超硬磨料对YAG激光吸收系数的测定及数值模拟计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光加工的本质是利用材料吸收激光能量改变材料的物理化学结构,因此,研究确定材料对激光的吸收系数是研究激光加工的基础,具有重要的理论意义和实际应用价值。
     激光修整超硬磨料砂轮作为一种新型的修整技术,正显示出广阔的应用前景。照射到砂轮上的激光一部分被磨料和结合剂吸收,另一部分则被反射或透过超硬磨料作用于结合剂上。激光修整的本质是利用磨粒与结合剂吸收激光能量对砂轮进行深度的整形或轻度的修锐,使砂轮达到所要求的几何形状误差和地形地貌。迄今,针对不断出现的各种超硬磨料对YAG激光的吸收系数测量研究未见报道。如何准确的测定超硬磨料对激光的吸收系数,对激光修整超硬磨料砂轮的理论研究和实际推广应用具有关键作用。
     本文以试验研究与数值模拟计算相结合,以传热学为理论基础,基于集总参数分析法,设计了超硬磨料对YAG激光吸收系数的测量装置,利用热电偶传感器经数据采集系统测定出超硬磨料试样在YAG激光辐照和冷却过程中的热电势,将热电势值转换成相应的温度值代入吸收系数计算模型,可得出MBD系列人造金刚石和CBN系列立方氮化硼超硬磨料对YAG激光的吸收系数。同时对激光平均功率、激光光斑直径大小、激光连续辐照频率、热电偶传感器放置位置、试样本身质量以及绝热盒的性能等因素对吸收系数的影响情况进行分析,找出其中的影响规律及原因。
     根据传热学原理分析试验过程中试样的热量传递方式及对流换热形式,同时采用集总参数分析法计算对流换热系数,这是一种针对特殊场合求解对流换热系数的方法。对整个试验过程建立相应的三维非稳态传热物理和数学模型,对传热模型进行离散处理,将由试验测定的试样吸收系数值及对应激光参数代入模型,并采用APDL编程语言编制程序在ANSYS有限元分析软件中进行整个试验过程的数值模拟计算。并将数值模拟计算所得的温度与试验测定的温度进行比较,通过对两者结果的比较分析来验证试样测定结果的准确性以及整个试验方案的可行性。
The laser processing essence is to change the material physical or chemical structure by absorbed laser energy, thus fulfills a certain processing purpose. Therefore, research on measuring method of the absorption coefficient is the foundation to the laser processing, and it has important significance in practical application.
     Laser truing and dressing of superabrasive grinding wheel as one kind new technology is demonstrating powerful prospect in development day by day. In the process of laser truing and dressing superabrasive grinding wheel, a part of laser radiating to grinding wheel is absorbed by abrasives and bond, another part is reflected or penetrates through the abrasives to act on bond. The essence of laser truing and dressing is using the abrasive and bond absorbed laser energy to change the grinding wheel structure, thus to satisfy the request of grinding wheel geometric deviation. The laser absorption of superabrasive is an extremely important problem to laser truing and dressing of superabrasive grinding wheel. How to measure the laser absorption of superabrasive conveniently and economically is one of the rationale researches of laser truing and dressing superabrasives grinding wheel.
     This paper combines the experimental study with the numerical simulation, embarks from the heat transfer theory, bases on the lumped parameter method, then adopts the thermocouple sensor and data acquisition system to measure the superabrasive specimen thermoelectric potential before and after laser irradiating, afterwards transforms the thermoelectric potential into corresponding temperature and substitutes the temperature into absorption coefficient computation model, finally obtains the YAG laser absorption coefficient of MBD series artificial diamond and CBN series cubic boron nitride superabrasive. Analyzes the influence of laser average power、laser facual、heat-insulating material、laser irradiating frequency and so on to absorption coefficient, and discovers the influence rule and reason.
     Analysis the specimen’s heat transfer way and heat convection form according to heat conduction theory, simultaneously, uses the lumped parameter method to measure the coefficient of heat convection, which is a new method for measuring the heat convection coefficient under special occasion. Establishes the three dimensional unstable heat transfer physical and mathematical model corresponded to entire experiment, carries on discretization to heat transfer model, substitutes the specimen absorption coefficient measured by experiment and its corresponding laser parameter into computational model, and makes program by APDL programming language and calculates the program in ANSYS software. Compares the calculated results with the experimental results, and examines and verifies the accuracy of measured results by analyzing the two results.
引文
[1]关振中.激光加工工艺手册.北京:中国计量出版社,1998
    [2] Duley W W. Laser Material Interactions of Relevance to Metal Surface Treatment [A]. Applied Sciences [C], Rome: Martinus Nijhoff, 1986, 3-16
    [3]H G Dreehsen, C Hartwich, J H Schaefer, Uhlenbusch. Measurement of the Optical Constants of Al above the Melting Point at λ=10.6μm [J]. J Appl Phys, 1984, 56(1):283-240
    [4]邹德宁,雷永平,梁工英,苏俊义.用数值计算技术和试错法确定金属材料表面对激光的吸收率[J].金属学报,2001,37(7):737-740
    [5]Frenk A, Hoadley F A, Wagniere J D. In-Situ Techique for Measuring the Absorption during Laser Surface Remelting [J]. Metallurgical Transactions B, 1991, 22B:139-142
    [6] Huntington C A, T W Eagar. Laser welding of Aluminum and Aluminum Alloys [J]. Welding Journal, 1983, 62(4): 105-107
    [7]Khan P A A, Debroy T. Absorption of CO2 Laser Beam by Aisi 4340 Steel [J]. Metall Trans B, 1985, 16B:853-856
    [8]Bruchner M, Schafer J H, Uhlenbusch J. Ellipsometric Measurement of the Optical Constants of Solid and Molten Aluminum and Copper at λ=10.6μm [J]. J Appl Phys, 1989, 66(3): 1326-1332
    [9]Zhang K X, Liu C L, Zhang N, el al. The Thermal Coupling Effects of CW/COIL Radiation to LF6M Aluminum Alloy Plates [J]. High Power Laser and Partice Beams, 1994, 6(4):501-508
    [10]苏宝嫆.用于激光加工的金属表面涂层的研究.激光,1981,(9):533
    [11]Dreehsen H G, Hartwich C, Schaefer J H, et al. Measurement of the Optical Constants of Al above the Melting Point at λ=10.6 μm. Journal of Applied Physics, 1984, 56(1):238
    [12]Zhang Z, et al. Solution of an Inverse Problem of Heat Conductivity by Iteration Methods. Journal of Heat Transfer, 1998, (120):323
    [13]Haag M. The Absorption Coefficient Computation is based on Lumped Parameter Method. Journal of Applied Physics, 1996, 79(1): 3835
    [14]Kim T H, Kim H Y, Kim S S and Hwang J H. Obliquely Propagating Non-Monotonic Double Layer in Hot Magnetized Plasma. Phys Scr, 2005, 71 (3): 306-309
    [15]刘文今.清华大学博士论文.北京:清华大学,1989
    [16]曾正明.机械工程材料手册(非金属材料).北京:机械工业出版社,2004
    [17]罗锡裕.超硬材料的发展.粉末冶金工业,2000,10(2):32-37
    [18]李建平.超硬材料的发展及应用.工具技术,1994,28(6):40-42
    [19]冯士光.超硬材料揭秘.工具技术,2005,39(6):98-99
    [20] Sargent M O. Laser Physics [M]. Beijing: Science Press, 1982.
    [21] Yan Y B. Applied Physical Optics [M]. Beijing: China Machine Press, 1990
    [22]王家金.激光加工技术[M].北京:中国计量出版社, 1992,111-116
    [23]孙承伟,陆启生,范正修等.激光辐照效应.北京:国防工业出版社,2002
    [24]李俊昌.激光热处理优化控制研究.北京:冶金工业出版社,1995
    [25]李力钧.现代激光加工及其装备.北京:北京理工大学出版社,1993
    [26] Holman J P. Heat Transfer. New York: McGraw-Hill, 1976
    [27]曹玉璋.实验传热学.北京:国防工业出版社,1998
    [28]埃克特著.传热与传质分析.北京:科学出版社,1983 年
    [29]杨世铭编.传热学(第三版).北京:高等教育出版社,1998 年
    [30]屠传经,沈珞婵,吴子静编.热传导.北京:高等教育出版社,1992 年
    [31]Rohsonow W M, Haottnett J P. Handbook in Heat Transfer.Section, 1973
    [32]胡亚才,翁海勇,屠传经.集总参数法适用条件研究.浙江大学学报, 1997,29(4)
    [33]马丁.冯.奥尔曼.激光束与材料相互作用的物理原理及应用.北京:科学出版社,1994
    [34]Steen W M. Laser Meterial Processing. London: Spinger, 1998
    [35]杨世铭.传热学基础[M].北京:高等教育出版社,1991,3-9
    [36]杨世铭,陶文铨.传热学.第 3 版.北京:高等教育出版社,2003,1-8
    [37]俞昌铭.热传导及其数值分析.北京:清华大学出版社,1982,77-95
    [38]克罗夫特 D R,利利 D G.传热的有限差分方程计算(第 1 版).北京:冶金工业出版社,1982,22-23
    [39]严镇军.数学物理方程.合肥:中国科学技术大学出版社,2001,37-77
    [40]奥齐西克,俞昌铭.热传导(第 1 版).北京:高等教育出版社,1983,18-21
    [41]Geiger G H, Poiner D R. Transport Phenomena in Metallurgy [M]. California: Addison-wesley Publishing Company, 1976, 290-292
    [42]姚仲鹏,王瑞君.传热学.北京:北京理工大学出版社,2003,163-164
    [43] 张 荣 华 , 聂 恒 敬 . 对 流 换 热 系 数 测 定 的 一 种 新 方 法 . 能 源 研 究 与 信息,2000,16(2):40-44
    [44] 蔺 秀 川 , 邵 天 敏 . 利 用 集 总 参 数 法 测 量 材 料 对 激 光 的 吸 收 率 . 物 理 学报,2001,50(5):856-859
    [45] 崔 春 阳 , 吴 炜 , 虞 钢 等 . 球 墨 铸 铁 材 料 对 激 光 的 吸 收 率 . 中 国 激光,2006,33(7):976-980
    [46]黄延禄,杨福华,梁工英等.用原位法测定铝合金对激光的吸收率[J].中国激光,2003,30(5):449-453
    [47]武继玉.应用概率统计.北京:航天工业出版,1994,125-132
    [48]周东晨,赵国权.金刚石合成工艺.机械工业出版社,1998,6-20
    [49]谢有赞.金刚石理论与合成技术.湖南科学技术出版社,1993,91-107
    [50]郭志猛,宋月清,陈宏霞等.超硬材料与工具.北京:冶金工业出版社,1996,7-9
    [51] 马 庆 芳 , 方 荣 生 . 实 用 热 物 理 性 质 手 册 . 北 京 : 中 国 农 业 机 械 出 版社,1986,455-500
    [52]王祖光.国外立方氮化硼研制技术(Ⅰ) .磨料磨具与磨削,1991(2) :43-47
    [53]王祖光,国外立方氮化硼研制技术( Ⅲ ).磨料磨具与磨削,1991(4):39-44
    [54]任敬心,康仁科,史兴宽.难加工材料的磨削.北京:国防工业出版社,1999
    [55] 刘 培 基 , 王 安 敏 主 编 . 机 械 工 程 测 试 技 术 [M]. 北 京 : 机 械 工 业 出 版社,2003,198-202
    [56]宋文绪,杨帆主编.传感与检测技术[M].北京:高等教育出版社,2004
    [57]杨福华.金属对激光的吸收率的测定.西安:西安交通大学硕士论文,2002
    [58]Martin V A. Laser-beam Interactions with Materials. Berlin: Spring-Verlag, 1987
    [59]王秦生.金刚石烧结制品.北京:中国标准出版社,2000,45-68
    [60]福雪斯,华沙.偏微分方程的有限差分方法.上海:上海科技出版社,1964
    [61]姜礼尚,庞之垣.有限元方法及其理论基础.北京:人民教育出版社,1979
    [62]孔祥谦等.有限元法在传热学中的应用(第二版).北京:科学出版社,1986
    [63] C.P.Bhateja E J. Mach.Tool, 1980, 20-275
    [64]唐兴伦,范群波,张朝晖等.ANSYS 工程应用教程—热与电磁学篇.北京:中国铁道出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700