光学镜组结构性能仿真与镜面面形分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在光学遥感器光机结构设计过程中,为缩短设计周期、减少成本,一般采用有限元分析技术对结构进行仿真分析。本文基于有限元基本理论,利用有限元分析软件(ANSYS),对遥感器主镜面形和光机结构性能进行仿真分析。
     论文阐述了现代光机系统分析方法以及一般过程,总结了遥感器在运载、工作过程中经历的力学环境和热环境,并确定了系统响应的评价指标。应用ANSYS建立了适用于本文仿真分析的有限元模型。分析了主镜在微重力、温度和热力耦合三种工况下的面形精度,利用最小二乘法原理拟合变形镜面,计算出变形镜面的PV值和RMS值,并编写了Matlab数据处理程序。针对遥感器主要经历的动力学环境,对遥感器光机结构分别做了模态、正弦扫频、PSD随机振动和冲击响应分析。从动态环境角度研究和考察遥感器经受各种动力学环境的能力。
     从仿真结果数据可知,本文中的遥感器光机结构设计方案具有足够的强度和刚度,说明了本文设计方案合理可行。同时,仿真结果也为选取合理的设计参数、结构方案的进一步优化和热控提供了科学依据,为后续的动力学环境试验提供有效的指导。
A method of simulation was always adopted in the course of optical remote sensor structure design in order to shorten design cycle and reduce costs. This paper designed a simulation analysis about optical remote sensor structure, which make use of finite element software (ANSYS) based on finite element basic theory, and verified the scheme that was feasible and reasonable. This paper introduced the analysis method and ordinary course of modern optical-mechanical system, and summarized mechanics and thermal environment where the remote sensor undergo in the course of carrying and work, and confirmed the evaluation index of system response. A finite element model which applied to simulation analysis in this paper was built with ANSYS software.
     The primary mirror was a major component in optical system, which demanded high face form precision. This paper analyzed the primary mirror deformation in three different working conditions, such as micro-gravity experiment, temperature and heating-mechanic coupling. And then the author write MATLAB program which be used to process data of face form node deformation, and calculate the deformed surface mirror values of PV and RMS. A series of analysis was done, such as Modal, Harmonic, Transient and Spectrum, which be aimed at the remote sensor opt-mechanical structure on the basis of experiment load data. These response data that were obtained from the model action on a variety of load are analyzed, which could study and observe the ability of remote sensor that undergo various dynamics environment from the view of dynamic environment, and the design scheme was evaluated from structure performance.
     The simulation results indicated that the structure design scheme of remote sensor had adequate intensity and rigidity, and each index was within the limits of permission, and it was clear that the scheme of this paper was reasonable and feasible. In the meantime, the results provided a scientific foundation that could choose reasonable design parameters and structure scheme for further optimization and thermal control.
引文
1白杉、杨秉新.航天侦察相机的发展和研发.影像技术,2006,2:3~6
    2刘明、修吉宏、刘刚等.国外航空侦察相机的发展.电光与控制,2004,1(11):56~59
    3孙宝玉.轻型大视场光学遥感器结构动态特性研究:[博士学位论文].长春:长春光机所,2004
    4李积慧、韩双丽、王家骐等.空间相机的热分析与热控制技术.光学精密工程,1999,7(6):36~41
    5王俊、卢锷、王家骐.遥感相机对空间动力学干扰源的响应分析.光学精密工程,1999,6(7):42~47
    6 Alson E. Hatheway.An Overview of the Finite Element Method in Optical Systems.SPIE,1991,1532:361~364
    7巴斯.工程分析中的有限元分析法.北京:机械工业出版社,1991:120~136
    8杨光.结构振动有限元分析算法的实现及误差分析:[博士学位论文].长春:吉林工业大学结构力学工程系,2002
    9王红、韩昌元.温度对航天相机光学系统影响的研究.光学技术,2003,4(29):452~457
    10吴清文.镜面面型误差的曲面方程处理方法.光学精密工程,1998,6(6):56-60
    11李贤辉.光机集成有限元分析光学面形后处理研究与实现:[硕士学位论文].长春:长春光机所,2004
    12牛小明.CAE技术在空间相机光机结构设计中的应用.光学精密工程,1999,6(7):23~29
    13吴清文、陶家生、宋朝晖.高精度轻型长条形反射镜多点支撑方案.光学精密工程,1999,6(7):61~65
    14戴旭涵、米凤文、沈亦兵等.复杂工况下光学元件变形及应力的有限元研究.光子学报,1999,2(28):180~184
    15丁延卫、尤政、卢锷.温度变化对遥感器光机结构尺寸稳定性的影响.光电子·激光,2004,10(15):1170~1173
    16国绍文、张广玉、王武义等.空间相机指向反射镜面形误差仿真分析.光学仪器,2005,6(27):29~32
    17 Raja vel Sethupathi.Improvement of transient response of vibrating second mirror of IR astronomy telescopes (IRAT).SPIE,1994,2199:1034~1045
    18王建设.空间光学组件的动力学环境试验.光学精密工程,2001,2(9):174~176
    19杨洪波.空间遥感器动力学环境计算机仿真.光学精密工程,1998,6(6):39~44
    20林德荦.卫星相机中侧视反射镜振动及微重力环境下的影响分析.中国空间科学技术,2005,1:37~43
    21 Hadar O、Kopeike N S.Image resolution limit s resulting from mechanical vibration.Part 3 : numerical calculation of modulation t ransfer function.OPT. Eng,1992,31:581~589
    22 Moon I K.Design study of a KAO telescope with a 12m double2arch primary mirror.SPIE,1995,2542: 154~166
    23王尚文、余旭东.飞行器结构动力学.陕西:西北工业大学出版社,1995:74~92
    24张汝清、殷学纲、董明.计算结构动力学.重庆:重庆大学出版社,1986:45~63
    25庄表中、梁以德、张佑启.结构随机振动.北京:国防工业出版社,1995:87~114
    26 M.帕兹.结构动力学理论与计算.北京:地震出版社,1993:65~91
    27 Luc Arnold.Optimized Axial Support Topologied for Thin Telescope Mirrors.Optical Engineering,1995,34(2):567~574
    28裴云天、刘正兴.用于空间光学仪器的镜子的轻量化研究.中国空间科学技术,1991,6:11~16
    29 Song Guofeng.Thermal requirements of space solar telescope and its analysis.SPIE,1999,3786:545~552
    30 M.Cote、R. J. Pagano.Optical system performance visualization.SITE,1999,3780:2~13
    31李德葆、张元润.振动测量与试验分析.北京:机械工业出版社,1992:2~12、193~224
    32 Vladimir V. Reznichenko、Natalia S. Yakovleva.Mirror temperature stabilization and deformation by local heaters.SPIE,1994,2201:1027-1034
    33 Zurmehly G E、Hookman R A.Thermal and structure analysis of the GOES.SPIE,1991,1532:170~176
    34 Olivieri M、Pieri S、Romoli A.Analysis of defocusing thermal effects in optical systems.SPIE,1996,2774:
    283~292
    35 Jim Mayo、Linda DeHainaut、Kevin Bell、etc.Ultra-Lightweight Optics for Space Applications.SPIE,2000, 4013:687~697
    36张国瑞.有限元分析法.北京:机械工业出版社,1986:66~79
    37 B.B.诺沃日洛夫.薄壳理论.北京:科学出版社,1959:71~78
    38 J.H.Burge、B.Cuerden、J.R.P Angel.Active mirror technology for large space telescopes.SPIE,2000,4013:640~648
    39吴清文.自重作用下中心支撑主反射镜面形变化研究.光学精密工程,1996,4(4):23~28
    40 Gregory J.Michels、Victor L.Genberg.Design optimization of actively controlled optics.SPIE,2001,4198:158~162
    41 Cullimore B、Panczek T.Integrated analysis of thermal/structure/optical systems.SAE,2002,2444:241~246
    42 Victor Genberg.Opto-mechanical analysis of segment/adaptive optics.SPIE,2001,4444:562~566

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700