具有玻璃管蜂窝盖板的太阳能空气集热器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能是最重要的可再生能源,它具有分布广泛、利用方便等优点。太阳能热利用的关键是太阳能集热器,如何减少其热损失是该领域研究的重点。透明蜂窝材料既能透过太阳辐射又具有优良的隔热性能,在太阳能集热器中有广阔的应用前景。本课题研究一种具有薄壁玻璃管透明蜂窝盖板的太阳能空气集热器,主要包含以下内容:
     1.设计制作了以薄壁玻璃管为蜂窝单元的透明蜂窝盖板,应用于平板型太阳能空气集热器,并对其进行了试验和模拟分析。对五种具有不同尺寸的透明蜂窝盖板的太阳能集热器进行试验研究。重点研究在小高宽比(L/D<3)下,蜂窝的孔径、高宽比等因素对阳光透过率和集热效率的影响。结果显示:在试验条件下,当蜂窝直径相同,高宽比不同时,集热器出口温度相差较大,高宽比小的温度高,最大温差约为10℃;当蜂窝直径不同,高宽比相同时,集热器出口温度相差不大。有蜂窝与无蜂窝,最大温差约为12℃。
     2.透过率是影响透明蜂窝性能的重要指标之一。针对现有计算关系式较为复杂的问题,作者通过对玻璃管蜂窝单元的分析,推导出关于蜂窝结构透过率的简单计算式。该计算式仅于蜂窝的高宽比L/D以及材料的光学性质有关,而与蜂窝的具体尺寸无关。
     3.利用FLUENT软件,对不同直径、不同高宽比的多种蜂窝进行了数值模拟,研究蜂窝高宽比、直径、放置角度等因素对蜂窝内流场及温场的影响。结果表明:试验所采用的几种玻璃管蜂窝,因几何尺寸较大,内部的自然对流都没有被抑制住。只有当蜂窝垂直放置、且直径较小≤10mm时才能抑制住自然对流。倾斜放置的蜂窝,内部均有自然对流。蜂窝内流场强度随蜂窝直径的增大而增强。对相同直径的蜂窝,内部对流强度随其高宽比的增大而减弱。模拟结果对实际应用时,选用透明蜂窝结构有一定的指导意义。
     4.对平板式太阳能空气集热器的有效得热及各部分散热做了详细分析与理论计算,并在此基础上计算出试验用集热器的热效率,得出了与试验测试结果基本一致的结论。
     5.最后,作者对V型槽聚光器的聚光特性进行了详细分析,并推导出不同情况下聚光度与几何聚焦比、光线入射角的计算关系式。通过计算表明,V型槽聚光器的最大聚光倍数为3。并给出适合应用的V型槽的仰角及几何聚焦比的取值范围,用于指导其在聚光型太阳能集热器以及聚光型太阳能光伏系统中的应用。
Solar energy is the most important energy of all sorts of renewable ones. It's widely distributed and convenient for use. Solar collector is one of the most important components in the utilization of solar thermal technology. How to reduce the heat loss is the important subject of this field. Transparent honeycomb is a new kind of transparent insulation materials, which allows the solar radiation go through into the reactor, at the same time, it reduces the heat loss. In this thesis, we study the flat-plate solar air collector with transparent honeycomb cover made of thin-walled glass tube. The thesis includes following aspects.
     1. Transparent honeycomb structure with thin-walled glass tube as the honeycomb unit is designed and applied to a flat-plate solar air collector. Experiments are performed for the solar collectors with six different honeycomb sizes. The emphasis is to study the effects of diameter and aspect ratio of the honeycomb unit to the transmittance and efficiency of the solar collector. The results show that, for the same diameter but different aspect ratios, there are large temperature differences between the collector's exits; the smaller the aspect ratio, the larger the exit temperature, with maximum difference of 10℃; for the same aspect ratio but different diameters, the temperature differences are small; the maximum temperature difference between the collectors with and without honeycombs is 12℃.
     2. Transmittance of transparent honeycomb is one of the important performance index.The existing calculation formula is rather convoluted, and a theoretical expression for the honeycomb transmittance is derived with a simplified method. The result shows that the honeycomb transmittance is only related with the aspect ratio and the materials' optical properties, but not related with the honeycomb actual size.
     3. Using the FLUENT Software in numerically simulating the transparent honeycomb of different aspect ratio. To investigate the effect of aspect ratio of honeycomb on velocity field and temperature field inside. The results show that: the internal natural convection have not been effectively suppressed because of relatively larger geometr of the honeycomb made of glass tube using in experiment. In addition, the numerically simulation analysis of several honeycombs with different diameters and aspect ratio, the results indicat that natural convection can be effectively suppressed while the diameter of honeycomb smaller than 10mm . The natural convection inside could not be suppressed While the honeycomb diameter larger than 20 mm. The strength of flow field increase with cellular' diameter, and decrease with aspect ratio. The results give a guideline of choice of transparent honeycomb structure in practical application.
     4. A detailed thermal analysis of the solar air collector have been achieved and its theoretical thermal efficiency also be calculated which gives good predictions for the experimental results.
     5. Finally, a detailed concentration ratio analysis and calculation of a kind of low rate concentrators have been carried out which supplies guidance for the focussing type solar collectors and Photovoltaic System.
引文
[1]韩文科,胡秀莲,高世宪.中国能源消费结构变化趋势及调整对策[M].北京:中国计划出版社,2007,1-50.
    [2]高峰,孙成权,刘全根.我国太阳能开发利用的现状和建议[M],能源工程,2000(5):8-11.
    [3]左然,施明恒,王希麟.可再生能源概论[M].北京:机械工业出版社2007.35-150
    [4]施玉川,李新德.太阳能应用[M].西安:陕西科学技术出版社,2001.40-48.
    [5]Choudury C,Garg H.P.Evaluation of a jet plane solar air heat[J].Solar Energy,1991,46(4):199-209.
    [6]GAMA R M S,et al.Analysis of a V-groove solar collector with a selective glass cover[J].Solar Energy,1986,36(6):509-519.
    [7]Enibe S.O.Thermal analysis of a natural circulation solar air heater with phase change material storage[J].Renewable Energy,2003,28(14):2269-2299.
    [8]张珂理.V形波纹多孔体太阳能空气集热器研究.太阳能学报,1990,11(3):293-302.
    [9]Jannot.Y,Coulibaly.Y.Radiative heat transfer in a solar heater covered with a plastic film[J].Solar Energy,1997,60(1):35-40.
    [10]陈则韵,陈熹,葛新石,关于平板集热器的最佳间距和蜂窝结构热性能的试验研究[J].太阳能学报,1991(2):109-114
    [11]季杰,TIM双层窗的传热特性研究,太阳能学报,1997(3):286-295
    [12]Veinberg BP,Veinberg VB.Optics in equipment for the utilization of solar energy[J].Moscow:State Publishing House of Defence Industry,1959
    [13]Francia G.A new collector of solar radiant energy:theory and experimental verification[J].Proceedings of the United Nations Conference on New Sources of Energy,Rome,4.1961.546-554.
    [14]Hollands KGT.Honeycomb devices in flat plate solar collectors[J].Solar Energy 1965;1965(3):234-239.
    [15]Tabor H.Honeycomb(cellular)insulation[J].Solar Energy 1969,258-269.
    [16]Kaushika ND.Computer-aided design and fabrication of TIM from extrusion products for solar energy application[J].Final technical report,Indian Institute of Technology,MNES Research Scheme No.15/1/92-ST,1997.
    [17]Edwards DK,Carton I.Prediction of heat transfer by natural convection in closed cylinders heated from below[J].International Journal of Heat and Mass Transfer 1969,12:23-36.
    [18] Heitz WL, Westwater JW. Critical Rayleigh numbers of natural convection of water constrained in square cells with 4D from 0.5 to 8. Journal of Heat Transfer, ASME 1971, 93(11):188-203.
    [19] Hart J. Stability of flow in a differentially heated inclined box[J]. Journal of Fluid Mechanics 1971, 47, 547-562.
    [20] Buchberg H, Lalude OA, Edwards DK. Performance characteristics of rectangular honeycomb solar thermal con vectors [J]. Solar Energy 1971, 13, 193-208.
    [21] Charters WWS, Peterson LF. Free convection suppression using honeycomb cellular materials[J]. Solar Energy 1972;13:353-368.
    [22] Catton I, Ayyaswany PS, Clever RM. Natural convection flow in finite rectangular slot arbitrarily oriented with respect to gravity vector[J]. International Journal of Heat and Mass Transfer 1974, 17, 173-182.
    [23] Buchberg H, Edwards DK. Design considerations for solar collectors with cylindrical glass honeycombs In: Proceedings of International Solar Enengy Society, UCLA, USA. 1975.
    [24] Cane RLD, Hollands KGT, Raithby GD, Unny TE. Free convection heat transfer across inclined honeycomb panels[J]. Transactions of the ASME, Journal of Heat Transfer 1977, 99, 86-99.
    [25] Buchberg H, Catton I, Edwards DK. Natural convection in enclosed spaces: a review of application to solar energy collection[J]. Transactions of the ASME, Journal of Heat transfer 1976, 98,182-201.
    [26] Koutsoheras W, Charters WW. Natural convection phenomenon in inclined cells with finite side walls—a numerical solution[J]. Solar Energy 1977, 19,433-447.
    [27] Smart DR, Hollands KGT, Raithby GD. Free convection heat transfer across rectangular celled diathermanous honeycombs. Transactions of the ASME, Journal of Heat Transfer 1980, 102, 75-93.
    [28] Sharma MS, Kaushika ND. Design and performance characteristics of honeycomb solar pond[J]. Energy Conversion and Management 1987, 32, 345-353.
    [29] Guthrie KI, Charters WWS. An evaluation of transverse slatted flat plate collector[J]. Solar Energy 1982,28,89-102.
    [30] Kaushika ND, Padmapriya R, Singh TP. Convection theory of honeycomb and slat devices for solar energy applications[J]. Energy Resource and Technology 1992,2, 125-135.
    [31] Lalude O, Buchberg H. Design and application of honeycomb porous-bed solar-air heaters[J]. Solar Energy 1971,12,223-236.
    [32] Hollands KGT, Raithby GD,Russel FB, Wilkinson RG. Coupled radiative and conductive heat transfer across honeycomb panels and through single cells[J]. International Journal of Heat Transfer 1984,27,2119-2131.
    [33] Charters WWS, Guthrie KI. Experimental evaluation of slatted convection suppression devices[J]. In Solar World Forum, 1. Oxford: Pergmon Press; 1982.181.
    [34] Hollands KGT, Marshall KN, Wedel RK. An approximate equation for predicting the solar transmittance of transparent honeycombs[J]. Solar Energy 1978, 21,231-241.
    [35] Symons JG. The solar transmittance of some convection suppression devices for solar energy applications: an experimental study[J]. Transactions of the ASME, Journal of Solar Energy Engineering 1982, 104, 251-273.
    [36] Symons JG. Calculation of the transmittance-absorptance product for flat-plate collectors with convection suppression devices[J]. Solar Energy 1984, 33, 637-652.
    [37] Lin EIH. A saltless solar pond. Proc Int Solar Energy Society (American Section of ISES) 1982, 225-230.
    [38] Goetzberger A, Schmidt J, Wittwer V. Transparent insulation system for passive solar energy utilization in buildings[J]. Solar Energy 1984, 2,289-305.
    [39] Hollands KGT, Iynkaran K. Proposal for a compound honeycomb collector[J]. Solar Energy 1985, 34,309-326.
    [40] Ortabassi U, Dyksterhuis FH, Kaushika ND. Honeycomb stabilized saltless solar pond[J]. Solar Energy 1983,31,229-235.
    [41] Kaushika ND, Banerjee MB, Katti Y. Honeycomb solar pond collector storage system[J]. Energy 1983, 8, 883-899.
    [42] Schaefer R, Lowrey P. The optimum design of honeycomb solar ponds and a comparison with salt gradient solar ponds[J], Solar Energy 1992,48, 69-86.
    [43] Koushika ND, Banerjee MB. Honeycomb solar pond: evaluation of applications[J]. In: Solar World Congress, Perth, Australia. 1983. 246-256.
    [44] Goetzberger A, Rommel M. Prospects for integrated storage collector system in Europe[J]. Solar Energy 1987,39,211-235.
    [45] Kaushika ND, Ray RA, Padmapriya R. A honeycomb solar collector and storage system[J]. Energy Conversion and Management 1990,30(2):127-135.
    [46] Avanti P, Arulanantham M, Kaushika ND. Solar thermal analysis of ground integrated collector/storage system with transparent insulation[J]. Applied Thermal Engineering 1996, 16(11), 863-875.
    
    [47] Rubin M, Lambert CM. Transparent silica aero gel for window insulation[J]. Solar Energy Material 1983, 7, 393-413.
    [48]Kaushika ND,Sharma MS,Sanjay K.Honeycomb roof cover system for passive solar space heating[J].Energy Conversion and Management 1987,27,98-103.
    [49]Gordon JM.Low heat loss double-glazed windows.Energy 1987,12,1333-1346.
    [50]Goetzberger A,Dengler J,Rommel M,Gottsche J,Wittwer V.A transparently insulated bifacially irradiated solar flat plane collector[J].Solar Energy 1992,49,403-421.
    [51]Chevalier B,Hutchins MG,Maccari A,Olive H,Oversloot H,Platzer Wet al.Solar energy transmittance of translucent samples:a comparison between large and small integrating sphere measurements[J].Solar Energy Materials and Solar Cells 1998,54,197-206.
    [52]Fricke J.Aerogels.Scientifc American 1988,92-95.
    [53]黄护林,葛新石,张寅平.窗户覆盖透明蜂窝对房间热环境的影响[J].高校工程热物理第六届全国学术会议论文集,1996,289-296.
    [54]黄护林、葛新石、张永忠等,复合透明蜂窝结构中辐射-导热耦合传热的简化分析[J].太阳能学报,1994,Vol15(2),125-131.
    [55]李业发,杨远佳,王贵兵.不同深径比的透明蜂窝热性能试验研究[J].新能源1999.21(6)1-4.
    [56]袁卫星,袁修干,杨春信,梅志光.蜂窝平板太阳能集热器研制及闷晒性能试验[J].北京航空航天大学学报1997.10 23(5),627-632
    [57]叶宏,葛新石,庄双勇等.带透明蜂窝的太阳空气加热器的试验研究(Ⅰ)--不同结构空气加热器的性能比较[J].太阳能学报,1999,20(1),38-43.
    [58]黄护林,透明隔热材料的热性能、构件及其应用:[M],合肥,中国科学技术大学,1996
    [59]Hollands K.G.T,Iynkaran K,Ford C,Platzer W J,Manufacture,solar transmission,and heat transfer characteristics of large-celled honeycomb transparent insulation[J].Solar Energy,1992,49(5):381-385.
    [60]李复生,殷金柱,聚碳酸酯应用及合成工艺进展[J],化工进展,2002,(6)395-398
    [61]张珂理.V形波纹多孔体太阳能空气集热器的研究.太阳能学报,1990,11(3):293-302.
    [62]Kreith F,Kreider J F,Principles of solar engineering[M],Washington:Hemisphere,1978.
    [63]何立群,焦冬生,叶宏.透明蜂窝透过率的计算研究[J],太阳能学报,2003.6,24(3):316-320.
    [64]N.D.Kaushika,M.Arulanantham,Transmittance-absorbance product insulation materials[J],Solar Energy Materials and Cells 44(1996)383-395.
    [65]Hollands K.G.T.Coupled radiative and conductive heat transfer across honeycomb panels and through single cells[J]Int.J Heat Mass Transfer.1984.27(11):2119-2131.
    [66]Platzer W.J.Calculation procedure for collectors with a honeycomb cover of rectangular cross section[J].Solar Energy,1992,48(6):381-393.
    [67]黄护林,葛新石,王桂娟等.透明蜂窝结构太阳辐射透过率的简化分析[J].太阳能学报1995.16(2).138-142
    [68]Kreider J.F,Kreith F,Solar heating and cooling[M].Washington:Hemisphere Publishing,1982,63-150.
    [69]R.L.D.Cane,K.G.T.Hollands,G.D.Raithby,T.E.Unny,Free convection heat transfer across inclined honeycomb panels,J.Heat Transfer 99(1977)86-91.
    [70]J.A.Duffie,W.A.Beckman著,葛新石,龚堡,陆维德译,太阳能-热能转换过程[M].北京:科学出版社,1980:120-135
    [71]段清彬,太阳能供暖系统的研制[M].江苏:江苏大学,2006.
    [72]J.P.Holman,Heat Transfer,Ninth Edition,McGraw-Hill Inc.New York,2002,334-345.
    [73]Duffie,Beckman,W.A.,1980.Solar Engineering of Thermal Processes.John Wiley,New York.
    [74]李申生,太阳能热利用导论[M].北京:高等教育出版社,1989,95-100.
    [75]Jeff Freilich,J.M.Gordon,Case study of a contral-station graid-intertie photovoltraic systerm wity V-trough concentration[J].Solar Energy,1991,46(5),267-273
    [76]Fraidenraich N.,G.J.Almeida,Optical properties of V trough concentrators[J].solar engery,1991,47(3),147-155.
    [77]Hollands.K.G.,A concentrator for thin-film solar cells,solar energy,1971,18,93-111.
    [78]Bione J.Vilela O.C.Fraidenraich N.Comparison of the performance of PV water pumping.Solar energy,2004,76,703-711.
    [79]李晓彤,几何光学和光学设计[M].杭州:浙江大学出版社,1997.100-120
    [80]V.Poulek,M.Libra.A new low-cost tracking ridge Concentrator.Solar Energy Materials & Solar Cells 61(2000)199-202
    [81]A.Mosalam Shaltout,A.Hettas and M.Sabry[J].V-trough concentrator on a photovoltaic full tracking system in a hot desert climate,Renewable Energy,1995,56(6),527-532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700