S. Development and performance analysis of compound parabolic solar concentrators with reduced gap losses oversized reflector [J]. Energy Conversion and Management, 2001, 42: 1379-1399.
    [71] 郭延玮,刘鉴民.太阳能的利用[M].北京:科学技术文献出版社,1987:
    [72] 方荣生,项立成,李亭寒等.太阳能应用技术[M].北京:中国农业机械出版社,1985.
    [73] 陶桢,冯垒,何庆楠,李卫京.真空管内吸热体接收太阳辐照量的研究[J].2003,24(5):625-628.
    [74] 李炜.东西轴向横置真空集热管内不同形状吸热体能量收益的研究[J].太阳能学报,1999,20(1):13-19.
    [75] 杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.
    [76] Oommen R, ayaraman S. Development and performance analysis of compound parabolic solar concentrators with reduced gaplosses oversized reflector[J]. Energy Conversion and Management, 2001, 42: 1379-1399.
    [77] 张丽娜,陈保东.太阳能-热管呼吸阀的集热器系统的计算[J].抚顺石油学院学报.2003,23(3):75-78.
    [78] 靳明聪,陈远国.热管及热管换热器[M].重庆:重庆大学出版社,1986.
    [79] 张红,庄骏.热管技术及其工程应用[M].北京:化学工业出版社,2000.
    [80] 庄骏,徐通明,石寿椿.热管与热管换热器[M].上海:上海交通大学出版社,1989.
    [81] Chen Yuanguo, Gao Mingcheng, Xin Mingdao. Experimental of heat transfer performance of separate type thermosyphon[A]. In: Proc of 6th Heat Pipe. Symposium. Osaka, Japan, 1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700