基于氧化锆传感器的烟气含氧量检测技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分析氧含量在工业生产、医学和环境保护等领域有着十分重要的意义。提高燃烧效率,合理利用能源,已成为工业生产中的一个重大课题。在石油、发电、化工等领域,锅炉中烟气氧含量可直接反映燃烧状况,氧含量的测量是非常重要的。
     本文研究的烟气含氧量在线检测技术是基于氧化锆固体电解质测氧的原理,论文分析了影响氧量测量的各种外在内在因素,得出了烟气氧含量在线测量的实际刻度方程,氧化锆传感器工作温度的恒定控制是提高测量精度的关键性技术之一。综合目前比较常见的温度控制算法,提出一种模糊-PI分段控制的控温方法,并将该方法应用于本系统的设计中,由此设计了适合于烟气含氧量在线检测的测控电路,实验证明该方法显著地提高了氧化锆传感器的控温精度和稳定性。
     本系统电路设计中采用新型微控制器MSP430系列单片机作为核心,简化了系统硬件设计工作,提高了系统的抗干扰性与稳定性,并给出了氧电势放大电路、热电偶温补调理模块、电压电流转换模块以及通讯模块等外围电路的设计与实现,对其性能做了实验测试,完全满足氧化锆传感器氧含量检测对精度与稳定性的要求。
Analysis of oxygen content is very important in the field of industrial production,medicine and environmental protection. How to improve the combustion efficiency and utilize energy sources rationally has been a very important subject in industrial production. In oil, energy, chemical and many other areas, the oxygen content of the flue in boiler can directly reflect the combustion conditions. So it is important to measure the oxygen content.
     With analyzing ZrO2 oxygen content principle and kinds of outside and intrinsic factors affected the measurement of the oxygen content, we make a practical equation that used in online measurement of oxygen content in flue gas, and draw a conclusion that the important key to improve measure precision of oxygen content is the stable control of the sensor’s work temperature. A kind of PI-Fuzzy control method is provided to control the sensor’s work temperature, the experiment testified the method can remarkably improve precision and stability of sensor’s working temperature control.
     The design based on the MSP430 mcu released the hardware work, increased the anti-jamming and stability of system, and also contained the oxygen voltage magnifying circuit, the thermocouple compensation circuit, standard current signal output circuit, communication circuit, etc. Experiment was made to test performance of the circuit, and the circuit fulfilled the request of oxygen content measuring about precision and stability.
引文
[1]杨邦朝,简家文,段建华等,氧传感器原理与进展[J],传感器世界,2002, 8(9):6-10
    [2]杨邦朝,简家文,张益康,氧传感器与现代生活[J],世界产品与技术,2001 (1):37-41
    [3]宋国庆,刘红宇,李恒一等,新型氧传感器及应用[J],黑龙江电子技术,1999(3):47-49
    [4]林化新,孙金凤,氧传感器(探头)性能受气候影响的研究[J],化学传感器,1990,10(2):69-76
    [5]张洪泉,郭建英,电化学式氧传感器寿命特征分析[J],哈尔滨理工大学学报,2002,5(1):9-13
    [6]王孝良,采用极谱式氧电极的高精度微机化测氧仪[J],自动化与仪器仪表,1998,2:22-24
    [7]黄睿,智能氧化锆测氧仪的研究与设计:[硕士学位论文],武汉科技大学,2006
    [8]于金涛,智能型氧化锆氧量仪的研制:[硕士学位论文],哈尔滨工业大学,2006
    [9]武生美,氧化锆氧量分析仪单片机控制系统的设计,工业计量[J],2001,4:21-24
    [10] Paul Hagnemuller W.Wangool,Solid Electrolytes,Academic press,NewYork,San Francison London,1979:113-115
    [11] Richard Edward,High Temperature Zirconium Oxygen Sensors Explained,Wayne State University,1999:7-21
    [12]贾大中,氧化锆测氧传感器应用的若干问题,炼油化工自动化[J],1996,2:56-57
    [13]张毅,张宝芬,自动化监测技术及仪表控制系统[M],北京,化学工业出版社,2005,20-34
    [14]王昌贵,储文魁,氧化锆传感器的制造工艺及应用[J],化工自动化及仪表,1996,2:55-61
    [15]张仲生,氧离子固体电解质浓差电池与测氧技术[M],中国原子能出版社,北京,1983,35-158
    [16]周惠潮,孙晓峰,常用电子器件及典型应用[M],电子工业出版社,北京,350-360
    [17]屈二华,氧含量侧测量与预处理系统的应用,工业计量,2002,4:44-45
    [18]郭士海,毛晓东,氧化锆分析仪的研制及改进,华北电力技术,2000,9:39-43
    [19]蔡兵,基于集成温度传感器的热电偶冷端补偿方法[J],传感器技术,2005,11:18-20
    [20]沙占权,葛家怡,王彦朋,热电偶冷端补偿电路的优化设计[J],电测与仪表,2003,451(7):26-28
    [21]陈满红,熊立明,ZDO-101型氧化锆分析仪的故障原因初探[J],仪器设备,2005,25:556-61
    [22] Sato T,Ohtaki S Shimada,M.Transformation of yittria patially stabilized zirconia by temperature annealing in air [J],Mater Sci,1985,20:1466
    [23]王子威,氧化锆测氧传感器的测量误差和检验方法[J],辽宁化工,2003,9:411-414
    [24] Mamdani E H,Assilian S,An experiment in linguistic synthesis with a fuzzy logic controller [J],Int.J.Man mach,Studies,1975,7(1):1-13
    [25] Kickert W M J,Mamdani E H,Analysis of fuzzy logic controller [J],Fuzzy Sets and systems,1978,1(1):29-44
    [26] Tong R M,Analysis and control of fuzzy systems using discrete relations,Int.I Contr.,1978,27(3):431-440
    [27] K Gupta M M,Trojan G M and Kiszka J B,Controllability of fuzzy control systems,IEEE Trans,Systems Man Cybern.,1986,SMC-16:576-584
    [28]汪培庄,李洪兴,模糊系统理论与模糊计算机[M],北京:科技出版社,1996,58-62
    [29]窦震中,模糊逻辑控制技术及应用[M],北京:北京航空航天大学出版社,1995,83-108
    [30]孙增沂,智能控制理论及其应用[M],北京:清华大学出版社,1995,103-110
    [31]石辛民,郝整清,模糊控制及其MATLAB仿真[M],北京:清华大学出版社,2008,89-124
    [32]余永权,曾碧,单片机模糊逻辑控制[M],北京:北京航空航天大学出版社,1995,34-56
    [33]胡汉才,单片机原理及其接口技术[M],华中理工大学出版社,2000,120-135
    [34]何宏,靳世久,朱先伟,基于智能传感器技术钻井液密度检测的研究[J],电子测量与仪器学报,2005,5:40-43
    [35]李益华,文炼红,陈燕,8098单片机在实现可控硅过零控制中的应用[J],电子仪器仪表,1999,2:23-25
    [36]赵辉,董惠存,I2C总线技术及其应用实例[J],微型电脑应用,2005,4:13-15
    [37]丛福建,毛玉良,肖绍原,基于消息驱动的单片机程序设计[J],微型机与应用,2001,12:15-18
    [38]朱大奇,单片机系统的软件抗干扰设计[J],电测与仪表,1997,8:24-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700