基于固体氧化物燃料电池应用的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境是当今人类社会可持续发展必须面对的两大难题。固体氧化物燃料电池(SOFC)是一种高效清洁的能量转换装置,在节能减排的能源市场大环境中具有广阔的发展潜力。为满足商业化对低成本和长寿命的要求,SOFC的操作温度必须由传统的高温(800-1000℃)向中低温范围(400-800℃)发展。但随着操作温度的降低,中低温SOFC的应用发展面临新的挑战,其中急需解决的重要问题包括:1)传统阴极材料在中低温条件下催化活性低,使电池输出功率较低;2)现有的中温电解质材料在操作条件下存在一定的电子导电现象,造成电池内短路,转换效率低;3)氢气燃料气储存运输困难,不适用作商业化燃料,而传统的阳极材料对碳氢燃料裂解具有高催化活性,易形成碳淀积,导致电池性能骤减。
     针对中低温SOFC的发展需求,本论文将(1)探讨阴极反应过程的关键影响因素,进而研发中低温下具有高催化活性的新型阴极材料;(2)探索发展低成本的电子阻隔层制备技术及发展具有高离子电导率和低电子电导率的新型电解质材料,以解决电池的内短路问题;(3)发展可直接用于碳氢化合物、煤基合成气、生物质气等燃料的新型阳极,降低SOFC的使用成本。本论文的主要内容和结果如下:
     第一章:简单介绍SOFC的研究背景、基本工作原理及国内外研究进展。从材料应用和发展的角度,着重阐述了SOFC实现中低温化发展所面临的重大挑战,并提出了本论文的研究目标及相关内容。
     第二章:针对中低温阴极材料电化学催化活性较低的现象,探索和发展了一系列中低温SOFC阴极材料,如LaBaCuCoO5+x(LBCC)、LaBaCuFeO5+x (LBCF)、 Sm0.5Sr0.5Fe0.8Cu0.2O3-δ(SSFCu)、SrFe0.9Sb0.iO3-δ(SFSb)和Ni0.7Co0.3O(NC3O)等。研究结果表明:1)Co基掺杂比铁基掺杂具有更好的电化学性能;2)以Cu部分取代Fe,尽管会损失一定的电子电导率,但增加材料的离子电导率,使阴极的电催化性能提高,表明在阴极反应过程中离子电导率的增加对阴极反应具有重要的作用;3)具有抗Cr中毒性能的阴极接触材料Ni0.7Co0.3O(NC3O)可被直接发展成为阴极材料,以BZCYYb为电解质的电池在700℃时最大输出功率为204mWcm-2。
     第三章:针对中低温电解质掺杂Ce02在操作条件下存在一定的电子电导现象,提出一种低成本易实现的原位电子阻隔层制备技术。利用阳极中的Ba源在电池高温烧结成型过程中向铈基电解质层扩散的现象,在电解质/阳极界面处原位反应生成电子阻挡层,从而避免电池的内短路,提高电池的开路电压和燃料利用率。进一步研究发现NiO-BaZr0.1Ce0.7Y0.2O3-δ(NiO-BZC Y)对以La2Ce2O7(LCO)电解质的载流子具有一定的影响。形成的BaCeO3基反应层能提高电解质LCO的质子迁移数,使电解质更趋向于质子电导(其电解质的电导活化能为52.51kJmo1-1);而以NiO-LCO为阳极的单电池电解质LCO以传导氧离子为主(电解质的电导活化能为95.08kJmo1-1)。
     第四章:传统Ni基阳极直接以碳氢化合物为燃料时易在Ni表面积碳,造成阳极催化活性和机械性能迅速下降,电池系统崩溃。为此,本章设计一种新型抗积碳阳极材料NiTiO3(NTO),该材料可在电池测试过程中NTO原位还原生成Ni-TiO2网状结构。700℃下,以NTO为阳极,SDC为电解质的单电池在甲烷为燃料时具有优异的抗积碳性能,40h几乎没有衰减,表明还原生成的网状连续结构的Ni-TiO2阳极具有很好的抗积碳性能。通过引入NTO-SDC阳极过渡层进一步优化电池结构,单电池在甲烷燃料下具有优异的电化学性能,最大功率密度达到0.413Wcm-2(700℃),其欧姆阻抗Rb和极化阻抗Rp分别为0.176和0.064Ωcm2。研究结果表明NTO是一种优异的低成本的抗积碳阳极材料。
     第五章:固体氧化物电解池(SOEC)是SOFC的电化学逆过程应用,可用于电网的峰谷调控。根据SOEC中Ni基电极在高温电解过程中出现的问题,本章中提出以钙钛矿型Sr0.95Y0.5TiO3+δ-Sm0.2Ce0.8O1.9直接作为电解池阴极,在SOFC和SOEC下进行对比研究。研究发现:1)XRD精修和电子顺谱共振(EPR)研究结果表明还原后Sr0.95Y0.5TiO3(SYT)结构中具有Ti3+离子的存在;2)SOEC模式下的总电阻均要小于SOFC模式下的总电阻,在SOEC模式下随着加载电压的增加,电池的欧姆电阻略有减小,而极化电阻大幅降低,表明加载电压的增加,有助于改善还原气氛下的SYT的电导率和催化活性。
Energy crisis and environmental issues have become two major challenges for the sustainable development of human society. Solid oxide fuel cells (SOFCs) are a kind of clean and highly-efficient energy conversion device that converts the chemical energy in fuels directly to electricity with negligible emissions. To meet the commercialization requirement on cost and reliability, the operating temperatures of SOFC has to be lowered from traditional800-1000℃to intermediate and low-temperatures ranging400-800℃. Unfortunately, the lowered operating tempreture bring forth new challenges to SOFCs, including1) much lowered electro-activity of tranditional cathodes, which depress the discharging output of SOFCs;2) the electronic conduction in doped ceria, which the most promising intermediate-temperature electrolyte materials, decreased the open circuit voltage of cell and thus energy conversion efficiency;3) the carbon depositing on tranditional Ni anode when directly using hydrocarbon fuels, which greatly shorten the lifetime of SOFCs.
     Aimed to develop IT-SOFCs, several topics are involeved in this thesis, including:1) exploring suitable intermediate temperature cathode materials based on the investigation of electrode reaction mechanism;2) developing in-situ reaction layer to block the electronic conduction in doped ceria electrolyte;3) exploring novel carbon-tolerant anode materials that can be used directly in hydrocarbons fuels. The main results are shown as follows:
     Chaper1:A brief introduction of the research background, the basic working principle as well as general research progress of SOFC. Major challenges in key materials for low-temperature SOFC are also addressed. Based on these analysises, the main topics of this thesis are issued.
     Chapter2; To improve the electro-activity of cathode at intermediate temperature, several new cathode materials are explored and applicated, including double perovsikite-type LaBaCuCoO5+x (LBCC) and LaBaCuFeO5+x (LBCF), Sm0.5Sr0.5Fe0.8Cu0.2O3-δ (SSFCu), SrFe0.9Sb0.1O3-δ(SFSb) and Ni0.7Co0.3O (NC3O). Investigations on these new cathode materials suggest:1) Co doped LaBaCuO5+x has better electrochemical activity than Fe doped one;2) Copper substitution in SSFCu improved its oxygen ionic conductivity at the cost of electronic conductivity. The improved ionic conductivity benefits the cathode reaction process;3) Cr-tolerant Ni0.7Co0.3O can be directly used as the cathode material. A maximum power densities of204mW cm2with the electrolyte BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) was achieved at700℃.
     Chapter3:An easy in situ electronic-blocking reaction layer fabrication technique is proposed to slove the electronic conduction in doped ceria electrolyte. A NiO-BaZr0.1Ce0.7Y0.2O3-δ (NiO-BZCY) composite was proposed as the anode substrate for doped ceria electrolyte. During the co-sintering process of anode and electrolyte, Ba partially migrates from anode to electrolyte and formed a thin electronic-blocking layer for doped ceria. Intensive study also suggested that the formed BaCeO3-based reaction layer could largely improve the proton transferring number of La2Ce2O7(LCO). The activation energy of the LCO electrolyte conductivity differed with anode materials, approximately52.51kJ mol"1with NiO-BZCY anode and95.08kJ mol-1with NiO-LCO anode, respectively.
     Chapter4:A low cost carbon-tolerant anode material NiTiO3(NTO), which is reduced to Ni/TiO2with nano-network structure in reducing atmosphere, is designed and applied for SOFCs using hydrocarbon fuels. Within the tested40h's long time test in humidied methane fuel, no decay in discharging performance was found, suggesting that NTO is a good carbon-tolerant anode. By introducing NTO-SDC active layer, the maximum power output of the cell with NTO-10%SDC/NTO-SDC/SDC/LSCF-SDC structure is413mWcm-2at700℃with humidified CH4(~3%H2O) as fuel. Low ohmic resistance and polarization resistance of0.176Ω2cm2and0.064flcm, respectively, are achieved, suggesting that NTO has good electrochemical activity to anode reaction.
     Chapter5:Solid oxide electrolysis cell (SOEC) is the reverse reaction system of SOFCs, and could be used to adjust the peak shaving of power grid along with SOFCs. In this work, Sr0.95Y0.5TiO3+δ was used as Ni substitute in SOECs to improve the cell performance. The XRD Rietveld refinement and electron paramagnetic resonance investigation suggests that Sr0.95Y0.5TiO3+δ powders reduced in H2has high-spin Ti3+with unpaired electron. Impedance study of a cell with SYT-SDC/YSZ/LSM-YSZ structure show that the polarization resistance in SOEC mode is much lower that that in SOFC mode, suggesting that the applied voltages help to improve the electrical conductivity and catalytic activity of SYT under a reducing atmosphere.
引文
[1]称定翔,郑玉龙,2007,资源与环境学术研讨会。
    [2]倪维斗,陈贞,李政,2009,我国能源现状及某些重要战略对策。中国能源,30:5-9.
    [3]Minh NQ,1993. Ceramic Fuel-Cells. Journal of the American Ceramic Society, 76(3):563-588.
    [4]孟广耀,彭定坤,2011,材料化学在中国科学技术大学——学科发展与研究实践,中国科学技术大学出版社。
    [5]林彬,2010,中低温质子陶瓷膜燃料电池的设计与制备研究,博士论文。
    [6]赵凌,2012,质子导体固体氧化物燃料电池的阴极材料及其电化学研究,博士论文。
    [7]Zha S, Xia C, Meng G,2001. Calculation of the e.m.f of solid oxide fuel cells, Journal of Applied Electrochemistry,31:93-98.
    [8]Barbir Frano,2005. PEM Fuel Cells:Theory and Practice. Burlington, MA: Elsevier Academic Press.
    [9]刘铭飞,2008,中温陶瓷膜燃料电池制备科学研究,博士论文。
    [10]Zhang YL, Gao JF. Meng GY, et al,2004. Production of dense yttria-stabilized zirconia thin films by dip-coating for IT-SOFC application. Journal of Applied Electrochemistry,34(6):637-641.
    [11]Minh NQ, Takahashi T,1995. Science and Technology of Ceramic Fuel Cells. Elsevier, Amsterdam.
    [12]Fouquet D, Muller AC, Weber A, et al,2002. Proc.5th European SOFC Forum, (Ed. J. Huijsmans), Lucerne, Switzerland, pp.467.
    [13]Cheng Z, Liu ML,2007. Characterization of sulfur poisoning of Ni-YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy. Solid State Ionics,178:925-935.
    [14]Konysheva E, Mertens J, Penkalla H, et al,2007. Chromium Poisoning of the Porous Composite Cathode-Effect of Cathode Thickness and Current Density. Journal of the Electrochemical Society,154 (12):B1252-B1264.
    [15]Lin B, Chen JF, Ling YH, et al,2010. Low-temperature solid oxide fuel cells with novel La0.6Sr0.4Co0.8Cu0.203-δ perovskite cathode and functional graded anode. Journal of Power Sources 195(6):1624-1629.
    [16]Lin B, Zhang S, Zhang L, et al,2008. Prontonic ceramic membrane fuel cells with layered GdBaCo2O5+x cathode prepared by gel-casting and suspension spray, J. Power Sources,177:330-333.
    [17]Fabbri E, Bi L, Pergolesi D, et al,2012. Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600℃ with Chemically Stable Proton-Conducting Electrolytes. Adv. Mater.24:195-208.
    [18]Oh EO, Whang CM, Hwang HJ, et al,2012. Thin film yttria-stabilized zirconia (YSZ) electrolyte fabricated by a novel chemical solution deposition (CSD) process for solid oxide fuel cells (SOFCs). Journal of nanoelectronics and optoelectronics,7(5):554-558.
    [19]Talebi T, Raissi B, Haji M, et al,2010. The role of electrical conductivity of substrate on the YSZ film formed by EPD for solid oxide fuel cell applications. International journal of hydrogen energy,35 (17):9405-9410.
    [20]Schlupp MVF, Prestat M, Martynczuk J, et al,2012. Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition. Journal of Power Sources,202:47-55.
    [21]Tsai T, Barnett SA,1997. Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid state ionics,93 (3-4):207-217.
    [22]Ling YH, Zhao L, Lin B, et al,2010. Investigation of cobalt-free cathode material Sm0.5Sr0.5Fe0.8Cu0.2O3-δ for intermediate temperature solid oxide fuel cell. Int. J. Hydrogen Energ,35:6905-6910.
    [23]Liu MF, Ding D, Bai YH, et al,2012. An Efficient SOFC Based on Samaria-Doped Ceria (SDC) Electrolyte. Journal of the Electrochemical Society,159(6): B661-B665.
    [24]Lin B, Chen JF, Ling YH, et al,2010. Low-temperature solid oxide fuel cells with novel La0.6Sr0.4Co0.8Cu0.2O3-δ perovskite cathode and functional graded anode. Journal of Power Sources,195(6):1624-1629.
    [25]Lapina A, Li S, Bergman B, et al,2012. Synthesis of La0.9Sr0.1 Ga0.8 Mg0.2O2.85 powder by gel combustion route with two-step doping strategy. Journal of the European Ceramic Society,32(10):2325-2331.
    [26]Li Z, Zhang H, Bergman B, et al,2006. Synthesis and characterization of La0.85Sr0.15Ga0.85Mg0.15O3-δ electrolyte by steric entrapment synthesis method. J Eur Ceram Soc,26:2357-2364.
    [27]Ling YH, Zhang XZ, Wang SL, et al,2010. A cobalt-free SrFe0.9Sb0.1O3-δ cathode material for proton-conducting solid oxide fuel cells with stable BaZr0.1Ce0.7Y0.1Yb0.103-δ electrolyte. J. Power Sources,195:7042-7045.
    [28]Tao SW, Irvine JTS,2006. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Advanced Materials,18:1581-1584.
    [29]Fabbri E, Bi L, Pergolesi D, et al,2012. Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600℃ with Chemically Stable Proton-Conducting Electrolytes Adv. Mater,24:195-208.
    [30]Ling YH, Zhao L, Lin B, et al,2010. Layered perovskite LaBaCuMO5+x (M= Fe, Co) cathodes for intermediate-temperature protonic ceramic membrane fuel cells. J. Alloy. Compd,493:252-255.
    [31]Zuo CD, Zha SW, Liu ML, et al,2006. (Zr0.1Ce0.7Y0.2)O3-δ as an Electrolyte for Low-Temperature Solid-Oxide Fuel Cells. Adv. Mater,18:3318-3320.
    [32]Peng RR, Xia CR, Peng DK, et al,2004. Effect of powder preparation on (Ce02)0.8(Sm203)0.1 thin film properties by screen-printing.Materials Letters, 58:604-608.
    [33]Hayashi H, Kanoh M, Quan CJ, et al,2000. Thermal expansion of Gd-doped ceria and reduced ceria. Solid State Ionics,132:227-233.
    [34]Kim YN, Manthiram A,2011. Electrochemical Properties of Ln(Sr,Ca)3 (Fe,Co)3O10+Gd0.2Ce0.8O1.9 Composite Cathodes for Solid Oxide Fuel Cells Journal of the Electrochemical Society,158(10):B1206-B1210.
    [35]Miyashita T,2009. Theoretical verification necessity of leakage currents using Sm doped Ceria electrolytes in SOFCs. The Open Materials Science Journal,3: 33-39.
    [36]Wright J, Virkar AV,2011. Conductivity of porous Sm2O3-doped CeO2 as a function of temperature and oxygen partial pressure. J. Power Sources,199: 142-145.
    [37]Matsuda M, Hosomi T, Murata K, et al,2007. Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC. J. Power Sources,165(1):102-107.
    [38]Brahim C, Ringuede A, Gourba E, et al,2006. Electrical properties of thin bilayered YSZ/GDC SOFC electrolyte elaborated by sputtering. J. Power Sources; 156(1):45-49.
    [39]Mehta K, Xu R, Virkar AV,1998. Two-layer fuel cell electrolyte structure by sol-gel processing. J. Sol-Gel Sci. Technol.11(2):203-207.
    [40]Zhao L, He BB, Sheng JC, et al,2011. BaZr0.1Ce0.7Y0.2O3-δ as an electronic blocking material for microtubular solid oxide fuel cells based on doped ceria electrolyte. Electrochemistry Communications.13:450-453.
    [41]Huang PN, Pertic A,1996. Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium. Journal of the Electrochemical Society, 143(5):1644-1648.
    [42]Ishihara T, Shibayama T, Honda M, et al,1999. Solid oxide fuel cell using Co doped La(Sr)Ga(Mg)O3 perovskite oxide with notable high power density at intermediate temperature. Chemical Communications,13:1227-1228.
    [43]Yoo JS, Lee S, Yu JH, et al,2009. Fe doping effects on phase stability and conductivity of La0.75Sr0.25Ga0.8Mg0.2O3-δ. J. Power Sources,193:593-597.
    [44]Morales M, Roa JJ, Perez-Falcon JM, et al,2012.Electrical and mechanical characterization by instrumented indentation technique of La0.85Sr0.15Ga0.8Mg0.2O3-δ electrolyte for SOFCs. Journal of the European Ceramic Society.32:4287-4293.
    [45]Yamaji K, Horita T, Ishikawa M, et al,1999.Chemical stability of the La0.8Sr0.2Ga0.83Mg0.13O3 electrolyte in a reducing atmosphere. Solid State Ionics, 121(1-4):217-224.
    [46]Yamagi K, Negishi H, Horita T, et al,2000. Vaporization process of Ga from doped LaGaO3electrolytes in reducing atmospheres. Solid State Ionics, 135(1-4):389-396.
    [47]Lee JG, Kim SH, Yoon HH,2011. Synthesis of Yttria-Doped Bismuth Oxide Powder by Carbonate Coprecipitation for IT-SOFC Electrolyte. Journal of Nanoscience and Nanotechnology.11:820-823.
    [48]Zhang L, Xia CR, Zhao F, et al,2010. Thin film ceria-bismuth bilayer electrolytes for intermediate temperature solid oxide fuel cells with La0.85Sr0.15MnO3-δ-Y0.25Bi0.75O1.5 cathodes. Materials Research Bulletin 45(5): 603-608.
    [49]Lee KT, Jung, DW, Camaratta, MA, et al,2012. Gd0.1Ce0.9O1.95/Er0.4Bi1.6O3 bilayered electrolytes fabricated by a simple colloidal route using nano-sized Er0.4Bi1.6O3 powders for high performance low temperature solid oxide fuel cells. J. Power Sources,205:122-128.
    [50]Wang Y, Wang H, Liu T, et al,2013. Improving the chemical stability of BaCe0.8Sm0.2O3-δ electrolyte by Cl doping for proton-conducting solid oxide fuel cell. Electrochemistry Communications.28:87-90
    [21]Zakowsky N, Williamson S, Irvine JTS,2005. Elaboration of CO2 tolerance limits of BaCe0.9Y0.1O3-δ electrolytes for fuel cells and other applications. Solid State Ionics,176:3019-3026.
    [52]Zhao F, Wang SW, Dixon L,et al,2011. Novel BaCe0.7In0.2Yb0.1O3-δ proton conductor as electrolyte for intermediate temperature solid oxide fuel cells. Journal of Power Sources 196(18):7500-7504.
    [53]Kreuer KD,1999. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics, 125:285-302.
    [54]Sun WP, Zhu ZW, Shi Z, et al,2013.Chemically stable and easily sintered high-temperature proton conductor BaZr0.8ln0.2O3.s for solid oxide fuel cells. J. Power Sources,229:95-101.
    [55]Chi XW, Zhang JC, Wen ZY, et al,2013. Influence of In doping on the structure, stability and electrical conduction behavior of Ba(Ce,Ti)O3 solid solution Jounal of alloys and compounds,554:378-384.
    [56]Medvedev D, Maragou V, Pikalova E, et al,2013. Composite solid state electrolytes on the base of BaCeO3 and CeO2 for intermediate temperature electrochemical devices. J. Power Sources,221:217-227.
    [57]Li J, Guo RS, Jiang H,2012. Preparation and electrochemical properties of SrCeo.4Zro.4Ybo.202.9 electrolyte. Bullerin of materials science,35:957-960.
    [58]Bohn HG, Schober T,2000. Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J. Am. Ceram. Soc.,83:768-772.
    [59]Fabbri E, Epifanio AD, Bartolomeo ED, et al,2008. Tailoring the chemical stability of Ba(Ce0.8-xZrx)Y0.2O3-δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Solid State Ionics, 179:558-564.
    [60]Fabbri E, Pergolesi D, Licoccia S, et al,2010. Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1-xYxO3-δ fuel cell electrolytes? Solid State Ionics,181(21-22):1043-1051.
    [61]Duval SBC, Holtappels P, Vogt UF, et al,2009. Characterisation of BaZr0.9Y0.103-δ Prepared by Three Different Synthesis Methods:Study of the Sinterability and the Conductivity. Fuel Cells,9(5):613-621.
    [62]Pergolesi D, Fabbri E, Epifanio AD, et al,2010. High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nature Mater.9(10):846-852.
    [63]Tao S, Irvine JTS,2007, Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325, Journal of Solid State Chemistry,180:3493-3503.
    [64]Haugsrud R, Norby T,2006. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nature Materials,5:193-196
    [65]Omata T, Ikeda K, Tokashiki R, et al,2004. Proton solubility for La2Zr207 with a pyrochlore structure doped with a series of alkaline-earth ions. Solid State Ionics.167:389-397.
    [66]Nyman BJ, Bjorketun ME, Wahnstrom G,2011. Substitutional doping and oxygen vacancies in La2Zr2O7 pyrochlore oxide. Solid State Ionics,189:19-28.
    [67]Kim G, Wang S, Jacobson AJ, et al,2OO7.Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCoO5+x with a perovskite related structure and ordered A cations. Journal of Materials Chemistry,17:2500-2505.
    [68]Wang L, Merkle R, Maier J, et al,2009. Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3.5 films. Applied Physics Letters 94:071908-1-071908-3
    [69]Doshi R, Richaeds VL,Carter JD, et al,1999. Development of solid-oxide fuel cells that operate at 500℃ Journal of the Electrochemical Society 146:1273-1278.
    [70]Kamata H, Yonemura Y, Mizusaki J, et al,1995.High temperature electrical properties of the perovskite-type oxide La1-xSrxMnO3-δ.Journal of Physics and Chemistry of Solids,56:943-950.
    [71]Murray EP, Barnett SA,2001.(La, Sr) MnO3-(Ce, Gd)O2-x composite cathodes for solid oxide fuel cells. Solid State Ionics143:265-73.
    [72]Sekido S, Tachibana H, Yamamura Y, et al,1990.Electric-ionic conductivity in perovskite-type oxides, SrxLa1-xCo1-yFeyO3-δ. Solid State Ionics,37:253-259.
    [73]Zhao F, Peng RR,Xia CR,2008.A La0.6Sr0.4CoO3-δ-based electrode with high durability for intermediate temperature solid oxide fuel cells. Materials Research Bulletin,43(2):370-376.
    [74]Fu C, Sun K, Zhang N, et al,2007. Electrochemical characteristics of LSCF-SDC composite cathode for intermediate temperature SOFC. Electrochimica Acta,52:4589-4594.
    [75]Petric A, Huang P, Tietz F,2000.Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes, Solid State Ionics,135:719-725.
    [76]Xia CR, Rauch W, Chen FL, et al,2002.Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics 149:11-19.
    [77]Shao ZP, Haile SM,2004.A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005):170-173.
    [78]Guo YM, Zhou YB, Chen DJ, et al,2011. Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ electrodes in solid oxide fuel cells. Journal of Power Sources 196:5511-5519.
    [79]Chen DJ, Shao ZP,2011. Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δmixed conductor. Int.J. Hydrogen Energ,36:6948-6956.
    [80]Lin, Y, Ran R, Shao ZP,2010. Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δas cathodes for a proton conducting solid-oxide fuel cell. Int.J. Hydrogen Energ,35: 8281-8288.
    [81]Yan A, Cheng M, Dong YL,et al,2006. Investigation of a Ba0.5Sr0.5Co0.8Fe0.203-δ based cathode IT-SOFC-I.The effect of CO2 on the cell performance.Appl.Catal,66(1-2):64-71.
    [82]Svarcova S,Wiik K,Tolchard J,et al,2008. Structural instability of cubic perovskite BaxSr1-xCo1-yFey03-δ.Solid State Ionics 178:1787-1791.
    [83]Arnold M, Wang HH, Feldhoff A. Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ membranes. J.Membr.Sci.2007,293(1-2)
    [84]Arnold M, Gesing TM, Martynczuk J, et al,2008. Correlation of the formation and the decomposition process of the BSCF perovskite at intermediate temperatures. Chem. Mater 20(18):5851-5858.
    [85]Wang HH, Tablet C, Feldhoff AA, et al,2005. cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-δ.Advanced Materials.17:1785.
    [86]Zhao L, He BB, Zhang XZ, et al,2010. Electrochemical performance of novel cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3-δ for solid oxide fuel cell cathode. Journal of Power Sources 195(7):1859-1861.
    [87]Chiba R, Yoshimura F, Sakurai Y,1999. An investigation of LaNi1-xFexO3 as a cathode material for solid oxide fuel cells. Solid State Ionics 124(3-4):281-288.
    [88]Ling YH, Zhao L, Lin B, et al 2010,Investigation of cobalt-free cathode material Sm0.5Sr0.5Fe0.8Cu0.2O3-δ for intermediate temperature solid oxide fuel cell.Int.J. Hydrogen Energ,35:6905-6910.
    [89]Zhao L, He BB, Nian Q et al,2009. In situ drop-coated BaZr0.1Ce0.7Y0.2O3-δ electrolyte-based proton-conductor solid oxide fuel cells with a novel layered PrBaCuFeO5+δ cathode. Journal of Power Sources 194(1):291-294.
    [90]Zhao L, He BB, Ling YH, et al,2010, Cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3-δ for proton-conducting solid oxide fuel cell cathode. International Journal of Hydrogen Energy 35(8):3769-3774
    [91]Kim JD, Kim GD, Moon JW, et al,2001. Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy, Solid State Ionics,143:379-389.
    [92]Jiang ZY, Lei ZW, Ding B, et al,2010. Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones. International Journal of Hydrogen Energy 35:8322-8330.
    [93]Chen XJ, Khor KA, Chan SH,2003, Identification of O2 reduction processes at yttria stabilized zirconia vertical bar doped lanthanum manganite interface, Journal of Power Sources,123:17-25.
    [94]Kenney B, Karan K,2006, Impact of Nonuniform Potential in SOFC Composite Cathodes on the Determination of Electrochemical Kinetic Parameters A Numerical Analysis, Journal of the Electrochemical Society,153:A1172-A1180.
    [95]Heuveln FH, Bouwmeester H,1997. Electrode Properties of Sr-Doped LaMnO3 on Yttria-Stabilized Zirconia Ⅱ:Electrode kinetics, Journal of the Electrochemical Society,144:134-140.
    [96]Kim JD, Kim GD, Moon JW, et al,2001. Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy, Solid State Ionics,143:379-389.
    [97]Escudero M, Aguadero A, Alonso J, et al,2007. A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy, Journal of Electroanalytical Chemistry,611:107-116.
    [98]Takeda Y, Kanno R, Noda M, et al,1987. Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia, Journal of the Electrochemical Society,134:2656-2661.
    [99]Kamata H, Hosaka A, Mizusaki J, et al,1998. High temperature electrocatalytic properties of the SOFC air electrode La0.8Sr0.2MnO3/YSZ, Solid State Ionics,106:237-245.
    [100]He F, Wu TZ, Peng RR, et al,2009.Cathode reaction models and performance analysis of Sm0.5Sr0.5CoO3-δ-BaCeo.8Smo.203-6 composite cathode for solid oxide fuel cells with proton conducting electrolyte. Journal of Power Sources 194(1): 263-268.
    [101]Zhao L, He BB, Gu JQ, et al,2012. Reaction model for cathodes cooperated with oxygen-ion conductors for solid oxide fuel cells using proton-conducting electrolytes. International Journal of Hydrogen Energy 37(1):548-554.
    [102]la O' GJ, Ahn Sj, Crumlin E, et al,2010. Catalytic activity enhancement for oxygen reduction on epitaxial perovskite thin films for solid-oxide fuel cells. Angew. Chem. Int. Ed.49:5344-5347.
    [103]Novosel B, Marinsek M, Macek J, et al,2013.Deactivation of Ni-YSZ Material in Dry Methane and Oxidation of Various Forms of Deposited Carbon. Journal of Fuel Cell Science and Technology.9:061003
    [104]Wincewicz KC, Cooper JS,2005, Taxonomies of SOFC material and manufacturing alternatives. J. Power Sources,140:280-296.
    [105]Cracium R, Park S,Gorte RJ, et al,1999, A novel method for preparing anode cermets for solid oxide fuel cells. J. Electrochem. Soc.146:4019-4022.
    [106]Kiratzis N, Holtappels P, Hartwell CE, et al,2001.Preparation and Characterization of Copper/Yttria Titania Zirconia Cermets for Use as Possible Solid Oxide Fuel Cell Anodes. Fuel Cells 1:211-218.
    [107]Ruiz-Morales JC, Canales-Vazquez J, Marrero-Lopez D, et al,2008. Is YSZ stable in the presence of Cu? J. Mater. Chem.18:5072-5077
    [108]Zhu W, Xia CR, et al,2006. Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells. Journal of Power Sources 160(2):897-902.
    [109]Zhan ZL, Barnett SA,2005.An octane-fueled oxide fuel cell. Science 308: 844-847.
    [110]Wang W, Zhou W, Ran R, et al 2009. Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer. Electrochemistry Communications 11:194-197.
    [111]Liu ZB, Ding D, Liu BB, et al,2001.Effect of impregnation phases on the performance of Ni-based anodes for low temperature solid oxide fuel cells. Journal of Power Sources 196:8561-8567.
    [112]Yang L, Choi YM, Qin WT, et al,2011. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nature communications 357 DOI:10.1038/ncomms1359
    [113]Tao SW, Irvine JTS,2004. Synthesis and characterization of (La0.75Sr0.25)0.95Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs. J. Electrochem. Soc.151:A252-A259.
    [114]Raj ES, Kilner JA, Irvine JTS,2006. Oxygen diffusion and surface exchange studies on (La0.75Sr0.25)0.95Cr0.5Mn0.5O3-δ.Solid State Ionics 177:1747-1752.
    [115]Kharton VV, Tsipis EV, Marozau IP, et al,2007. Mixed conductivity and electrochemical behavior of (La0.75Sr0.25)0.95Cr0.5Mn0.5O3-δ.Solid State Ionics 178:101-103.
    [116]Savaniu CD, Irvine, JTS,2011. La-doped SrTiO3 as anode material for IT-SOFC. Solid State Ionics 192:491-493.
    [117]Ovalle A, Ruiz-Morales JC, Canales-Vazquez J, et al,2006. Mn-substituted titanates as efficient anodes for direct methane SOFCs. Solid State Ionics 177:1997-2003.
    [118]Neagu D, Irvine JTS,2011. Structure and properties of Lao.4Sro.4Ti03 ceramics for use as anode materials in solid oxide fuel cells. Chemistry of Materials 22: 5042-5053
    [119]Ruis-Morales JC, Canales-Vazquez J, Savaniu C, et al,2007. A new anode for solid oxide fuel cells with enhanced OCV under methane operation. Phys. Chem. Chem. Phys.9:1821-1830.
    [120]Escudero MJ, Irvine JTS, Daza L,2009.Development of anode material based on La-substituted SrTiO3 perovskites doped with manganese and/or gallium for SOFC. J. Power Sources,192:43-50.
    [121]Hui SQ, Petric A,2002. Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells. J. Eur. Ceram. Soc.22:1673-1681.
    [122]Huang YH, Dass RI, Xing ZL, et al,2006. Double perovskites as anode materials for solid-oxide fuel cells. Science 312:254-257.
    [123]Huang YH, Dass RI, Denyszyn JC, et al,2006. Synthesis and characterization of Sr2MgMoO6-δ-An anode material for the solid oxide fuel cell. J. Electrochem. Soc.153:A1266-1272.
    [124]Huang YH, Liang G, Croft M, et al,2009. Double-Perovskite Anode Materials Sr2MMoO6 (M= Co, Ni) for Solid Oxide Fuel Cells. Chem. Mater. 21:2319-2326.
    [125]Bastidas DM, Tao SW, Irvine JTS,2006. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes J. Mater. Chem. 16:1603-1605.
    [126]Ruiz-Morales JC, Canales-Vazquez J, Pena-Martinez J, et al,2006. On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3-δ as both anode and cathode material with improved microstructure in solid oxide fuel cells. Electrochim. Acta 52:278-284.
    [127]Ruiz-Morales JC, Canales-Vazquez J, Ballesteros B, et al,2007. LSCM-(YSZ-CGO) composites as improved symmetrical electrodes for solid oxide fuel cells. J. Eur. Ceram. Soc.7:4223-4227.
    [128]Canales-Vazquez J, Ruiz-Morales JC, Marrero-Lopez D, et al,2007. Fe-substituted (La,Sr)TiO3 as potential electrodes for symmetrical fuel cells (SFCs). J. Power Sources 171:552-557.
    [129]Ruiz-Morales JC, Canales-Vazquez J, Marrero-Lopez D, et al,2008.An all-in-one flourite-based symmetrical solid oxide fuel cell. J. Power Sources 177(1):154-160.
    [130]Liu Q, Dong XH, Xiao GL, et al,2010, A Novel Electrode Material for Symmetrical SOFCs. Adv. Mater.22:5478-5482
    [1]Lin B, Chen JF, Ling YH, et al,2010. Low-temperature solid oxide fuel cells with novel La0.6Sr0.4Co0.8Cu0.2O3-δ perovskite cathode and functional graded anode. Journal of Power Sources 195(6):1624-1629.
    [2]Lin B, Zhang S, Zhang L, et al,2008. Prontonic ceramic membrane fuel cells with layered GdBaCo2O5+x cathode prepared by gel-casting and suspension spray, J. Power Sources,177:330-333.
    [3]Fabbri E, Bi L, Pergolesi D, et al,2012. Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600℃ with Chemically Stable Proton-Conducting Electrolytes. Adv. Mater.24:195-208.
    [4]Zhao L, He BB, Lin B, et al,2009. High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+δ cathode, Journal of Power Sources, 194:835-837.
    [5]Zhao L, Nian Q, He BB, et al,2010. Novel layered perovskite oxide PrBaCuCoO5+δ as a potential cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources 195(2):453-456.
    [6]Lin B, Ding HP, Dong YC, et al,2009. Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.2O3-6 composite cathode." Journal of Power Sources 186(1):58-61.
    [7]Zhang YX, Xia CR,2010. A durability model for solid oxide fuel cell electrodes in thermal cycle processes. Journal of Power Sources,195:6611-6618.
    [8]Otoshi S, Sasaki H, Ohnishi H, et al,1991. Changes in the Phases and Electrical Conduction Properties of (La1-xSrx)1-yMnO3-δJ.Electrochem.Soc.138:1519-1523.
    [9]Zhao L, He BB, Zhang XZ, et al,2010. Electrochemical performance of novel cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3-δ for solid oxide fuel cell cathode. Journal of Power Sources 195(7):1859-1861.
    [10]Wei B, Lu Z, Huang XQ, et al,2008. Synthesis, electrical and electrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3-δ perovskite oxide for IT-SOFC cathode. Journal of Power Sources,176:1-8.
    [11]Peng RR, Wu TZ, Liu W et al,2010. Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes. J. Mater. Chem. 20:6218-6225.
    [12]Boehm E, Bassat JM, Steil MC, et al,2003. Oxygen transport properties of La2Nil-xCuxO4+δ mixed conducting oxides, Solid State Sci.5:973-981.
    [13]Palcut M, Knibbe R, Wiik K, et al,2011. Cation inter-diffusion between LaMnO3 and LaCoO3 materials. Solid State Ionics 202:6-13.
    [14]Xie K,Zhou JE, Meng GY,2010. Pervoskite-type BaCo0.7Fe0.2Ta0.103-δ cathode for proton conducting IT-SOFC. Journal of Alloys and Compounds.506:L8-L11.
    [15]Hassan MS, Shim KB, Yang OB,2009. Electrocatalytic Behavior of Calcium Doped LaFeO3 as Cathode Material for Solid Oxide Fuel Cell. Journal of Nanoscience and Nanotechnology.l 1:1429-1433
    [16]Zhou QJ, He TM, He Q, et al,2009. Electrochemical performances of LaBaCuFeO5+x and LaBaCuCoO5+x as potential cathode materials for inter mediate-temperature solid oxide fuel cells, Electrochemistry Communications 11: 80-83
    [17]Zhou W, Ran R, Shao ZP, et al,2008. Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1-xCo0.8Fe0.2O3-8(x>0) perovskite as a solid-oxide fuel cell cathode, Journal of Power Sources,182:24-31.
    [18]Duan ZS, Yang M, Yan AY, et al,2006. Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a cathode for IT-SOFCs with a GDC interlayer, Journal of Power Sources,160: 57-64.
    [19]Zhang K, Ge L, Ran R, et al,2008. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs, Acta.Materialia,56:4876-89.
    [20]Lin B, Dong YC, Yan RQ, et al,2009. In situ screen-printed BaZr0.1Ce0.7Y0.2O3-δ electrolyte-based protonic ceramic membrane fuel cells with layered SmBaCo2O5+x cathode. Journal of Power Sources 186:446-449.
    [21]Zhao L, He BB, Xun ZQ, et al,2010. Characterization and evaluation of NdBaCo2O5+δ cathode for proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy 35(2):753-756.
    [22]Kong JR, Zhou T, Liu P, et al,2011. Preparation and Characterization of La0.6Sr0.4Co0.2Fe0.8O3-δ-based Composite Anode for Solid Oxide Electrolysis Cell. Journal of Inorganic Materials.26:1049-1052.
    [23]Yin YM, Xiong MW,Yang NT, et al,2011. Investigation on thermal, electrical, and electrochemical properties of scandium-doped Pr0.6Sr0.4(Co0.2Fe0.8)(1-x)ScxO3-δ as cathode for IT-SOFC. International Journal of Hydrogen Energy 36(6):3989-3996.
    [24]Zhu CF, Wang G, Xue JH, et al,2009. Structure and Properties of Sm0.5Sr0.5Co0.4M0.6O3 (M=CO, Mn, Fe) as IT-SOFCs Cathodes. Acta Physico-Chimica Sinica.25:1179-1184.
    [25]Xia CR, Rauch W, Chen FL, et al,2002. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics,149:1-19
    [26]Kishimoto H, Sakai N, Horita T, et al,2007. Cation transport behavior between perovskite oxides of La1-xSrxCoO3 and La0.8Sr0.2FeO3.Solid State Ionics,178: 1317-1325.
    [27]Teraoka Y, Shimokawa H, Kang CY, et al,2006. Fe-based perovskite-type (?) oxides as excellent oxygen-permeable and reduction-tolerant materials. Solid State Ionics,177:2245-2248.
    [28]Chen ZH, Ran R, Zhou W, et al,2007. Assessment of Ba0.5Sr0.5C01-yFeyO3-δ (y= 0.0-1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane.Electrochimica.Acta,2:7343-7351.
    [29]Tai L-W, Nasrallah MM, Anderson HU,1995. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Solid State Ionics,76:259-271.
    [30]Baek SW, Kim JH, Bae J,2008. Characteristics of ABO3 and A2BO4 (A=Sm, Sr; B=Co, Fe, Ni) samarium oxide system as cathode materials for intermediate temperature-operating solid oxide fuel cell. Solid State Ionics,179:1570-1574.
    [31]Hayashi H, Kanoh M, Quan CJ, et al,2000. Thermal expansion of Gd-doped ceria and reduced ceria.Solid State Ionics,132:227-233.
    [32]Zhao HL, Shen W, Zhu ZM, et al,2008. Preparation and properties of BaxSr1-xCoyFe1-yO3-δ cathode material for intermediate temperature solid oxide fuel cells. Journal of Power Sources,182:503-509.
    [33]Lin B, Wang SL, Liu HL, et al,2009. SrCo0.9Sb0.1O3-δ cubic perovskite as a novel cathode for intermediate-to-low temperature solid oxide fuel cells, Journal of Alloys and Compounds,472:556-558.
    [34]Wang YS, Nie HW, Wang SR, et al,2006. A2-aAa'BO4-type oxides as cathode materials for IT-SOFCs (A= Pr, Sm; A'= Sr; B= Fe, Co), Materials Letters,60: 1174-1178.
    [35]He F, Wu T.Z, Peng RR, et al,2009. Cathode reaction model sand performance analysis of Sm0.5Sr0.5CoO3-δ-BaCe0.8Sm0.2O3-δ composite cathode for solid oxide fuel cells with proton conducting electrolyte, J. Power Sources, 194:263-268
    [36]Fabbri E, Licoccia S, Traversa E, et al,2009. Composite Cathodes for Proton Conducting Electrolytes, Fuel Cells,9 (2):128-138.
    [37]Sneha BR, Thangadurai V,2007.Synthesis of nano-sized crystalline oxide ion conducting fluorite-type Y2O3-doped CeO2 Using perovskite-like BaCe0.9Y0.1O2.95 (BCY) and study of CO2 capture properties of BCY, J.Solid State Chem.180 (10):2661-2669.
    [38]Ding HP, Xue XJ,2010. BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte-based solid oxide fuel cells with cobalt-free PrBaFe2O5+δ layered perovskite cathode, J. Power Sources,195:7038-7041.
    [39]Zhao F, Jin C, Yang CG, et al,2011. Fabrication and characterization of anode-supported micro-tubular solid oxide fuel cell based on BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte, J. Power Sources 196:688-691.
    [40]Aguadero A, de la Calle C, Alonso JA, et al,2007. Structural and electrical characterization of the novel SrCo0.9Sb0.1O3-δ perovskite:Evaluation as a solid oxide fuel cell cathode materials, Chem.Mater.19:6437-6444.
    [41]Deng ZQ, Yang WS, Liu W, et al,2006. Relationship between transport properties and phase transformations in mixed-conducting oxides, J. Solid State Chem.179:362-369.
    [42]Larring Y, Norby T,2000. Spinel and perovskite functional layers between Plansee metallic interconnect (Cr-5 wt% Fe-1 wt% Y2O3) and ceramic (La0.85Sr0.15)0.9iMnO3 cathode materials for solid oxide fuel cells, J.Electrochem. Soc.147:3251-3256.
    [43]Konysheva E, Laatsch J, Wessel E, et al,2006. Influence of different perovskite interlayers on the electrical conductivity between La0.65Sr0.3MnO3 and Fe/Cr-based steels, Solid State Ionics,177:923-930.
    [44]Montero X, Fischer W, Tietz F, et al,2009. Development and characterization of a quasi-ternary diagram based on La0.8Sr0.2(Co,Cu,Fe)O3 oxides in view of application as a cathode contact material for solid oxide fuel cells.Solid State Ionics,180:731-737.
    [45]Trebbels R, Markus T, Singheiser L,2010. Investigation of Chromium Vaporization from Interconnector Steels with Spinel Coating, J. Electrochem.Soc. 157:B490-B495.
    [46]Hua B, Zhang WY, Wu JA, et al,2010. A promising NiCo2O4 protective coating for metallic interconnects of solid oxide fuel cells J. Power Sources,195: 7375-7379.
    [47]Basu RN, Tietz F, Teller O, et al,2003. LaNi(0.6)Fe(0.4)O(3) as a cathode contact material for solid oxide fuel cells. J. Solid State Electrochemistry,7:416-420.
    [48]Lu Z, Xia G, Templeton JD, et al,2011. Development of Ni1-xCoxO as the cathode/interconnect contact for solid oxide fuel cells. Electrochemistry Communications,13:642-645.
    [49]Liu Z, Zhen H, Kimc Y, et al,2011. Synthesis of LiNiO2 cathode materials with homogeneous Al doping at the atomic level. Journal of Power Sources,196(23): 10201-10206.
    [50]Antolini E,2003. LixNi1.xO (0    [1]Miyashita T,2009. Theoretical verification necessity of leakage currents using Sm doped Ceria electrolytes in SOFCs. The Open Materials Science Journal,3:33-39.
    [2]Matsui T, Kosaka T, Inaba M, et al,2005. Effects of mixed conduction on the open-circuit voltage of intermediate-temperature SOFCs based on Sm-doped ceria electrolytes. Solid State Ionics,176:663-668.
    [3]Wright J, Virkar AV,2011. Conductivity of porous Sm2O3-doped CeO2 as a function of temperature and oxygen partial pressure. J. Power Sources,199: 142-145.
    [4]Barnett SA,1990. A new Solid Oxide Fuel Cell design based on thin film electrolytes. Energy,15:1-9.
    [5]Tsai T, Perry E, Barnett S,1997. Low-temperature Solid Oxide Fuel Cells utilizing thin bilayer electrolytes. Journal of the Electrochemical Society,144: L130-L132.
    [6]Tsoga A, Gupta A, Naoumidis A, et al,2000. Gadolinia-doped ceria and yttria stabilized zirconia interfaces:regarding their application for SOFC technology. Acta Metallurgica,48:4709-4714.
    [7]Price M, Dong JH, Gu XH, et al,2005. Formation of YSZ-SDC solid solution in a nanocrystalline heterophase system and its effect on the electrical conductivity. Journal of American Ceramic Society,88:1812-1818.
    [8]Hirabayashi D, Tomita A, Hibino T, et al,2004. Design of a reduction-resistant Ce0.8Sm0.2O1.9 electrolyte through growth of a thin BaCe1-xSmxO3-δ layer over electrolyte surface. Electrochem. Solid-State Lett,7 (10):A318-A320.
    [9]Hirabayashi D, Tomita A, Teranishi S, et al,2005. Improvement of a reduction-resistant Ce0.8Sm0.2O1.9 electrolyte by optimizing a thin BaCe1-xSmxO3-δ layer for intermediate-temperature SOFCs. Solid State Ionics, 176(9-10):881-887.
    [10]Zhao L, He BB, Shen JC, et al,2011. BaZr0.1Ce0.7Y0.2O3-δ as an electronic blocking material for microtubular solid oxide fuel cells based on doped ceria electrolyte. Electrochemistry Communications,13:450-453.
    [11]章蕾,2011.低温固体氧化物燃料电池的结构改进,博士论文.
    [12]Yang L, Choi YM, Qin WT, et al,2011. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nat commun,2:357.
    [13]Bi L, Fabbri E, Sun Z. & Traversa E,2011. A novel ionic diffusion strategy to fabricate high-performance anode-supported solid oxide fuel cells (SOFCs) with proton-conducting Y-doped BaZrO3 films. Energy Environ. Sci,4:409-412.
    [14]Rao YY, Wang ZQ, Zhong W, et al,2012. Novel Ni-Ba1+xZr0.3Ce0.5Y0.2O3-δ hydrogen electrodes as effective reduction barriers for reversible solid oxide cells based on doped ceria electrolyte thin film. J. Power Sources,199:142-145.
    [15]Sun WP, Liu W,2012. A novel ceria-based solid oxide fuel cell free from internal short circuit. J. Power Sources,217:114-119.
    [16]Zheng YF, Gu HT, Chen H, et al,2009. Effect of Sm and Mg co-doping on the properties of ceria-based electrolyte materials for IT-SOFCs. Materials Research Bulletin,44:775-779.
    [17]Godickemeier M, Gauckler LJJ,1998. Engineering of Solid Oxide Fuel Cells with Ceria-Based Electrolytes. Electrochem. Soc,145:414-421.
    [18]Lin B, Wang SL, Liu XQ, et al,2009. Stable proton-conducting Ca-doped LaNbO4 thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing. Journal of Alloys and Compounds 478(1-2):355-357.
    [19]Ling YH, Yu J, Lin B, et al,2011. A cobalt-free Sm0.5Sr0.5Fe0.8Cu0.2O3-δ-Ce0.8Sm0.2O2-δ composite cathode for proton-conducting solid oxide fuel cells. Journal of Power Sources 196(5):2631-2634.
    [20]Zou CD, Zha SW, Liu ML, et al,2006. Ba(Zr0.1Ce0.7Y0.2)03-δ as an electrolyte for low-temperature solid-oxide fuel cells. Adv. Mater,18:3318-3320.
    [21]Ling YH, Lin B, Zhao L, et al,2010. Layered perovskite LaBaCuMO5+x (M= Fe, Co) cathodes for intermediate-temperature protonic ceramic membrane fuel cells. J. Alloys and Compounds,493:252-255.
    [22]Wang Y, Wang H, Liu T, et al,2013. Improving the chemical stability of BaCe0.8Sm0.2O3-δ electrolyte by Cl doping for proton-conducting solid oxide fuel cell. Electrochemistry Communications.28:87-90
    [23]Zakowsky N, Williamson S, Irvine JTS,2005. Elaboration of CO2 tolerance limits of BaCe0.9Y0.1O3-δ electrolytes for fuel cells and other applications. Solid State Ionics,176:3019-3026.
    [24]Zhao F, Wang SW, Dixon L,et al,2011. Novel BaCe0.7In0.2Yb0.1O3-δ proton conductor as electrolyte for intermediate temperature solid oxide fuel cells. Journal of Power Sources 196(18):7500-7504.
    [25]Fabbri E, Epifanio AD, Bartolomeo ED, et al,2008. Tailoring the chemical stability of Ba(Ce0.8-xZrx)Y0.2O3-δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Solid State Ionics, 179:558-564.
    [26]Fabbri E, Pergolesi D, Licoccia S, et al,2010. Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1-xYxO3-5 fuel cell electrolytes? Solid State Ionics,181:1043-1051.
    [27]Kreuer KD, Adams S, Munch W, et al,2001. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications Solid State Ionics,145:295-306.
    [28]Duval SBC, Holtappels P, Vogt UF, et al,2009. Characterisation of BaZr0.9Y0.1O3-δ Prepared by Three Different Synthesis Methods:Study of the Sinterability and the Conductivity. Fuel Cells,5:613-621.
    [29]Fabbri E, Bi L, Tanaka H, et al,2011. Chemically Stable Pr and Y Co-Doped Barium Zirconate Electrolytes with High Proton Conductivity for Intermediate-Temperature Solid Oxide Fuel Cells. Adv. Funct. Mater,21: 158-166.
    [30]Bi L, Fabbri E, Sun Z, et al,2011. BaZr0.8Y0.2O3-δ-NiO composite anodic powders for proton-conducting SOFCs prepared by a combustion method. J. Electrochemical Society,158 (7):B797-803.
    [31]Xing W, Syvertsen GE, Grande T, et al,2012. Hydrogen permeation, transport properties and microstructure of Ca-doped LaNbO4 and LaNb3O9 composites. Journal of Membrane Science.415:878-885.
    [32]Bi L, Tao ZT, Sun WP, et al,2009. Proton-conducting solid oxide fuel cells prepared by a single step co-firing process. Journal of Power Sources, 191:428-432.
    [33]Haugsrud R, Norby T,2006. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nature Materials,5:193-196.
    [34]Wang SW, Zhang LB, Yang Z, et al,2012. Two-step co-sintering method to fabricate anode-supported Ba3Ca1.18Nb1.82O9-δ proton-conducting solid oxide fuel cells. Journal of Power Sources 215:221-226.
    [35]Nyman BJ, Bjorketun ME, Wahnstrom G,2011. Substitutional doping and oxygen vacancies in La2Zr2O7 pyrochlore oxide. Solid State Ionics,189:19-28.
    [36]Wang JD, Xie YH, Zhang ZF, et al,2005. Protonic conduction in Ca2+-doped La2M2O7 (M= Ce, Zr) with its application to ammonia synthesis electrochemically. Materials Research Bulletin,40:1294-1302.
    [37]Fang SM, Bi L, Yan L, et al,2010. CO2-Resistant Hydrogen Permeation Membranes Based on Doped Ceria and Nickel. J. Physical Chemistry C,114: 10986-91.
    [38]Vanpoucke DEP, Bultinck P, Cottenier S, et al,2011. Density functional theory study of La2Ce2O7: Disordered fluorite versus pyrochlore structure. Physical Review,84:054110
    [39]Bae JS, Choo WK, Lee CH,2004. The crystal structure of ionic conductor LaxCe1-xO2-x/2. J. Eur. Ceram. Soc,24:1291-1294.
    [40]Tao ZT, Bi L, Fang SM, et al,2011. A stable La1.95Ca0.05Ce2O7-δ as the electrolyte for intermediate-temperature solid oxide fuel cells. J. Power Sources, 196:5840-5843.
    [41]Sun W, Fang S, Yan L, et al,2012. Investigation on Proton Conductivity of La2Ce2O7 in Wet Atmosphere:Dependence on Water Vapor Partial Pressure. Fuel Cells,12:457-463.
    [42]Yamamura H, Nishino H, Kakinum K, et al,2003. Crystal phase and electrical conductivity in the Pyrochlore-type composition system, Ln2Ce2O7 (Ln=La, Nd, Sm, Eu, Gd, Yand Yb). J. Ceram. Soc. Jpn,111:902-906.
    [43]Nowick AS, Du Y,1995. High-temperature protonic conductors with perovskite-related structures. Solid State Ionics,77:137-146.
    [44]Peng RR, Wu TZ, Liu W, et al,2010. Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes. J. Materials Chemistry, 20:6218-6225.
    [45]Zhao L, He BB, Gu JQ, et al,2012. Reaction model for cathodes cooperated with oxygen-ion conductors for solid oxide fuel cells using proton-conducting electrolytes. Int. J. Hydrogen Energ,37:548-554.
    [46]Yang L,Wang SZ, Blinn K, et al,2009. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs:BaZr0.1Ce0.7Y0.2-xYbxO3-δ. Sci,326:126-129.
    [1]Nease J, Adams TA,2013. Systems for peaking power with 100% CO2 capture by integration of solid oxide fuel cells with compressed air energy storage. Journal of Power Source 228:281-293.
    [2]Shi YX, Luo Y, Cai, NS, et al,2013. Experimental characterization and modeling of the electrochemical reduction of CO2 in solid oxide electrolysis cells. Electrochemical Acta,88:644-653
    [3]la O' GJ,Ahn SJ,Crumlin E, et al,2010. Catalytic activity enhancement for oxygen reduction on epitaxial perovskite thin films for solid-oxide fuel cells. Angew. Chem. Int. Ed,49:5344-5347.
    [4]Novosel B, Marinsek M, Macek J, et al,2013.Deactivation of Ni-YSZ Material in Dry Methane and Oxidation of Various Forms of Deposited Carbon. Journal of Fuel Cell Science and Technology.9:061003
    [5]Kaklidis N, Besikiotis V, Pekridis G, et al,2013.Acetic acid internal reforming in a solid oxide fuel cell-reactor using Cu-CeO2 anodic composites. International Journal of Hydrogen Energy,37:16722-16732.
    [6]Liu LM, Sun KN, Li XK, et al,2012. A novel doped CeO2-LaFeO3 composite oxide as both anode and cathode for solid oxide fuel cells. International Journal of Hydrogen Energy,37:125724-12574.
    [7]Kim JH,Schlegl H, Irvine JTS,2012. The catalytic effect of impregnated (La, Sr)(Ti, Mn)O3±δ with CeO2 and Pd as potential anode materials in high temperature solid oxide fuel cells International Journal of Hydrogen Energy,37: 14511-14517.
    [8]Rath MK,Choi BH, LeeKT,2012.Properties and electrochemical performance of La0.75Sr0.25Cr0.5Mn0.5O3-δ-La0.2Ce0.8O2-δ composite anodes for solid oxide fuel cells. Journal of Power Source 213:55-62.
    [9]Huang YH, Dass RI, Xing ZL, et al,2006. Double perovskites as anode materials for solid-oxide fuel cells. Science,312:254-257.
    [10]Torabi A, Etsell TH,2013.Electrochemical behavior of solid oxide fuel cell anodes based on infiltration of Y-doped SrTiO3. Journal of Power Sources 225:51-59.
    [11]Ma Q, Tietz F, Stover D,2011. Nonstoichiometric Y-substituted SrTiO3 materials as anodes for solid oxide fuel cells. Solid State Ionics,192:535-539.
    [12]Yang L, Wang SZ, Blinn K, et al,2009. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs:BaZr0.1Ce0.7Y0.2-xYbxO3-δ. Science, 326:126-129.
    [13]Yang L, Choi YM, Qin WT, et al,2011. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nat. Commun,2:357.
    [14]Rodriguez JA, Ma S, Liu P, et al,2007. Activity of CeOx and TiOx Nanoparticles Grown on Au (111) in the Water-Gas Shift Reaction. Science,318:1757-1760.
    [15]Wu TH, Yan QG, Wan HL,2005. Partial oxidation of methane to hydrogen and carbon monoxide over a Ni/TiO2 catalyst. Journal of Molecular Catalysis A: Chemical,226:41-48.
    [16]Chen D, Yang D, Wang Q, et al,2006. Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind. Eng. Chem. Res, 45:4110-4116.
    [17]Zhao W, Ma W, Chen C, et al,2004. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. Am. Chem. Soc, 126:4782-4783.
    [18]Hung WC, Chen YC, Chu H, et al,2008. Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane. Appl. Surf. Sci.255:2205-2213.
    [19]Kang M, Lee MH,2005. Synthesis and characterization of A1-, Bi-, and Fe-incorporated mesoporous titanosilicate (MPTS) materials and their hydrophilic properties. Appl. Catal A,284:215-222.
    [20]D'Addato S, Grillo V, Altieri S, et al,2011. Structure and stability of nickel/nickel oxide core-shell nanoparticles. Journal of Physics:Condensed Matter,23(17):175003.
    [21]Giovanardi C, di Bona A, Valeri S,2004. Oxygen-dosage effect on the structure and composition of ultrathin NiO layers reactively grown on Ag (001). Physical Review B,69:075418.
    [22]Nesbitt HW, Legrand D, Bancroft GM,2000. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Physics and Chemistry of Minerals, 27:357-366.
    [23]Prieto P, Nistor V, Nouneh K, et al,2012. XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth. Applied Surface Science,258(22):8807-8813.
    [24]Corneille J, He JW, Goodman DW,1994. XPS characterization of ultra-thin rngo films on a mo(100) surface. Surf. Sci,306(3):269-278.
    [25]Li YX, Zhou JE, Dong DH, et al,2012. Composite fuel electrode La0.2Sr0.8TiO3-Ce0.8Sm0.2O2 forelectrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser. Phys. Chem. Chem. Phys,14:15547-15553.
    [26]Chong SV, Xia J, Suresh N, et al,2008. Tailoring the magnetization behavior of Co-doped titanium dioxide nanobelts. Solid State Commun,148(7-8):345-349.
    [27]Soria J, Sanz J, Sobrados I, et al,2007. Magnetic resonance study of the defects influence on the surface characteristics of nanosize anatase. Catal. Today, 129:240-246.
    [28]Glinchuk MD, Bykov IP, Slipenyuk AM, et al,2001. ESR study of impurities in strontium titanate films. Phys. Solid State,43:841-844.
    [29]Minervini L, Grimes RW, Tabira Y, et al,2002.The Oxygen Positional Parameter in Pyrochlores and its Dependence on Disorder, Philos. Mag. A,82 (1):123-135.
    [30]Wuensch BJ, Eberman KW, Heremans C, et al,2000. Connection between Oxygen-Ion Conductivity of Pyrochlore Fuel-Cell Materials and Structural Change with Composition and Temperature. Solid State Ionics,129:111-133.
    [31]Staneck CR, Minervini L, Grimes RW,2002. Nonstoichiometry in A2B2O7 Pyrochlores. J. Am. Ceram. Soc,85(11):2792-2798.
    [32]Komissarova LN, Shatskii VN, Pushkina GY, et al,1984. Chemistry of Rare Elements. Rare-Earth Element Compounds:Carbonates, Oxalates, Nitrates, and Titanates. Moscow:Nauka.
    [33]Lyashenko LP, Belov DA and Shcherbakova LG.2008. Conductivity of Sm2Ti05 and Sm2Ti2O7. Inorganic Materials,44(12):1349-1353.
    [34]Yamaguchi S, Kobayashi K, Abe K, et al,1998. Electrical conductivity and thermoelectric power measurements of Y2Ti2O7. Solid State Ionics,113:393-402.
    [35]Matteucci F, Cruciani G, Dondi M,, et al,2007. Crystal structural and optical properties of Cr-doped Y2Ti2O7 and Y2Sn2O7 pyrochlores. Acta Materialia 55:2229-2238.
    [36]Johnson MB, James DD, Bourque A, et al,2009. Thermal properties of the pyrochlore, Y2Ti207. J. Solid State Chem,182:725-729.
    [37]Gill JK, Pandey OP, Singh K,2011. Ionic conductivity, structural and thermal properties of pure and Sr2+ doped Y2Ti2O7 pyrochlores for SOFC. Solid State Sciences,13:1960-1966.
    [38]Fu C, Sun K, Zhang N, et al,2007, Electrochemical characteristics of LSCF-SDC composite cathode for intermediate temperature SOFC, Electrochimica Acta,52:4589-4594.
    [39]Leng Y, Chan S H, Liu Q,2008, Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte, International Journal of Hydrogen Energy,33:3808-3817.
    [1]Laguna-Bercero MA,2012. Recent advances in high temperature electrolysis using solid oxide fuel cells:A review, Journal of Power Sources 203:4-16.
    [2]Gu Y, Zhang J, Li YX, et al,2012. Composite Oxygen Electrode Based on LSCM for Steam Electrolysis in a Proton Conducting Solid Oxide Electrolyzer. Journal of the Electrochemical Society,159 (11):F763-F767.
    [3]Manage MN, Hodgson D, Milligan N, et al,2011. A techno-economic appraisal of hydrogen generation and the case for solid oxide electrolyser cells, International Journal of hydrogen energy 36:5782-5796.
    [4]Kim J, Ji HI, Dasari HP, et al,2013. Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating at high polarization. International Journal of hydrogen energy 38:1225-1235.
    [5]Ni M,2009. Computational fluid dynamics modeling of a solid oxide electrolyzer cell for hydrogen production, International Journal of hydrogen energy 34:7795-7806.
    [6]Chen KF, Jiang SP, et al,2011. Failure mechanism of (La,Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells, International Journal of hydrogen energy 36:10541-10549.
    [7]Ni M,2010. Modeling of a solid oxide electrolysis cell for carbon dioxide electrolysis, Chemical Engineering Journal 164:246-254.
    [8]Xu SS, Li SS, Yao WT, et al,2013. Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0.75Sr0.25Cr0.5Mn0.5O3-δ electrode. Journal of Power Sources 230:115-121.
    [9]Xie K, Zhang YQ, Meng GY, et al,2011. Direct synthesis of methane from CO2/H2O in an oxygen-ion conducting solid oxide electrolyser, Energy Environ. Sci.,4:2218-2222.
    [10]Guo XM, Mao DS, Wang S, et al,2009. Combustion synthesis of CuO-ZnO-ZrO2 catalysts for the hydrogenation of carbon dioxide to methanol. Catalysis Communications 10(2009)1661-1664.
    [11]Shao L, Wang SR, Qian JQ, et al,2011. Fabrication of Cathode-supported Tubular Solid Oxide Electrolysis Cell for High Temperature Steam Electrolysis J. New Mater. Electrochem. Syst,14:179-182.
    [12]Rao YY, Wang ZQ, Zhong W, et al,2012.Novel Ni-Bai+xZr0.3Ce0.5Y0.2O3-δ hydrogen electrodes as effective reduction barriers for reversible solid oxide cells based on doped ceria electrolyte thin film J. Power Sources,199:142-145.
    [13]Li SH, Li YX, Gun Y, et al,2012.Electrolysis of H2O and CO2 in an oxygen-ion conducting solid oxide electrolyzer with a La0.2Sr0.8TiO3+δ composite cathode. Journal of Power Sources 218:244-149.
    [14]Li YX, Zhou JE, Dong DH, et al,2012. Composite fuel electrode La0.2Sr0.8TiO3+δ-Ce0.8Sm0.2O2-δ for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser. Phys. Chem. Chem. Phys.14:15547-15553.
    [15]Yoo KB, Park BH, Choi GM,2012. Stability and performance of SOFC with SrTiO3-based anode in CH4 fuel. Solid State Ionces 225:104-107.
    [16]Ma QL, Tietz F,2012.Comparison of Y and La-substituted SrTiO3 as the anode materials for SOFCs. Solid State Ionces 225:108-112.
    [17]Torabi A, Etsell TH,2013.Electrochemical behavior of solid oxide fuel cell anodes based on infiltration of Y-doped SrTiO3. Journal of Power Sources 225:51-59.
    [18]Jacobson AJ,2010. Materials for Solid Oxide Fuel Cells. Chem. Mater.,22: 660-674.
    [19]Hui SQ, Petric A,2002. Electrical properties of yttrium-doped strontium titanate under reducing conditions. J. Electrochem. Soc.,149:J1-J10.
    [20]Ma Q, Tietz F, Stover D,2011. Nonstoichiometric Y-substituted SrTiO3 materials as anodes for solid oxide fuel cells. Solid State Ionics,192:535-539.
    [21]Fu QX, Mi SB, Wessel E, et al,2008. Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3. J. Eur Ceram. Soc.,28:811-820
    [22]Ma Q, Tietz F, Sebold D, et al,2010. Y-substituted SrTiO3-YSZ composites as anode materials for solid oxide fuel cells:Interaction between SYT and YSZ. J. Power Sources,195:1920-1925.
    [23]Chong SV, Xia J, Suresh N, et al,2008. Tailoring the magnetization behavior of Co-doped titanium dioxide nanobelts. Solid State Commun.148:345-349.
    [24]Soria J, Sanz J, Sobrados I, et al,2007. Magnetic resonance study of the defects influence on the surface characteristics of nanosize anatase. Catal. Today 129: 240-246.
    [25]Glinchuk MD, Bykov IP, Slipenyuk AM, et al,2001. ESR study of impurities in strontium titanate films. Physics Solid State,43:841-843.
    [26]Tai L-W, Nasrallah MM, Anderson HU,1995. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Solid State Ionics,76:259-271.
    [27]Ling YH, Zhao L, Lin B, et al,2010. Investigation of cobalt-free cathode material Sm0.5Sr0.5Fe0.8Cu0.2O3-δ for intermediate temperature solid oxide fuel cell. Int. J. Hydrogen Energ.35:6905-10.
    [28]Obara H, Yamamoto A, Lee CH,2004. Thermoelectric properties of Y-doped polycrystalline SrTiO3. Jpn. J. Appl. Phys.43:L 540-L542.
    [29]Hui SQ, Petric A,2002. Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells. J. Euro. Ceram. Soc.22:1673-1681.
    [30]Tai LW, Nasrallah MM, Anderson HU, et al,1995. Structure and electrical-properties of La1-xSrxCo1-yFeyO3.2.the system La1-xSrxCo0.2Fe0.8O3. Solid State Ionics,76:273-283.
    [31]He F, Peng RR, Yang SF, et al,2011. Reversible Solid Oxide Cell with Proton Conducting Electrolyte:Materials and Reaction Machanism. Progress in Chemistry.23(2-3):477-486.
    [32]He F, Song D, Peng RR, et al,2010. Electrode performance and analysis of reversible solid oxide fuel cells with proton conducting electrolyte of BaCe0.5Zr0.3Y0.203-δ. Journal of Power Sources 195(11):3359-3364.
    [33]Ruiz-Morales JC, Canales-Vazquez J, Savaniu C, et al,2006. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation, Nature 439:568-571.
    [34]Neagu D, Irvine JTS,2010. Structure and properties of Lao.4Sro.4Ti03 ceramics for use as anode materials in solid oxide fuel cells. Chem. Mater.22:5042-5053.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700