微波对高粘高凝原油作用规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高粘高凝原油是一种蜡、胶质、沥青质等重组份分散相(胶凝物)含量较高的非常规原油。高粘高凝原油的长距离管输在技术工艺上存在较大的困难,现有的输送工艺存在一定的局限性。微波加热是将介质损耗变成热能的一种体加热,由于物料的介电常数不同,使得微波加热具有选择性,同时微波加热还存在“非热效应”。
     论文考虑将微波能应用于高粘高凝原油的加热改性输送,利用微波具有“非热效应”的独特优势对高粘高凝原油进行作用,可望对引起高粘高凝原油高粘度、高凝固点的蜡、胶质、沥青质等高损耗的重组分进行选择性改性处理,从而实现高粘高凝原油经济、高效、清洁、快速地净化与输送。
     为了搞清微波对高粘高凝原油作用机理,为高粘高凝原油微波加热输送技术的应用与推广提供理论指导,论文通过实验及理论两方面分析了微波对高粘高凝原油不同组分的作用规律。
     论文首先进行了微波对高凝高粘原油作用的室内实验,并对微波作用前后高粘高凝原油的流变性指标进行了测定,然后借助于红外光谱、棒色谱和色谱/质谱分析等化学分析手段,对微波作用前后高粘高凝原油组成及结构进行了测试,分析了引起流变性变化的原因。进一步通过微波对高粘高凝原油单一组份(饱和烃、芳香烃、胶质沥青质、蜡)作用前后组份的化学分析,研究了引起流变性变化的直接原因。论文还通过实验研究了微波作用的最大效果。上述实验结果表明,微波对高粘高凝原油作用后,能明显降低其粘度和凝点,这种降低经过较长时间后仍然保持不变,这是原油中的胶质沥青质和长链烷烃发生热裂解,产生不可逆变化所致。
     论文还利用均匀设计方法,对微波功率、微波作用时间、原油含水率与脱水率之间的关系进行了实验研究,并根据实验结果,拟合出了上述微波参数与脱水率之间的经验关系式。
     根据电磁场及热力学理论,结合高粘高凝原油及其各组份介电特性及其分散特点,建立了微波对高粘高凝原油作用的数学模型,并进行了理论求解,确定了实验加热腔内部的温度分布。计算结果表明,高粘高凝原油的介电属性微观非均匀性造成微波作用过程中产生选择性加热现象,微波作用的选择性导致微波加热时温度分布的不均匀性,使得在原油体系整体温度并不高的情况下,胶质沥青质等高损耗的组分温度较高,达到了热裂解的温度,产生了热裂解。
     实验和理论分析表明,微波对高粘高凝原油作用,同时具有热效应和非热效应。非热效应是由于在微波的作用下降低了分子键的活化能,热效应是由于微波加热具有选择性,出现局部过热产生热裂解造成的。
     最后根据室内实验及理论研究成果,研制了单井出油管线微波加热器,并在现场进行
    
    中文摘要
    了应用。现场应用表明,将微波应用于输油管线的加热理论上是可行的,现场试验是成
    功的。
    主题词:微波高粘油高凝油脱水输送数学模型
    论文类型:应用基础
The high viscosity and high-solidifying point crude oil is a kind of unconventional crude oil that contains such high percentage of weighty -component dispersed phase as wax ,colloid and asphalt. The present long-distance pipeline transportation of the crude oil exists many problems in the technological aspect.Microwave heating is a method that the dielectric loss is converted thermal energy. It is a penetrating heating and has fast heating speed. Because materials have different dielectric constant so that microwave heating has its selectivity. At the same time microwave heating has non-thermal effect besides thermal effect.The thesis states that microwave energy is applied to heat and change its characteristics in the transportation of the crude oil . microwave energy can not only decrease viscosity and solidifying point of the crude oil but also dehydrate. Therefore, the transportation technique can accomplish economical,high-effective,cleanly and fast transportation and purification of the crude oil.The regularity of the microwave on different components of the crude oil was analyzed experimentally and theoretically in order to understand the mechanism of the action of microwave on the crude oil and provide theoretical guide to application and promotion of this microwave heating transportation technique.In this thesis the effect of microwave on the highly viscous and high-solidifying point crude oil and its different components was studied by indoor experiments ,at the same time, the components and structure of the crude oil were also tested before and after the experiments by means of chemical analytical means such as infrared spectrum, club-shaped spectrum and chromatograph/ mass spectrogram and so on. The rheological indexes,solidifying point,yield value,viscosity-temperature curve and flow curve of the crude oil were also determined after the experiments. According to experimental results, the mechanism of microwave on the crude oil was analyzed qualitatively.The relation between microwave power, running time of microwave and cut of crud oil and dehydration rate was researched by the method of uniform design. The experiential results manifest the relation that microwave parameter and dehydration rate were fitted on the ground of the foregoing experimental results.The dielectric constant of the crude oil and its components were measured .Making use of FDTD calculation program and experimental results, the distribution of temperature and electromagnetism in the heating chamber was determined. According to electromagnetic field theory and the regularity of microwave colloid,asphalt ,paraffm in crude oil and W/O emulsion, the mathematical model of the effect of microwave on the crude oil was established and its solution was attained . The mathematical model was also verified by experimental results.In addition, the regularity of microwave on the highly viscous and high-solidifying
    
    point crude oil and its different components was further analyzed in accordance with the results of the experiments and theoretical calculation.Finally, based upon the results of the indoor experiments and theoretical research, microwave heater in single well pipeline was manufactured and tried out in the oilfield . The successful test in the oilfield indicates that the microwave heating theory is feasible in the long-distance pipeline transportation.
引文
[1] 杨筱蘅、张国忠.输油管道设计与管理.山东东营:石油大学出版社,1996.80页
    [2] 李传宪、罗哲鸣.原油流变性及测量.山东东营:石油大学出版社,1994.140页
    [3] 张鸿仁.油田原油脱水.北京:石油工业出版社,1988
    [4] 马宝岐、吴安明.油田化学原理与技术.北京:石油工业出版社,1995
    [5] 张兆镗、钟若清译.微波加热技术基础.北京:高等教育出版社,1988
    [6] 彭金辉、杨显万.微波能技术新应用.昆明:云南科技出版社,1997
    [7] 刘岐山.微波能应用.北京:电子工业出版社,1990.8
    [8] 张千弘.微波有机化学的进展.天津化工,2000,5:7
    [9] Ritchey, W.H.: Radiation heating: U.S.P. 27577387, Aug 1, 1956
    [10] Thermal Recover Systerm Uses Electricity Petroleum Engineering 44 1969
    [11] Mcpherson R.C. et al: Recovery Of Athatasca Bitumen with the Electromagnetic Flood Process J. Canadian P.T. p44~51 April 1985
    [12] Bridge J. E. et al: RF Heating to Recover Oil from Utah Tar Sands McGrawHill Inc. New York p396~409 1981
    [13] Electromagnetic Reservoir Stimulation Shows Promise in Brazil Oil & Gas Journal VOl.86, NO.46 p106~108, 1988
    [14] Milan, C.A.:In-situ extraction of bitumen from Alberta's tar sand by microwave heating: B.A. Sc. thesis, Univ. of Windsor, 1978
    [15] Mcver, J.F.: Electrical propertyes of the Athabasca tar sands: M. Sc. thesi, Univ. of Alberta, Edmonton, Alberta, Jun 12, 1978
    [16] McPheson, G. R., et al:The electromagnetic flooding processs for in-situ recovery of oil from Athabasca oil sand: J. of Microwave Power, 1986, 21, 129
    [17] Kiomanesh, I. A.:In-situ tuned microwave oil extraction processs: U.S.P. 5082054, Jan. 21, 1992
    [18] R. G. Bosisi et al: Experimental results on the heating of Athabasca tar sand samples with microwave power: J. Of microwave power 12(4), 301~307, 1977
    [19] Edward T. Wall: Method and apparatus for recovering carbon products from oil shale: U.S.P. 4, 376, 034, Mar 8, 1983
    [20] Amoosb I. Kiamanesh: In situ tuned microwave oil extraction process; U.S.P. 5, 082, 054, Jan, 21,1992
    [21] Bonald L. Ensley: In-situ process for remediating or enhancing permeability of contaminated soil: U.S.P. 5, 299, 887, Apr 5, 1994
    [2
    
    [22] 魏爱军,蒋华义等.微波加热稠油的实验和模拟研究.微波学报,2003年第19卷第3期
    [23] D. A. C. Stuerga and P. Gaillard: Microwave athermal effects in chemistry: A myth's autopsy- Part Ⅰ: Historical background and fundamentals of wave-matter interaction, J. Of Microwave Power and Electromagnetic Energy, Vol. 31, No. 2, P87~100, 1996
    [24] Sun, et al: Microwave-induced hydrolysis of phospho anhydride bonds in nucleotide triphosphates, J. Org. Chem., 53, P4414~4416, 1988
    [25] 黄卡玛等.电磁波对化学反应作用的动力学原理.微波学报(增刊).P51~P54,1994
    [26] 黄卡玛,刘永清等.电磁波对化学反应非致热作用的实验研究.高等学校化学学报,Vol.17,No.5,P746~768,1996
    [27] 黄卡玛等.电磁波对化学反应的非热作用及其在电磁生物非热效应机理研究中的意义.微波学报,Vol.12,No.2,P126~132,Jun 1996
    [28] Adamek F. and Hajek M.:Microwave assisted catalytic addition of halocompounds to alkenes. Tetrahedron Letters, Vol. 33, No15, P2039~2042, 1992
    [29] Pagnota M. et al: Microwave activation of the mutarotation of a-D-glucose: an example of an intrinsic microwave effect. J. Phy. Org. Chem. P407~411, Jun, 1993
    [30] Zijlstra S. et al: Behavior of reaction mixture under microwave conditions: use of sodium salts in microwave-induced N-[18F] Fluoroalkylations of aporphine and tetraline derivatives. J. Org. Chem. P1643~1645,1993
    [31] 张美敦主编.简明无线电辞典.上海辞书出版社,1985,554
    [32] 郑学仿等.甲硫醛单分子热分解反应.化学研究与应用,Vol.9 No.3 P226~229.1997
    [33] 张庆竹等:用变分过渡态理论研究CH3SiH3+H→CH3SiH2+H2反应动力学.化学物理学报,Vol.13 No.1 P20~24.Feb.2000
    [34] 尹鸿鸣等.用变分过渡态理论研究NH_3+NH→2NH_2反应动力学.分子科学学报,Vol.14 No.4P232~236.Dec.1998
    [35] W. j. kalila, U.S. Patent31, 1983,241
    [36] N.O. Wolf: Use Of Microwave Radiation In Seperating Emulsion And Dispersions Of Hydrocabons And Water: U.S.P. 4582629
    [37] C.S. Fang and P.M.C. Lai: Microwave Heating And Separation Of Water-in-Oil Emulsions Journal of Microwave Power and Electromagnetic Energy Vol. 30 NO. 1 46~57,1995
    [38] Rajinder Pal and Jacob Masliyah. Use of Microwave For Demulsification of Water-in-Oil Emulsions. AOSTRA Journel of Research, 1991, 7:155-162
    [39] 刘惠玲.微波脱水技术.油田地面工程(OSE),Vol.11,No.4,22~25,1992.8
    
    [40] 傅大放,吴海锁.微波辐射破乳的试验研究.中国给水排水,1998,14:4-6
    [41] 高健,纪延光.微波法对饮食业油烟雾吸收液的后处理.吉林化工学院学报,2001,18(2):4-6
    [42] 牛春庆,武艳丽.微波分离技术处理乳状液.国外油田工程,2001,17(5):40-41
    [43] R. G. Bodisiot, J.L. Cambon, C. Chavarie and D. Klvana, J. Microwave Power, 1997, 12(4), 301
    [44] E. T. Wall, J. Microwave Power, 1983, 18(1), 31
    [45] 张洵立、马宝岐、倪灿华.大然气微波法脱硫实验研究.西安石油学院学报,Vol.9 No.3 70~71,1994.9
    [46] 梁文杰.石油化学.山东东营:石油大学出版社,1995,512
    [47] 柳永行,范耀华.张吕祥.石油沥青.北京:石油工业出版社,1984,518
    [48] 梁文杰.重质油化学.山东东营:石油大学出版社,2000.9,360
    [49] 陆婉玲等.近代物理分析方法及其在石油工业中的应用.北京:石油工业出版社,1984,340
    [50] 陈洁,宋启泽.有机波谱分析.北京:北京理工大学出版社,1996,256
    [51] 黄第潘 等.陆相有机质演化和成烃机理.北京:石油工业出版社,1984,228
    [52] 王培荣,周光甲.生物标志物地球化学.江汉石油学院分析测试研究中心,1993,330
    [53] 王培荣.生物标志物质超色谱图集.北京:石油工业出版社,1993,182
    [54] 罗塘湖.含蜡原油流变特性及其管道输送.北京:石油工业出版社,1991.231页
    [55] 石油天然气总公司管道科学研究院情报研究室.高粘易凝原油管输工艺(文集).廊坊:石油天然气总公司管道科学研究院情报研究室,1989.226页
    [56] 敬加强、杨莉、罗平亚、刘初明.含蜡原油结构的存在性研究.西南石油学院学报,2001,23(6):67
    [57] 冯叔初、郭揆常、王学敏.油气集输.山东东营:石油大学出版社,1988
    [58] 方开泰.均匀设计与均匀设计表.北京:科学出版社,1994,161
    [59] 张学中.均匀设计及其应用.北京:军事医学科学院计算中心,1992,41
    [60] 张良莹、姚熹.电介质物理.西安:西安交通大学出版社,1991,47
    [61] hp85070M网络分析仪使用说明
    [62] 毕德显.电磁场理论.北京:电子工业出版社,1985,150
    [63] 杨世铭、陶文铨.传热学.北京:高等教育出版社,1998
    [64] 《数学手册》编写组.数学手册.北京:高等教育出版社,1979
    [65] 姚仲鹏等.传热学.北京:北京理工大学出版社,1995
    [66] F.P.因克罗普拉.陆大有等译.传热基础.北京:宇航出版社,1987
    [67] 王颖.稠油微波加热降粘机理的研究[学位论文],北京:中国科学院研究生院(电子学研究所).2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700