稀土纳米氟化物的制备及其发光性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用了不同的化学方法合成了不同体系的荧光材料,并对其性质进行了表征。主要研究内容如下:
     (1)我们利用微乳液法合成了直径大约为2 nm的YF_3:Ln~(3+)(Ln =Yb/Tm和Eu)纳米须,对纳米须的生长机制进行了探索。研究了样品的形貌和尺寸对发光性质的影响。(2)用水热法合成了NaYF_4:Yb~(3+)/Tm~(3+)微米晶。在980 nm激发下,首次观察到了~3P_2→~3H_6和~3P_2→~~3F_4上转换发射。与~1I_6和~1D_2能级的发射相比,~1G_4→~3H_6和~3H_4→~3H_6发射几乎消失了。Tm~(3+)浓度对上转换发射强度影响的研究表明~1G_4→~3H_6和~3H_4→~3H_6发射的消失是由高Tm~(3+)浓度下有效的交叉驰豫~1G_4 + ~3H_4→~3F_4 + ~1D_2(Tm~(3+))造成的。此外,上转换过程所吸收的激光光子数(n)在不同激发功率范围内复杂地变化。理论分析表明这种现象是由不同的上转换机制和高激发功率下的热效应造成的。(3)用溶剂热法合成了不同相的NaYF_4:Ln~(3+)(Ln =Yb/Tm和Eu)微米晶,并研究了其荧光性质。在NaYF_4:Eu~(3+)微米晶的激发光谱中,立方样品的最强激发峰在409 nm,而六角样品的最强激发峰在393 nm。对于NaYF_4:Yb~(3+)/Tm~(3+)微米晶,六角样品的紫外发射远远大于立方样品的紫外发射。(4)首次在立方NaYF_4:Yb~(3+)/Er~(3+)微米晶中发现了四光子过程。(5)用微波辅助微乳液法合成了YF_3:Yb~(3+)/Er~(3+)纳米晶。在980 nm激发下,首次观察到了318 nm发射。与具有相同化学成分的体材料相比,纳米材料的紫色/紫外上转换荧光明显增强。我们用Tm~(3+)做结构探针,发现纳米材料中紫色/紫外上转换增强现象与J-O参数Ω_2有关。(6)首次合成了BaSiF6:Yb~(3+)/Tm~(3+)纳米棒,并研究了其上转换荧光性质。(7)我们成功的合成了水溶性的YVO_4:Ln~(3+)(Ln = Ce, Dy, Eu, and Sm)和YVO_4:Ln~(3+)/Ba~(2+)纳米晶。与YVO_4:Ln~(3+)纳米晶的发射相比,YVO_4:Ln~(3+)/Ba~(2+)纳米晶的发射大大增强了。
Rare-earth doped luminescent materials have wide applications, including phosphors, display minitor, X-ray imaging, scintillators, lasers, biology, and amplifies for fiber-optic communications. Recently, low-dimensional nanostructured materials have sparked a worldwide interest due to their unique electronic, optical, and mechanical properties and their potential applications in nanodevices and functional materials. It is well known that strcture, dimentsion, shape, and size have great effect on the properties of low-dmensional nanomaterials. Therefore, the main aim in my thesis’job is to synthesize some rare-earth ions doped nanostructures with speccail morphologies and to investigate their physical properties. In this paper, we synthesized different luminescence nanomaterials by different methods, and characterized their properties. The main contents in this thesis are as follows.
     1. YF_3:Yb~(3+)/Tm~(3+) nanobundles and nanoellipses were synthesized by a microemulsion method. Results of X-ray diffraction and transmission electron microscopy reveal that each nanobundle consists of numerous nanowhiskers with a mean length of ~700 nm and a mean diameter of ~2 nm. The growth mechanism of YF_3 nanocrystals forming in water/cetyltrimethylammonium bromide (CTAB)/cyclohexane/1-pentanol was discussed in detail. In the proposed mechanism, primary particles are formed by constant collision, fusion, and fission of micelles. These primary particles can further self-organize to one dimensional nanostructure at room temperature or aggregate disorderly to form nanoellipses at high temperature. Under 980-nm excitation, blue (~1G_4→~3H_6 and ~1D_2→~3F_4) and ultraviolet (~1D_2→~3H_6 and ~1I_6→~3F_4/~3H_6) upconversion fluorescence emitted from the YF_3:Yb~(3+)/Tm~(3+) nanobundles. The relative intensity of the ultraviolet to the blue emissions increases with decreasing the size of nanowhiskers. Three mechanisms might cause the enhancement of UV emissions. (1) The excitation light is trapped inside nanowhiskers due to their small sizes and large surface/volume ratio, so the actual excitation power density inside increases with decreasing the size of nanowhiskers. (2) We attributed the UV enhancement to the decrease of Judd-Ofelt (J-O) parameter ?2, which reflects the asymmetry of the crystal field.
     2. YF_3:Yb~(3+)(20%)/Tm~(3+)(2%) octahedral nanocrystals were synthesized by a microemulsion method. After annealing in an argon atmosphere, the nanocrystals emitted weak blue and intense ultraviolet light under 980-nm excitation. Especially, unusual ~3P_2→~3H_6 (~265 nm) and ~3P_2→~3F_4 (~309 nm) emissions were observed for the first time. The emissions from ~1D_2 and ~1I_6 were much stronger than those from ~1G_4 and ~3H_4. In our previous observations, the ~3P_2 level usually relaxed to ~1I_6 level and emitted 291- and 347-nm UV UC fluorescence. Radiative transitions from the ~3P_2 level are difficult to occur due to the nearby ~3P_(0,1) and ~1I_6 levels offer the routes for rapidly nonradiative relaxation. For a relative high doping concentration, the microcrystals therefore emitted intense 347- and 291-nm fluorescence under the 980-nm excitation. The upconversion mechanism was discussed in detail.
     3. YF_3:Er~(3+)/Yb~(3+) nanocrystals were synthesized by a microwave-assisted microemulsion method. Pumped with a 980-nm diode laser, violet/ultraviolet upconversion fluorescence was presented in YF_3:Er~(3+)/Yb~(3+) nanocrystals. 318-nm emission, coming from a four-photon excitation process, was observed for the first time. In comparison with a bulk sample having the same chemical compositions, the nanocrystals had a markedly enhanced ability of emitting violet/ultraviolet upconversion fluorescence. Presumably, three mechanisms might cause the enhancement of violet/UV UC in the nanocrystals. (1) The excitation light was trapped inside nanoparticles due to their small sizes and relative large surface/volume ratio, so the actual excitation power density inside was much higher than that in a bulk sample. (2) The actual concentrations of dopants in nanocrystals were different from that in bulk sample. (3) The surrounding of Er~(3+) ions in the nanocrystals was more benefit for violet/UV UC emission. By employing Tm~(3+) ions as structural probes in the samples, we found that the enhancement could be attributed to the decrease of Judd-Ofelt parameterΩ_2. A model for revealing the four-photon excitation process was proposed based on spectral analysis.
     4. Hexagonal NaYF_4: Yb~(3+)/Tm~(3+) microcrystals were synthesized by a microemulsion method. Under 980-nm excitation, novel UC luminescent properties were presented in hexagonal NaYF_4:Tm~(3+)(1.5%)/Yb~(3+)(20%) microcrystals. The ~3P_2→~3H_6 (~264 nm) and ~3P_2→~3F_4 (~309 nm) emissions were observed. In comparison with the strong ~1D_2 and ~1I_6 emissions, the ~1G_4 and ~3H_4 emissions were almost vanished. The dependence of the Tm~(3+) concentration on the UC luminescence indicates that the unusual phenomenon was caused by the efficient cross-relaxation of ~1G_4 + ~3H_4→~3F_4 + ~1D_2 (Tm~(3+)) under high Tm~(3+) concentration. In addition, the number of laser photons absorbed in one UC excitation process, n, marvelously changed in different excitation power range, which was theoretically explained considering different UC excitation mechanism together with thermal effect under higher excitation power.
     5. Cubic and hexagonal NaYF_4:Ln~(3+) (Ln = Eu and Yb/Tm) microcrystals were separately synthesized by an EDTA-assisted solvothermal method. Under 393-nm excitation, the emission spectra of NaYF_4:Eu~(3+) microcrystals show the characteristic Eu~(3+) emissions. In the excitation spectra of the 610-nm emission, the ~7F_0→~5D_3 is dominant for the cubic microcrystals, while the ~7F_0→~5L_6 is dominant for the hexagonal sample. Presumably, two mechanisms might cause the spectral difference between hexagonal and cubic samples. (1) The 393- and 409-nm absorption transitions in the two samples may be different because the crystal structure is changed from cubic to hexagonal. (2) The nonradiative relaxation of ~5L_6→~5D_3 for the hexagonal is more efficient than that for the cubic. Since the nonradiative relaxation is closely related to the phonon energies of the hosts, the Raman spectra of the samples were studied. For the hexagonal microcrystals, two Raman bands centered at 230 and 520 cm~(-1) are observed. However, for the cubic sample, only one broad Raman band centered at 260 cm~(-1) can be observed. The energy separation between ~5L_6 and ~5D_3 is about 1000 cm~(-1). Two phonons (900 - 1200 cm~(-1)) in the hexagonal sample exactly match the energy separation between ~5L_6 and ~5D_3, resulting in the effective nonradiative relaxation of ~5L_6→~5D_3. Consequently, the excitation band of ~7F_0→~5L_6 is dominant for the hexagonal, while the ~7F_0→~5D_3 is dominant for the cubic. In addition, unusually strong ultraviolet emissions (~1I_6→~3H_6, ~1I_6→~3F_4, and ~1D_2→~3H_6) were observed in the hexagonal NaYF_4:Yb~(3+)/Tm~(3+) microcrystals under 980-nm excitation. In comparison with a cubic sample having the same chemical compositions, the hexagonal microcrystals had a markedly enhanced ability of emitting ultraviolet upconversion luminescence.
     6. Cubic NaYF_4:Yb~(3+)/Er~(3+) microspheres were synthesized by EDTA-assisted hydrothermal method. Under 980-nm excitation, blue (~4G_(11/2)→~4I_(15/2)), violet (~2H_(9/2)→~4I_(15/2)), green (~4F_(7/2)→~4I_(15/2), ~2H_(11/2)→~4I_(15/2) and ~4S_(3/2)→~4I_(15/2)), and red (~4F_(9/2)→~4I_(15/2)) upconversion fluorescence were observed. The number of laser photons absorbed in one upconversion excitation process, n, was determined to be 3.89, 1.61, 2.55, and 1.09 for the blue, violet, green, and red emissions, respectively. Obviously, n = 3.89 indicates that a four-photon process has been involved in populating the ~4G_(11/2) state, and n = 2.55 indicates that a three-photon process has been involved in populating the ~4F_(7/2)/~2H_(11/2)/~4S_(3/2) levels. For the violet and red emissions, the population of the states ~2H_(9/2) and ~4F_(9/2) separately come from three-photon and two-photon processes. The decrease of n was well explained by the mechanism of competition between linear decay and upconversion processes for the depletion of the intermediate excited states.
     7. One-dimensional BaSiF_6:Yb~(3+)/Tm~(3+) nanorods were synthesized by a facile microemulsion method for the first time. Results of X-ray diffraction reveal that the nanorods have a pure rhombohedral structure. Under 980-nm excitation, the ~1D_2→~3H_6, ~1D_2→~3F_4, ~1G_4→~3H_6, ~1G_4→~3F_4, ~3F_2→~3H_6, ~3F_3→~3H_6, and ~3H_4→~3H_6 emissions was observed, indicating that BaSiF6 is a new host material for producing desirable upconversion luminescence.
     8. Water soluble YVO_4:Ln~(3+) and YVO_4:Ln~(3+)/Ba~(2+) (Ln = Ce, Dy, Eu, and Sm) nanocrystals were synthesized by a polyvinylpyrrolidone-assisted hydrothermal method. Under the excitation of the host absorption, phosphors can emit blue light for YVO4:Ce~(3+)/Ba~(2+), yellow light for YVO4:Dy~(3+)/Ba~(2+), red light for YVO4:Eu~(3+)/Ba~(2+), and reddish orange light for YVO4:Sm~(3+)/Ba~(2+). In comparison with those of YVO4:Ln~(3+) nanocrystals, the emissions of YVO4:Ln~(3+)/Ba~(2+) are greatly enhanced. Furthermore, the excitation spectra of YVO4:Eu~(3+)/Ba~(2+) and YVO4:Dy~(3+)/Ba~(2+) show the similar features, which are different from those of YVO4:Sm~(3+)/Ba~(2+) and YVO4:Ce~(3+)/Ba~(2+).
引文
[1] Feynman R P. There is a plenty of room at the bottom. Lecture at the annual meeting of the American Physical Society at the California Institute of Technology, 1959.
    [2] Kubo R. Electronic properties of fine metallic particles. J. Phys. Soc. Jpn, 1962, 17: 975-986.
    [3] Esaki L, Tsu R. Superlattice and negative differential conductivity in Semiconductors. IBM J. Res. Development, 1970, 61-65.
    [4] Tsu R and Esaki L. Tunneling in a finite superlattice. Appl. Phys. Lett., 1973, 22: 562-564.
    [5] Esaki L, Chang L L. New transport phenomenon in a semiconductor superlattice. Phys. Rev. Lett., 1974, 33: 495-498.
    [6] Hu J, Ouyang M, Yang P, Lieber C M. Growth and electrical properties of nanotube/nanowire heterojunctions. Nature, 1999, 399: 48-51.
    [7] Goldberger J, He R, Lee S, Zhang Y, Yan H, Choi H and Yang P. Single crystal gallium nitride nanotubes. Nature, 2003, 422: 599-602.
    [8] Hu J T, Li L S, Yang W D, Manna L, Wang L W, Alivisatos A P. Linearly polarized emission from colloidal semiconductor quantum rods. Science, 2001, 292: 2060-2063.
    [9] Alivisatos A P. Naturally aligned nanocrystals. Science, 2000, 289: 736-737.
    [10] Iijima S. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354:56-58.
    [11] Uenura T, Ohba M, Kitagawa S. Size and Surface Effects of Prussian Blue Nanoparticles Protected by Organic Polymers. Inorg. Chem, 2004, 43: 7339-7345
    [12]刘建军,王爱民,张海峰等.高压原位合成块体纳米Mg-Zn合金.材料研究学报, 2001, 15: 299-302
    [13] Kobayashi M, Saraie J, Matsunami H. Hydrogenated amorphous silicon films prepared by an ion-beam-sputtering technique. Appl. Phys. Lett, 1981, 38: 696-697.
    [14] Anders A. Approaches to rid cathodic arc plasmas of macro- and nanoparticles: a review. Sur. Coat. Techn, 1999, 121: 319-330.
    [15] Yang Y H, Wu S J, Chiu H S, et al. Catalytic Growth of Silicon Nanowires Assisted by Laser Ablation. J. Phys. Chem. B, 2004, 108: 846-852.
    [16] El-Shall M S, Abdelsayed V, Pithawalla Y B, et al. Vapor Phase Growth and Assembly of Metallic, Intermetallic, Carbon, and Silicon Nanoparticle Filaments. J. Phys. Chem. B, 2003, 107: 2882-2886.
    [17] Wang Q, Yang H B, Shi J L, et al. One-step synthesis of the nanometer particles ofγ-Fe2O3 by wire electrical explosion method. Mater. Res. Bull, 2001, 36: 503-509.
    [18] Sen D, Deb P, Mazumder S, et al. Microstructural investigations of ferrite nanoparticles prepared bynonaqueous precipitation route. Mater. Res. Bull, 2000, 35: 1243-1250.
    [19] Yu D, Yam V. Hydrothermal-Induced Assembly of Colloidal Silver Spheres into Various Nanoparticles on the Basis of HTAB-Modified Silver Mirror Reaction. J. Phys. Chem. B, 2005, 109: 5497-5503.
    [20] Kim J H, Germer T A, Mulholland G W, et al. Size-monodisperse metal nanoparticles via hydrogen-free spray pyrolysis. Adv. Mater, 2002, 14: 518-521.
    [21]李文翠,郭树才.溶胶-凝胶技术在新型纳米气凝胶合成中的应用.化工进展, 2001, 2: 34-36。
    [22]褚道葆.电合成法制备纳米材料及纳米材料电极上的电催化合成.精细化工, 2000, S1: 10-12。
    [23] Kawahashi N, Shiho H. Copper and copper compounds as coatings on polystyrene particles and as hollow spheres. J. Mater. Chem, 2000, 10: 2294-2297.
    [24] Wang C R, Tang K B, Yang Q, et al. Fabrication of BiTeI submicrometer hollow spheres. J. Mater. Chem, 2002, 12: 2426-2429.
    [25] Peng Q, Dong Y, Li Y D, et al. ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Ed, 2003, 42: 3027-3030.
    [26] Wang X J, Xie Y, Guo Q X. Synthesis of high quality inorganic fullerene-like BN hollow spheres via a simple chemical route. Chem. Commun, 2003, 2688-2689.
    [27] Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons: formation of“dandelions. J. Am. Chem. Soc, 2004, 126: 8124-8125.
    [28] Yacaman M J, Yoshida M M, Rendon L. Catalytic Growth of Carbon Microtubules with Fullerenestructure. Appl. Phys. Lett, 1993, 62: 202-204.
    [29] Thess A, Lee R, Nikolaev P, et al. Crystalline Ropes of Metallic Carbon Nanotubes. Science, 1996, 273: 483-487.
    [30] Bao J C, Tie C Y, Xu Z, et al. Template synthesis of an array of nickel nanotubules and its magnetic behavior. Adv Mater, 2001, 13: 1631-1633.
    [31] Tang Z K, Sun H D, Wang J, et al. Mono-sized single-wall carbon nanotubes formed in channels of AlPO4-5 single crystal. Appl. Phys. Lett, 1998, 73: 2287-2289.
    [32] Hu J Q, Bando Y, Liu Z W, et al. Synthesis of crystalline silicon tubular nanostructures with ZnS nanowires as removable templates. Angew. Chem. Int. Ed, 2004, 43: 63-66.
    [33] Fan R, Wu Y, Li D, et al. Fabrication of silica nanotube arrays from verticalsilicon nanowire templates. J. Am. Chem. Soc, 2003, 125: 5254-5255.
    [34] Lakshmi B B, Dorhout P K, Martin C R. Sol-Gel template synthesis of semiconductor nanostructures. Chem. Mater, 1997, 9: 857.
    [35] Zhang M, Ciocan E, Bando Y, et al. Bright visible photoluminescence from silica nanotube flakes prepared by the sol-gel template method. Appl. Phys. Lett, 2002, 80: 491-493.
    [36] Steinhart M, Wendorff J H, Greiner A, et al. Polymer nanotubes by wetting of ordered porous templates. Science, 2002, 296: 1997.
    [37] Wu Q, Hu Z, Wang X, et al. Synthesis and Characterization of Faceted Hexagonal Aluminum Nitride Nanotubes. J. Am. Chem. Soc, 2004, 125: 10176-10177.
    [38] Nath M, Govindaraj A, Rao C, et al. Simple synthesis of MoS2 and WS2 nanotubes. Adv. Mater, 2001, 13: 283-286.
    [39] Nath M, Rao C. MoSe2 and WSe2 nanotubes and related structures. Chem.Commun, 2001, 2236-2237.
    [40] Li Y D, Li X L, He R R, et al. Artificial lamellar mesostructures to WS2 nanotubes. J. Am. Chem. Soc, 2002, 124: 1411-1416.
    [41] Bakkers E, Verheijen M A. Synthesis of InP nanotubes. J. Am. Chem. Soc, 2003, 125: 3440-3441.
    [42] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett, 1964, 4: 89-92.
    [43] Wu Y, Yang P, Direct observation of vapor-liquid-solid nanowire growth. J. Am, Chem. Soc, 2001, 123: 3165-3166.
    [44] Westwater J, Gosain D, Tomiya S, et al. Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J. Vac. Sci. Technol. B, 1997, 15: 554.
    [45] Dai H, Wong E. W Lu. Y Z, et al. Synthesis and characterization of carbide nanorods. Nature, 1995, 375: 769-772.
    [46] Zhang Y, Zhu J, Zhang Q, et al. Synthesis of GeO2 nanorods by carbon nanotubes template. Chem. Phys. Lett, 2000, 317: 504-509.
    [47] Schonenberger C, VanderZande B, Fokkink L, et al. Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology. J. Phys. Chem. B, 1997, 101: 5497-5505.
    [48] Braun E, Elchen Y, Sivan U,et al. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature, 1998, 391: 775-778.
    [49] Mao C, Solis D, Reiss B, et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science, 2004, 303: 213-217.
    [50] Jiang X, Xie Y, Lu J, et al. Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by -irradiation. Chem. Mater, 2001, 13: 1213-1218.
    [51] Valdes-Solis T, Marba G, Fuertes A. Preparation of Nanosized Perovskites and Spinels through a Silica Xerogel Template Route. Chem. Mater, 2005, 17: 1919-1922.
    [52] Li B, Xie Y, Huang J, et al. Synthesis by a solvothermal route and characterization of CuInSe2 nanowhiskers and nanoparticles. Adv. Mater, 1999, 11: 1456-1459.
    [53] Cao M, Hu. C, Wang B. The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF2 whiskers. J. Am. Chem. Soc, 2003, 125: 11196-11197.
    [54] Trentler T, Goel S, Hickman K, et al. Solution-Liquid-Solid Growth of Indium Phosphide Fibers from Organometallic Precursors: Elucidation of Molecular and Nonmolecular Components of the Pathway. J. Am. Chem. Soc, 1997, 119:2172-2181.
    [55] Wang X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew. Chem. Int. Ed, 2002, 41: 4790-4793.
    [56] Omi H, Ogino T. Self-assembled Ge nanowires grown on Si (113). Appl. Phys. Lett, 1997, 71: 2163-2165.
    [57] Lee H G, Jeon H C, Kang T W, et al. Gallium arsenide crystalline nanorods grown by molecular-beam epitaxy. Appl. Phys. Lett, 2001, 78: 3319-3321.
    [58] Xing Y J, Hang Q L, Yan H F, et al. Solid-liquid-solid (SLS) growth of coaxial nanocables: siliconcarbide sheathed with silicon oxide. Chem. Phys. Lett, 2001, 345: 29-32。
    [59]郭用猷.物质结构基本原理.高等教育出版社,1987.
    [60]张思远,毕宪章.稀土光谱理论.吉林科学技术出版社,1991.
    [61]徐叙榕,苏勉曾.发光学与发光材料.化学工业出版社,2004.
    [62] Judd B R. Optical absorption intensities of rare-earth ions. Phys. Rev, 1962, 127: 750-761.
    [63] Ofelt G S. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys, 1962, 37: 511-520.
    [64]黄世华,激光光谱学原理和方法,吉林大学出版社,2001。
    [65] Reisfeld R, Jorgensen C K. Lasers and excited states of rare earths. Speringer: Berlin, 1977.
    [66] Becker P C, Olsson N A, Simpson.J R. Erbium doped amplifiers: fundamentals and technology. Academic Press: San Diego, 1999
    [67] Zhang Y W, Sun X, Si R, You L, Yan C. Single-Crystalline and Monodisperse LaF3 Triangular Nanoplates from a Single-Source Precursor. J. Am. Chem. Soc., 2005, 127: 3260-3261.
    [68] Lage M M, Righi A, Matinaga F M, Gesland J Y, Moreira R L. Raman-spectroscopic study of lanthanide trifluorides with theβ-YF3 structure. J. Phys.: Condens. Matter, 2004, 16: 3207-3218.
    [69] Guedes K J, Krambrock K, Gesland J Y. Gadolinium in lutetium fluoride-an electron paramagnetic resonance study. J. Phys. Chem. Solids, 2001, 62: 485-489.
    [70] Guedes K J, Krambrock K, Gesland J Y. Electron paramagnetic resonance study of gadolinium in Czochralski-grown yttrium fluoride single crystals. J. Phys.: Condens. Matter, 1999, 11: 7211-7218.
    [71] Bai X, Song H, Pan G, Lei Y, Wang T, Ren X, Lu S, Dong B, Dai Q, Fan L. Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria:Saturation and Thermal Effects. J. Phys. Chem. C 2007, 111: 13611-13617.
    [72] Wang G, Qin W, Zhang J, et al. Synthesis, Growth Mechanism, and Tunable Upconversion Luminescence of Yb3+/Tm3+-Codoped YF3 Nanobundles. J. Phys. Chem. C 2008, 112: 12161-12167.
    [73] Fletcher P, Howe A, Robinson B. The kinetics of solubilisate exchange between water droplets of a water-in-oil microemulsion. J. Chem. Soc, Faraday Trans.Ι1987, 83: 985-1006.
    [74] Landfester K. Miniemulsions for Nanoparticle Synthesis. Top. Curr. Chem. 2003, 227: 75-123.
    [75] Sui X, Chu Y, Xing S, Yu M, Liu C. Self-organization of spherical PANI/TiO2 nanocomposites in reverse micelles. Colloids. Surf. A 2004, 251: 103-107.
    [76] Pollnau M, Gamelin D. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61: 3337-3346.
    [77] Qin G S, Qin W P, Wu C F, Huang S H, Zhao D, Zhang J S, Lu S Z. Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation. Opt. Commun. 2004, 242: 215-219.
    [78] Zhang J, Qin W, Zhang J, Wang Y, Cao C, Jin Y, Wei G, Wang G, Wang L. Self-Assembly of Yb3+-Tm3+ Co-Doped YF3 Elongated Nanocrystals Into anobundles of Straw and Up-Conversion Fluorescence. J. Nanosci. Nanotechnol. 2007, 8: 1-4.
    [79] Qin G, Qin W, Wu G, Huang S. Infrared-to-ultraviolet up-conversion luminescence from AlF3:0.2%Tm3+, 10%Yb3+ particles prepared by pulsed laser ablation. Solid State Commun. 2003, 125: 377-379.
    [80] Tanabe S, Tamai K, Hirao K, Soga N. Branching ratio of UV and blue upconversions of Tm3+ ions in glasses. Phys. Rev. B., 1996, 53: 8358-8362.
    [81] Pappalarto R C. Calculated quantum yields for photoncascade emission (PCE) for Pr3+ and Tm3+ in fluoride hosts. J. Lumin, 1976, 14: 159-193.
    [82] Huang S, Lai S, Lou L, Jia W, Yen W. Upconversion in LaF3:Tm3+. Phys. Rev. B 1981, 24: 59-63.
    [83] Noginov M, Curley M, Venkateswarlu P, Williams A. Excitation scheme for the upper energy levels in a Tm:Yb:BaY2F8 laser crystal. J. Opt. Soc. Am. B 1997, 14: 2126-2136.
    [84] Yan R X, Li Y D. Down/Up Conversion in Ln3+-Doped YF3 Nanocrystals. Adv. Funct. Mater. 2005, 15: 763.
    [85] Balda R, Fernández J, Adam J L, Arrriandiaga M A. Time-resolved fluorescence-line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphate glass. Phys. Rev. B: Condens. Matter, 1996, 54: 12076-12086.
    [86] Joubert M F. Photon avalanche upconversion in rare earth laser materials. Opt. Mat., 1999, 11: 181-203.
    [87] Sandrock T, Scheife H, Heumann E, et al. High-power continous-wave upconversion fiber laser at room temperature. Opt. Lett., 1997, 22: 808-810.
    [88] Heumann E, Bar S, Kretschmann H, et al. Diode-pumped continous-wave green upconversion lasing of Er3+:LiLuF4 using multipass pumping. Opt. Lett., 2002, 27: 1699-1701.
    [89] Scott B P, Zhao F, Chang R S F, et al. Upconversion-pumped blue laser in Tm:YAG. Opt. Lett. 1993, 18: 113-119.
    [90] Hebert T, Wannemacher R, Macfarlane R M, et al. Blue continuously upconversion lasing in Tm: LiYF4. Appl. Phys. Lett., 1992, 60: 2592-2594.
    [91] Booth I J, Mackechnie C J, Ventrudo B F. Operation of diode laser pumped Tm3+: ZBLAN upconversion fiber laser at 482nm. IEEE J. Quantum Electron., 1996, 32: 118-123.
    [92] Paschotta R, Moore N, Clarkson W A, et al. 230 mW of blue light from a thulium - doped upconversion fiber laser. IEEE J. Selected Topics in Quantum Elect., 1997, 3: 1100-1102.
    [93] Funk D S, Eden J G, Osinski J S, et al. Green holmium-doped upconversion fiber laser pumped by red semiconductor laser. Electron. Lett., 1997, 33: 1958-1962.
    [94] Funk D S, Stevens S B, Eden J. G. Excitation spectra of the green Ho3+: fluorozirconate glass fiber laser. IEEE Photon. Technol. Lett., 1993, 5: 154-156.
    [95] Whitley T J, Millar C A, Wyatt, et al. upconversion pumped green lasing in erbium doped fluorozirconate fiber. Electron. Lett., 1991, 27: 1785-1786.
    [96] Piehler D, Graven D. 11.7mW green InGaAs-laser-pumped erbium fiber laser. Electron. Lett., 1994, 30: 1759-1761.
    [97] Massicott J F, Brierley M C, Wyatt R, et al. Low threshold diode pumped operation of a green Er3+ doped fluoride fiber laser. Electron. Lett., 1993, 29: 2119-2120.
    [98] Allain J Y, Monerie M, Poignant H. Tunable green upconversion erbium fiber laser. Electron. Lett., 1992, 28: 111-113.
    [99] Zhao Y, Fleming S, Poole S. 22mW blue output power from a Pr3+ fluoride fiber upconversion laser. Opt. Comm., 1995, 114: 285-288.
    [100] Zhao Y, Fleming S. All-solid state and all-fiber blue upconversion laser. Electron. Lett., 1996, 32: 1199-1200.
    [101] Pask H M, Tropper A C, Hanna D C. A Pr3+-doped ZBLAN fiber upconversion laser pumped by an Yb3+-doped silica fiber laser. Opt. Comm., 1997, 134: 139-144.
    [102] Baney D M, Rankin G, Chang K W. Simultaneous blue and green upconversion lasing in a laser-diode-pumped Pr3+/Yb3+ doped fluoride fiber laser. Appl. Phys. Lett., 1996, 69: 1662-1664.
    [103] Xie P, Gosnell T R. Room-temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions. Opt. Lett., 1995, 20: 1014-1016.
    [104] Zellmer H, Riedel P, Tunnermann A. Visible upconversion lasers in praseodymium- ytterbium-doped fibers. Appl. Phys. Lett., 1999, 69: 417-419.
    [105] Goh S C, Pattie R, Byrne C, et al. Blue and red laser action in Nd3+ and Pr3+ co-doped fluorozirconate glass. Appl. Phys. Lett., 1995, 67: 768-770.
    [106] Osiac E, Heumann, Huber G, et al. Orange and red upconversion laser pumped by an avalanche mechanism in Pr 3+, Yb3+: BaY2F8. Appl. Phys. Lett., 2003, 82: 3832-3834.
    [107] Kramer K W, Bine Dr, Frei G, Güdel H U, Hehien M P, Luthi S R. Hexagonalsodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater.,. 2004, 16: 1244-1251.
    [108] Heer S, K?mpe K, Güdel H U, Haase M. Highly Efficient Multicolour. Upconversion Emission in Transparent. Colloids of Lanthanide-Doped NaYF. 4. Nanocrystals. Adv. Mater. 2004, 16: 2102-2105.
    [109] Mai H X, Zhang Y W, Si R, Yan Z G, Sun L D, You L P, Yan C H. High-quality sodium rare-earth fluoride. nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128: 6426-6436.
    [110] Zeng J H, Su J, Li Z H, Yan R X, Li Y D. Synthesis and Upconversion Luminescence of Hexagonal-Phase NaYF4:Yb, Er3+ Phosphors of Controlled Size and Morphology. Adv. Mater. 2005, 17: 2119-2123.
    [111] Yi G S, Chow G M. Water-Soluble NaYF4:Yb,Er(Tm)/NaYF4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence. Chem. Mater. 2007, 19: 341-343.
    [112] Wei Y, Lu F, Zhang X, Chen D. Synthesis of Oil-Dispersible Hexagonal-Phase and Hexagonal-Shaped NaYF4:Yb,Er Nanoplates. Chem. Mater. 2006, 18: 5733-5737.
    [113] Boyer J C, Vetrone F, Cuccia L A, Capobianco J. Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+, Yb3+ via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors. J. Am. Chem. Soc. 2006, 128: 7444-7445.
    [114] Boyer J C, Cuccia L A, Capobianco J A. Synthesis of Colloidal Upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ Monodisperse Nanocrystals. Nano. Lett. 2007, 7: 847-852.
    [115] Dong B, Song H, Yu H, Zhang H, Qin R, Bai X, Pan G, Lu S, Wang F, Fan L,Dai Q. Upconversion Properties of Ln3+ Doped NaYF4/Polymer Composite Fibers Prepared by Electrospinning. J. Phys. Chem. C 2008, 112: 1435-1440.
    [116] Burda C, Chen X, Narayanan R, EI?Sayed M. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105: 1025-1102.
    [117] Chen D Q, Wang Y S, Yu Y L, Huang P. Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic, Appl. Phys. Lett. 2007, 91: 051920-051922.
    [118] Riedener T, Güdel HU, Valley G, McFarlane R. Infrared to visible upconversion in Cs3Yb2Cl9:Tm3+. J. Lumin. 1995, 63: 327-337.
    [119] Wang G, Qin W, Wang L, Wei G, Zhu P, Kim R. Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals. Optics Express 2008, 16: 11907-11914.
    [120] Sivakumar S, van Veggel J M, May S. Near-infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy transfer (hetero-LEET): A new up-conversion process. J. Am. Chem. Soc. 2007, 129: 620-625.
    [121] Ray S, Pramanik P. Optical properties of nanocrystalline Y2O3:Eu3+. J. Appl. Phys. 2005, 97: 094312/1-094312/6.
    [122] Kang Z, Wang Y, You F, Lin J. Hydrothermal Syntheses and Crystal Structure of NH4Ln3F10 (Ln = Dy, Ho, Y, Er, Tm). J. Solid State Chem., 2001, 158: 358-362.
    [123] Qin R, Song H, Pan G, Hu L, Yu H, Li S, Bai X, Fan L, Dai Q, Ren X, Zhao H, Wang T. Polyol-mediated syntheses and characterizations of NaYF4, NH4Y3F10 and YF3 nanocrystals/sub-microcrystals. Materials Research Bulletin, 2008, 43:2130-2136.
    [124] Xia Y, Yang P, Sun Y, Wu Y, Mayer B, Gates B, Yin Y, Kim F, Yan H. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv.Mater, 2003, 15: 353-389.
    [125] Pan Z, Dai Z, Wang Z. Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes. Science, 2001, 291: 1947-1949.
    [126] Wang Z. Nanobelts, Nanowires and Nanodiskettes of Semiconducting Oxides - from materials to nanodevices. Adv. Mater, 2003, 15, 432-436.
    [127] Wang Y, Qin W, Zhang J, Cao C, Zhang J, Jin Y, Zhu P, Wei G, Wang G, Wang L. Bright Green Upconversion Fluorescence of Yb3+, Er3+-codoped Fluoride Colloidal Nanocrystal and Submicrocrystal Solutions. Chem. Lett. 2007, 36: 2-3.
    [128] De G, Qin W, Zhang J, Zhang J, Wang Y, Cao C, Cui Y. Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets. J. Lumin, 2007, 122: 128-130.
    [129] De G, Qin W, Zhang J, Zhao D, Zhang J. Bright-green Upconversion Emission of Hexagonal LaF3: Yb3+, Er3+ Nanocrystals. Chem. Lett. 2005, 34: 2-3.
    [130] van der Kolk E, Dorenbos P, van Eijk C, Vink A, Fouassier C, Guillen F. VUV excitation and 1S0 emission of Pr3+ in BaSiF6 and selecting host lattices with 1S0 Pr3+ emission. J. Lumin. 2002, 97: 212-223.
    [131] Blasse G, Grabmeier B C. Luminescent Materials; Springer-Verlag: Berlin, 1994.
    [132] Zhang H X, Kam C H, Zhou Y, Han X Q, Buddhudu S, Xiang Q, Lam Y L, Chan Y C. Green upconversion luminescence in Er3+ :BaTiO3 films. Appl. Phys. Lett. 2000, 77: 609-611.
    [133] Cha A, Snyder G E, Selvin P R. Bezanilla, F. Atomic scale movement of thevoltage-sensing region in a potassium channel measured via spectroscopy. Nature 1999, 402: 809-813.
    [134] A. K Levine, Palilla F C. A New, Highly Efficient Red-Emitting Cathodoluminescent Phosphor (YVO4:Eu) For Color Television. Appl. Phys. Lett. 1964, 5: 118-120.
    [135] Huignard A, Buissette V, Laurent G, Gacoin T, Boilot J P. Synthesis and Characterizations of YVO4:Eu Colloids. Chem. Mater. 2002, 14: 2264-2269.
    [136] Riwotzki K, Haase M. Wet-Chemical Synthesis of Doped Colloidal Nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy). J. Phys. Chem. B 1998, 102: 10129-10135.
    [137] Sun Y, Liu H, Wang X, Kong X, Zhang H. Optical Spectroscopy and Visible Upconversion Studies of YVO4:Er3+ Nanocrystals Synthesized by a Hydrothermal Process. Chem. Mater. 2006, 18: 2726-2732.
    [138] Xu H, Wang H, Meng Y, Yan H. Rapid synthesis of size-controllable YVO4 nanoparticles by microwave irradiation. Solid State Commun. 2004, 130: 465-468.
    [139] Sun L, Zhang Y, Zhang J, Yan C, Liao C, Lu Y. Fabrication of size controllable YVO4 nanoparticles via microemulsion-mediated synthetic process. Solid State Commun. 2002, 124: 35-38.
    [140] Pan G, Song H, Bai X, Fan L, Yu H, Dai Q, Dong B, Qin R, Li S, Lu S, Ren X, Zhao H. Highly Luminescent YVO4-Eu3+ Nanocrystals Coating on Wirelike Y(OH)3-Eu3+ and Y2O3-Eu3+ Microcrystals by Chemical Corrosion. J. Phys. Chem. C 2007, 111: 12472-12477.
    [141] Park W, Jung M, Yoon D. Influence of Eu3+, Bi3+ co-doping content on photoluminescence of YVO4 red phosphors induced by ultraviolet excitation.Sensors and Actuators B 2007, 126: 324-327.
    [142] Tian L, Mho S. Enhanced photoluminescence of YVO4:Eu3+ by codoping the Sr2+, Ba2+ or Pb2+ ion. J. Lumin. 2007, 122: 99-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700