基于硅质体的新型纳米药物载体材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是严重危害人类健康的疾病之一,化疗是目前必不可少的治疗方法。但目前的化疗药物不具有靶向性,不仅对癌细胞有杀伤性,对正常细胞同样具有杀伤作用,从而引起严重的毒副作用,阻碍了它们的发展和应用。脂质体作为诊断和治疗药物的载体已经得到越来越广泛的关注。尤其是脂质体已经被用来包裹各种亲水的和疏水的抗癌药物。但是脂质体最大的缺点是化学和物理的不稳定性,脂质体囊泡容易破裂,其内容物抗癌药物在到达肿瘤部位之前过早地泄漏,达不到缓释的效果,严重影响了它们在临床上的应用。为了克服上述问题,科学家们发展了一种长循环的脂质体—聚乙二醇化的脂质体。聚乙二醇化的脂质体似乎降低了内容物释放所引起的毒性作用,但不幸的是,因为聚乙二醇的存在产生了新的毒害作用。例如,含有聚乙二醇磷脂的脂质体药剂导致一种称为―手足综合症‖的皮肤毒性,这样会导致手心和脚底的皮疹和溃疡。因此很多业内人士认为,研制更稳定、肿瘤靶向性更好的脂质体是今后脂质体技术的发展方向。
     针对脂质体稳定性和缓释性欠佳等缺点,研发了一种具有超高稳定性的被称为―硅质体‖的新型有机-无机复合脂质体作为药物载体,这样可以克服当前脂质体技术的一般性问题。首先我们成功合成了这种有机-无机复合脂质分子,然后制备了硅质体并研究了它的制备工艺。硅质体是一种仿生胶体粒子,它具有类似脂质体膜的内水相,但是它的表面覆盖了一层无机的硅酸盐壳层。硅酸盐表面不仅保护了内层的脂质双层,而且它很容易连接生物活性分子。与传统的常规脂质体相比,硅质体表面的硅氧烷网络显著增加了脂质体的稳定性,对表面活性剂、酸碱都有很好的稳定性。由于硅质体囊泡在包封各种药物,包括亲水、疏水及两亲的药物方面具有潜在应用价值,因而它具有重要的意义。
     本研究选用了两种代表性抗癌药物:疏水性药物紫杉醇和亲水性药物盐酸阿霉素,它们分别被包裹进硅质体里面制成紫杉醇和盐酸阿霉素硅质体药物。优化了制备方法和工艺,制得的紫杉醇和盐酸阿霉素硅质体粒度分布均匀、分散性好,平均粒径约为150nm左右,能够满足临床上纳米药物载体对尺寸的要求。两种硅质体药物均具有很好的化学稳定性和贮存稳定性。体外释放实验表明,它们能够持续释放药物,达到很好的缓释效果,细胞实验也进一步证明了该结果。随后制备了掺杂磷脂(二硬脂酰磷脂酰胆碱)的紫杉醇硅质体,利用各种表征手段表征了掺杂磷脂的混合硅质体囊泡。证明了它们的混合方式是有机-无机复合脂质和磷脂是混合在一个囊泡里,而不是单独形成各自的囊泡。通过在硅质体中以不同比例掺入磷脂,可以控制药物的体外释放性能。为了达到靶向性,我们将磁性纳米粒子和抗癌药物盐酸阿霉素同时包裹在硅质体中制备了磁性盐酸阿霉素硅质体。利用激光红聚焦显微镜和流式细胞仪定性和定量的表征了HeLa细胞对磁性硅质体的摄取。实验结果表明:在施加磁场的情况下,该磁性硅质体能向癌细胞靶向地传递和释放药物,而且集稳定性、缓释性和靶向性于一体。
     本论文成功地制备了四种超稳定的新型硅质体药物,紫杉醇硅质体、紫杉醇混合硅质体、阿霉素硅质体、磁性阿霉素硅质体。硅质体是目前报道的具有超高稳定性的双层膜结构,从而使得这种人造细胞膜在生物医药领域具有很好的应用前景。硅质体作为药物载体在癌症治疗方面存在潜在的巨大应用价值,未来经济效益巨大。
Malignant tumor is one of the most refractory disease risks for human health, chemotherapy drugs is absolutely necessarily therapeutic method. Most commonly used anticancer drugs are not specifically toxic to tumor cells and are toxic to all tissues they contact so they create undesirable side effects as a result of their interactions with normal tissues. These toxic side effects hinder their development and applications. Liposomes have received increasing attention as possible carriers for diagnostic or therapeutic agents. Especially, liposomes have been used to formulate a variety of hydrophilic and hydrophobic, poorly soluble drugs. Thus, liposomes are unstable to the circulation environment and/or its content will leak the antineoplastic agent prematurely before reaching the tumor site. The insufficient stability of liposomes may limit their applications. To overcome these problems, scientists have developed long-circulating liposomes—pegylated liposomes. The pegylated liposomes appeared to reduce some of the toxic effects caused by the release of their contents, but, unfortunately, new toxic effects appeared because of the presence of the polyethylene glycol. For example, the liposomal preparations containing pegylated phospholipids have lead to skin toxicity generally known as "Hand-Foot syndrome," which results in skin eruptions/ulcers on the palms of the hands and soles of the feet. So many scientists consider: preparing more stable and tumor-targing liposomes will be the development direction of liposome technique in the future.
     To overcome these problems, recently, a novel super-stable and freestanding hybrid liposomal cerasome (partially ceramic- or silica-coated liposome) was fabricated using self-assembly and a sol–gel strategy to overcome general problems associated with current liposome technology. First, we successfully synthesized the cerasome-forming lipid. Then we prepared cerasomes and studied the optimal preparation technics. Cerasome is a bioinspired colloidal particle having an inner aqueous compartment like the liposomal membrane but its surface is covered with the inorganic silica framework. In addition, the nontoxic silica surface protects the inner lipid bilayer and is amenable for bioconjugation with silane-coupler chemistry. This biomimetic material is remarkably high stability towards surfactant solubilization, and acidic treatment, compared with conventional liposomes. Therefore, cerasome vesicles are of major importance due to their potential applications for the encapsulation of a variety of guest species including hydrophilic, hydrophobic and amphiphilic molecules.
     The current study demonstrates for the first time that hybrid liposomal cerasomes can be used as a new promising drug delivery system. A lipophilic anticancer drug paclitaxel (PTX) and a hydrophilic anticancer drug doxorubicin (DOX) were used as test drugs and loaded in cerasmes to prepare PTX-loaded cerasomes (PLCs) and DOX-loaded cerasomes (DLCs). We studied the optimal preparation technics to obtain PLCs and DLCs with uniformity paticle size of 150nm and non-aggregated vesicles. The two cerasome pharmaceuticals are with high morphological stability and storage stability with good biocompatability. In vitro release of drugs experiments indicated cerasomes can release the drug for a sustained period of time. Later, the "mixed" cerasomes were fabricated from mixtures of the cerasome-forming lipid and phospholipids. The―mixed‖cerasomes were characterized various methods. These results strongly indicated that cerasome-forming lipid and DSPC were both incorporated in one vesicle, not macroscopically phase-separated to form separate vesicles of each lipid component alone. It also provided us an ability to modulate the release rates of encapsulated drugs by altering the ratios of the cerasome-forming lipid and phospholipids. We prepared magnetic cerasomes composed of doxorubicin (DOX) and superparamagnetic iron oxide (Fe_3O_4). To study the cell uptake, the NBD-labeled magnetic fluorescence cerasomes (MFCs) were prepared and was characterized by confocal laser scanning microscopy and flow cytometer. These results indicated that magnetic DOX-loaded cerasomes (MDCs) are a promising candidate for treating cancer and monitoring the progress of the targeted cancer therapy with stability, sustained release and targeted ability.
     This paper successfully prepared four super stable cerasome pharmaceutics, PLCs, DLCs, PTX loaded mixed cerasomes and MDCs. Cerasome is the high stable lipid bilayer, so that this artificial cell membrane has beautiful applications prospects for the biology medicine field. Cerasome vesicles as drug carrier have their potential applications for cancer therapy and will bring large economic benefits.
引文
1. W. Mc, T. Hl, E. A. Wall Me. Plant Anti - Tumor Agent( IV) : The Isolation and Structure of Taxol, a Novel Antileukemic and Antitumor Agent from Taxus Brevifolia. J. Americal Chemical Society. 1971, 9: 2325~2327
    2. A. K. Singla, A. Garg, D. Aggarwal. Paclitaxel and its Formulations. International Journal of Pharmaceutics. 2002, 235(1-2): 179~192
    3.施斌,裴元英.紫杉醇及其制剂研究进展.中国临床药学杂志. 2004, 13(6): 389~392
    4. M. C. Allwood, H. Martin. The Extraction of Diethylhexylphthalate (DEHP) from Polyvinyl Chloride Components of Intravenous Infusion Containers and Administration Sets by Paclitaxel Injection. International Journal of Pharmaceutics. 1996, 127(1): 65~71
    5. D. Sliva. Signaling Pathways Responsible for Cancer Cell Invasion as Targets for Cancer Therapy. Current Cancer Drug Targets. 2004, 4(4): 327~336
    6. B. B. Lundberg, V. Risovic, M. Ramaswamy, K. M. Wasan. A Lipophilic Paclitaxel Derivative Incorporated in a Lipid Emulsion for Parenteral Administration. J. of Controlled Release. 2003, 86(1): 93~100
    7. L. Mu, S. S. Feng. A Novel Controlled Release Formulation for the Anticancer Drug Paclitaxel (Taxol (R)): PLGA Nanoparticles Containing Vitamin E Tpgs. J. of Controlled Release. 2003, 86(1): 33~48
    8. D. Polizzi, G. Pratesi, M. Tortoreto, R. Supino, A. Riva, E. Bombardelli, F. Zunino. A Novel Taxane with Improved Tolerability and Therapeutic Activity in a Panel of Human Tumor Xenografts. Cancer Research. 1999, 59(5): 1036~1040
    9. M. Skwarczynski, Y. Hayashi, Y. Kiso. Paclitaxel Prodrugs: Toward Smarter Delivery of Anticancer Agents. J. of Medicinal Chemistry. 2006, 49(25): 7253~7269
    10. R. B. Greenwald, C. W. Gilbert, A. Pendri, C. D. Conover, J. Xia, A. Martinez. Drug Delivery Systems: Water Soluble Taxol 2'-Poly(Ethylene Glycol) Ester Prodrugs - Design and in Vivo Effectiveness. Journal of Medicinal Chemistry. 1996, 39(2): 424~431
    11. E. Lee, J. Lee, I. H. Lee, M. Yu, H. Kim, S. Y. Chae, S. Jon. ConjugatedChitosan as a Novel Platform for Oral Delivery of Paclitaxel. J. of Medicinal Chemistry. 2008, 51(20): 6442~6449
    12. J. Pan, D. Wan, J. L. Gong. PEGylated Liposome Coated QDs/Mesoporous Silica Core-Shell Nanoparticles for Molecular Imaging. Chemical Communications. 2011, 47(12): 3442~3444
    13. M. Pickholz, G. Giupponi. Coarse Grained Simulations of Local Anesthetics Encapsulated into a Liposome. J. of Physical Chemistry B. 2010, 114(20): 7009~7015
    14. M. T. Basel, T. B. Shrestha, D. L. Troyer, S. H. Bossmann. Protease-Sensitive, Polymer-Caged Liposomes: A Method for Making Highly Targeted Liposomes Using Triggered Release. Acs Nano. 2011, 5(3): 2162~2175
    15. U. S. Sharma, S. V. Balasubramanian, R. M. Straubinger. Pharmaceutical and Physical-Properties of Paclitaxel (Taxol) Complexes with Cyclodextrins. J. of Pharmaceutical Sciences. 1995, 84(10): 1223~1230
    16. E. Bilensoy, O. Gurkaynak, M. Ertan, M. Sen, A. A. Hincal. Development of Nonsurfactant Cyclodextrin Nanoparticles Loaded with Anticancer Drug Paclitaxel. J. of Pharmaceutical Sciences. 2008, 97(4): 1519~1529
    17. J. Liu, D. Meisner, E. Kwong, X. Y. Wu, M. R. Johnston. A Novel Trans-Lymphatic Drug Delivery System: Implantable Gelatin Sponge Impregnated with PLGA-Paclitaxel Microspheres. Biomaterials. 2007, 28(21): 3236~3244
    18. K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai. Block-Copolymer Micelles as Vehicles for Drug Delivery. J. of Controlled Release. 1993, 24(1-3): 119~132
    19. D. Le Garrec, S. Gori, L. Luo, D. Lessard, D. C. Smith, M. A. Yessine, M. Ranger, J. C. Leroux. Poly(N-Vinylpyrrolidone)-Block-Poly(D,L-Lactide) as a New Polymeric Solubilizer for Hydrophobic Anticancer Drugs: In Vitro and in Vivo Evaluation. J. of Controlled Release. 2004, 99(1): 83~101
    20. Y. Dong, S. S. Feng. In Vitro and in Vivo Evaluation of Methoxy Polyethylene Glycol-Polylactide (MPEG-PLA) Nanoparticles for Small-Molecule Drug Chemotherapy. Biomaterials. 2007, 28(28): 4154~4160
    21. H. S. Yoo, T. G. Park. Biodegradable Polymeric Micelles Composed of Doxorubicin Conjugated PLGA-PEG Block Copolymer. J of Controlled Release. 2001, 70(1-2): 63~70
    22. B. A. H. Rw. Negative Staining of Phospholipidsand Their Structural Modification by Surface-Active Agents as Observed in the Electron Microscope. J . Molecular Biology. 1964, 12: 660~668
    23. U. Franzen, T. T. T. N. Nguyen, C. Vermehren, B. Gammelgaard, J. Ostergaard. Characterization of a Liposome-Based Formulation of Oxaliplatin Using Capillary Electrophoresis: Encapsulation and Leakage. J. of Pharmaceutical and Biomedical Analysis. 2011, 55(1): 16~22
    24. Z. Y. Liao, H. J. Wang, X. D. Wang, P. Q. Zhao, S. Wang, W. Y. Su, J. Chang. Multifunctional Nanoparticles Composed of a Poly(Dl-Lactide-Coglycolide) Core and a Paramagnetic Liposome Shell for Simultaneous Magnetic Resonance Imaging and Targeted Therapeutics. Advanced Functional Materials. 2011, 21(6): 1179~1186
    25. L. Hosta-Rigau, R. Chandrawati, E. Saveriades, P. D. Odermatt, A. Postma, F. Ercole, K. Breheney, K. L. Wark, B. Stadler, F. Caruso. Noncovalent Liposome Linkage and Miniaturization of Capsosomes for Drug Delivery. Biomacromolecules. 2010, 11(12): 3548~3555
    26. B. Rodriguez, M. Sabes. Factors Involved in the Production Oflioposomes with a High-Pressure Homogenizer. International Journal of Pharmaceutic. 2001, 213(1): 175~186
    27. M. J. Hope, R. Nayer, E. A. L.D. Mayer. Reduction of Liposome Size and Preparation of Unilamellar Vesicles by Extrusion Techniques. In Liposome Technology. 1993, 1: 123~126
    28. P. S. Uster, T. M. Allen, B. E. Daniel, E. Al. Insertion of Poly(Ethylene Glycol) Derivatized Phospholipids into Preformed Liposomes Results in Prolonged in Vivo Circulation Time. FEBS Letters. 1996, 386(2): 243~246
    29. A. K. Kenworthy, K. Hristova, T. J. Mclntosh, E. Al. Range and Magnitude of the Steric Pressure between Bilayers Containing Lipids with Covalently Attached Polyethylene Glycol. Biophysical Journal. 1995, 68(5): 1921~1936
    30. G. Gatouillat, J. Odot, E. Balasse, C. Nicolau, P. F. Tosi, D. T. Hickman, M. P. Lopez-Deber, C. Madoulet. Immunization with Liposome-Anchored PEGylated Peptides Modulates Doxorubicin Sensitivity in P-Glycoprotein-Expressing P388 Cells. Cancer Letters. 2007, 257(2): 165~171
    31. T. Chen, S. Einstein, M. A. Klippenstein, E. Al. Proton-Induced Permeability and Fusion of Large Unilamellar Vesicles by Covalently ConjugatedPoly(2-Ethylacrelic Acid). J of Liposome Research. 1999, 9: 375~418
    32. T. Sakakibara, F. A. Chen, H. Kida, K. Kunieda, R. E. Cuenca, F. J. Martin, R. B. Bankert. Doxorubicin Encapsulated in Sterically Stabilized Liposomes Is Superior to Free Drug or Drug-Containing Conventional Liposomes at Suppressing Growth and Metastases of Human Lung Tumor Xenografts. Cancer Research. 1996, 56(16): 3743~3746
    33. G. H. Wu, A. Milkhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski. Remotely Triggered Liposome Release by Near-Infrared Light Absorption Via Hollow Gold Nanoshells. J. of the American Chemical Society. 2008, 130(26): 8175~8177
    34. K. Hiraka, M. Kanehisa, M. Tamai, S. Asayama, S. Nagaoka, K. Oyaizu, M. Yuasa, H. Kawakami. Preparation of Ph-Sensitive Liposomes Retaining Sod Mimic and Their Anticancer Effect. Colloids and Surfaces B-Biointerfaces. 2008, 67(1): 54~58
    35. J. W. Liu, A. Stace-Naughton, X. M. Jiang, C. J. Brinker. Porous Nanoparticle Supported Lipid Bilayers (Protocells) as Delivery Vehicles. J. of the American Chemical Society. 2009, 131(4): 1354~1355
    36. T. Ta, A. J. Convertine, C. R. Reyes, P. S. Stayton, T. M. Porter. Thermosensitive Liposomes Modified with Poly(N-Isopropylacrylamide-Co-Propylacrylic Acid) Copolymers for Triggered Release of Doxorubicin. Biomacromolecules. 2010, 11(8): 1915~1920
    37. K. Kawano, E. Onose, Y. Hattori, Y. Maitani. Higher Liposomal Membrane Fluidity Enhances the in Vitro Antitumor Activity of Folate-Targeted Liposomal Mitoxantrone. Molecular Pharmaceutics. 2009, 6(1): 98~104
    38. H. J. Wang, P. Q. Zhao, X. F. Liang, X. Q. Gong, T. Song, R. F. Niu, J. Chang. Folate-PEG Coated Cationic Modified Chitosan-Cholesterol Liposomes for Tumor-Targeted Drug Delivery. Biomaterials. 2010, 31(14): 4129~4138
    39.张自强,覃斌,李战. MPEG-Dspe修饰的紫杉醇脂质体的制备及其药动学研究.中国药学杂志. 2008, 43(3): 199~202
    40.黄红兵,刘韬,林子超.多西紫杉醇脂质体的制备及其在家兔体内的药代动力学.中国癌症. 2007, 26(12): 1287~ 1291
    41.张翠霞,王东凯,张文涛.多烯紫杉醇脂质体的制备及其性质考察.中国药学杂志. 2007, 16(10): 780~783
    42.谢星辉.阿霉素脂质体的制备和性质:包封量、长时稳定性和阿霉素——双分子层相互作用的机制.国外医学药学分册. 1984(4): 252~253
    43.常桂民,段芳龄,张向东.半乳糖脂修饰的阿霉素脂质体体外杀伤肝癌细胞的实验研究.癌症. 1999, 18(3): 281~284
    44.胡兰荣,温伟,郑昌学.脂质体包裹阿霉素的体外抗肿瘤作用.中国生物化学与分子生物学报. 1991, 7(5): 608~612
    45.冯碧波,郎景,李大魁.阿霉素脂质体的制备及其物化特性研究.中华医学杂志. 1995, 75(10): 614~616
    46.齐宪荣,肖瑜,魏树礼.阿霉素脂质体对小鼠的抗肿瘤活性比较.中国药学杂志. 1997 32(4): 207~210
    47.黎维勇,宋波,陈华庭.新型阿霉素热敏脂质体的研制.中国医院药学杂志. 2005, 25(5): 439~441
    48.徐云龙,姜厚友,钱秀珍. Ph敏感阿霉素纳米脂质体的制备及性能.华东理工大学学报. 2008, 34(3): 364~368
    49.包.付京,王化宁.磁性热敏阿霉素脂质体聚集及释药特性的体外观察.吉林大学学报. 2007, 33(1): 71~74
    50. A. A. Kuznetsov, V. I. Filippov, R. N. Alyautdin, N. L. Torshina, O. A. Kuznetsov. Application of Magnetic Liposomes for Magnetically Guided Transport of Muscle Relaxants and Anti-Cancer Photodynamic Drugs. J. of Magnetism and Magnetic Materials. 2001, 225(1-2): 95~100
    51. S. Jain, V. Mishra, P. Singh, P. K. Dubey, D. K. Saraf, S. P. Vyas. Rgd-Anchored Magnetic Liposomes for Monocytes/Neutrophils-Mediated Brain Targeting. International Journal of Pharmaceutics. 2003, 261(1-2): 43~55
    52. A. Ito, M. Shinkai, H. Honda, T. Kobayashi. Medical Application of Functionalized Magnetic Nanoparticles. J. of Bioscience and Bioengineering. 2005, 100(1): 1~11
    53. J. W. M. Bulte, M. De Cuyper, D. Despres, J. A. Frank. Preparation, Relaxometry, and Biokinetics of PEGylated Magnetoliposomes as Mr Contrast Agent. J. of Magnetism and Magnetic Materials. 1999, 194(1-3): 204~209
    54. M. S. Martina, J. P. Fortin, C. Menager, O. Clement, G. Barratt, C. Grabielle-Madelmont, F. Gazeau, V. Cabuil, S. Lesieur. Generation of Superparamagnetic Liposomes Revealed as Highly Efficient Mri Contrast Agents for in Vivo Imaging. J. of the American Chemical Society. 2005,127(30): 10676~10685
    55. M. Hodenius, M. De Cuyper, L. Desender, D. Muller-Schulte, A. Steigel, H. Lueken. Biotinylated Stealth (R) Magnetoliposomes. Chemistry and Physics of Lipids. 2002, 120(1-2): 75~85
    56. S. Hamaguchi, I. Tohnai, A. Ito, K. Mitsudo, T. Shigetomi, M. Ito, H. Honda, T. Kobayashi, M. Ueda. Selective Hyperthermia Using Magnetoliposomes to Target Cervical Lymph Node Metastasis in a Rabbit Tongue Tumor Model. Cancer Science. 2003, 94(9): 834~839
    57. M. Yanase, M. Shinkai, H. Honda, T. Wakabayashi, J. Yoshida, T. Kobayashi. Intracellular Hyperthermia for Cancer Using Magnetite Cationic Liposomes: An in Vivo Study. Japanese Journal of Cancer Research. 1998, 89(4): 463~469
    58. N. Kawai, A. Ito, Y. Nakahara, M. Futakuchi, T. Shirai, H. Honda, T. Kobayashi, K. Kohri. Anticancer Effect of Hyperthermia on Prostate Cancer Mediated by Magnetite Cationic Liposomes and Immune-Response Induction in Transplanted Syngeneic Rats. Prostate. 2005, 64(4): 373~381
    59. K. Hirao, T. Sugita, T. Kubo, K. Igarashi, K. Tanimoto, T. Murakami, Y. Yasunaga, M. Ochi. Targeted Gene Delivery to Human Osteosarcoma Cells with Magnetic Cationic Liposomes under a Magnetic Field. International Journal of Oncology. 2003, 22(5): 1065~1071
    60. E. Viroonchatapan, H. Sato, M. Ueno, I. Adachi, J. Murata, I. Saiki, K. Tazawa, I. Horikoshi. Microdialysis Assessment of 5-Fluorouracil Release from Thermosensitive Magnetoliposomes Induced by an Electromagnetic Field in Tumor-Bearing Mice. J. of Drug Targeting. 1998, 5(5): 379~390
    61. M. Babincova, D. Leszczynska, P. Sourivong, P. Babinec, J. Leszczynski. Principles of Magnetodynamic Chemotherapy. Medical Hypotheses. 2004, 62(3): 375~377
    62. M. Babincova, P. Sourivong, D. Leszczynska, P. Babinec. Fullerenosomes: Design of a Novel Nanomaterial for Laser Controlled Topical Drug Release. Physica Medica. 2003, 19(3): 213~216
    63. M. Babincova, P. Sourivong, D. Chorvat, P. Babinec. Laser Triggered Drug Release from Magnetoliposomes. J. of Magnetism and Magnetic Materials. 1999, 194(1-3): 163~166
    64.周平红,姚礼庆,秦新裕.磁性阿霉素脂质体靶向治疗裸鼠大肠癌的实验研究.中华医学杂志. 2003, 83(23): 2073~2076
    65.张景勍,张志荣,秦少容.紫杉醇磁性长循环脂质体的研究.中国药学杂志. 2003, 38(7): 520~522
    66.肖超,吴新荣.紫杉醇磁性纳米脂质体的体外细胞抑瘤效果.中国组织工程研究与临床康复. 2009, 13(34): 6713~6716
    67.周伟华,郭讯枝,张阳德.纳米司莫司汀磁性脂质体的制备及表征.科技通报. 2008, 24(3): 406~410
    68.文晔,刘宏,汤韧.两性霉素b磁性脂质体的制备与质量控制.中国医院药学杂志. 2007, 27(10): 1344~1346
    69. M. M. Elmi, M. N. Sarbolouki. A Simple Method for Preparation of Immuno-Magnetic Liposomes. International Journal of Pharmaceutics. 2001, 215(1-2): 45~50
    70. P. Pradhan, J. Giri, F. Rieken, C. Koch, O. Mykhaylyk, M. Doblinger, R. Banerjee, D. Bahadur, C. Plank. Targeted Temperature Sensitive Magnetic Liposomes for Thermo-Chemotherapy. J. of Control Release. 142(1): 108~21
    71. C. L.M., C. J.H. Stabilization of Dry Liposomes by Carbohydrates. Develpoment of Biology Standard. 1991, 74(4): 285~294
    72. M. T., B. M., H. M. Protection of Large Unilamellar Vesicles by Trehalose During Dehydration: Retention of Vesicle Contents. Biochimica et Biophysica Acta. 1985, 817: 67~74
    73. B. Pietzyk, K. Henschke. Degradation of Phosphatidylcholine in Liposomes Containing Carboplatin in Dependence on Composition and Storage Conditions. International Journal of Pharmaceutics. 2000, 196(2): 215~218
    74. A. Manosroi, K. Podjanasoonthon, J. Manosroi. Stability and Release of Topical Tranexamic Acid Liposome Formulations. J. of Cosmetic Science. 2002, 53(6): 375~386
    75. A. M. Samuni, A. Lipman, Y. Barenholz. Damage to Liposomal Lipids: Protection by Antioxidants and Cholesterol-Mediated Dehydration. Chemistry and Physics of Lipids. 2000, 105(2): 121~134
    76. M. Fresta. Biological Effects of CDP-Choline Loaded Long Circulating Liposomes on Rat Cerebral Postischemic Reperfusion. International Journal of Pharmaceutics.1996, 134: 891~894
    77. P. Crosasso, M. Ceruti, P. Brusa, S. Arpicco, F. Dosio, L. Cattel. Preparation, Characterization and Properties of Sterically Stabilized Paclitaxel-Containing Liposomes. J. of Controlled Release. 2000, 63(1-2): 19~30
    78. P. N. I, T. P, E. A. Ambrose C V. Proliposomes: A Novel Solution to an Old Problem. J. of Pharmaceutics Society. 1986, 75(4): 325~327
    79. L. Ge, J. B. Zhu, F. Xiong, B. Ni. Preparation Characterization and Pharmacokinetics of N-Palmitoyl Chitosan Anchored Docetaxel Liposomes. J. of Pharmacy and Pharmacology. 2007, 59(5): 661~667
    80. S. M. Lee, H. Chen, C. M. Dettmer, T. V. O'halloran, S. T. Nguyen. Polymer-Caged Lipsomes: A pH-Responsive Delivery System with High Stability. J. of the American Chemical Society. 2007, 129(49): 15096~15097
    81. W. I. Choi, K. C. Yoon, S. K. Im, Y. H. Kim, S. H. Yuk, G. Tae. Remarkably Enhanced Stability and Function of Core/Shell Nanoparticles Composed of a Lecithin Core and a Pluronic Shell Layer by Photo-Crosslinking the Shell Layer: In Vitro and in Vivo Study. Acta Biomaterialia. 2010, 6(7): 2666~2673
    82. T. Ruysschaert, M. Germain, J. F. P. D. Gomes, D. Fournier, G. B. Sukhorukov, W. Meier, M. Winterhalter. Liposome-Based Nanocapsules. IEEE Transactions on Nanobioscience. 2004, 3(1): 49~55
    83. M. Michel, D. Vautier, J. C. Voegel, P. Schaaf, V. Ball. Layer by Layer Self-Assembled Polyelectrolyte Multilayers with Embedded Phospholipid Vesicles. Langmuir. 2004, 20(12): 4835~4839
    84. L. F. Zhang, S. Granick. How to Stabilize Phospholipid Liposomes (Using Nanoparticles). Nano Letters. 2006, 6(4): 694~698
    85. B. Wang, L. F. Zhang, S. C. Bae, S. Granick. Nanoparticle-Induced Surface Reconstruction of Phospholipid Membranes. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105(47): 18171~18175
    86. D. Pornpattananangkul, S. Olson, S. Aryal, M. Sartor, C. M. Huang, K. Vecchio, L. Zhang. Stimuli-Responsive Liposome Fusion Mediated by Gold Nanoparticles. ACS Nano. 2010, 4(4): 1935~1942
    87. S. Begu, A. A. Pouessel, D. A. Lerner, C. Tourne-Peteilh, J. M. Devoisselle. Liposil, a Promising Composite Material for Drug Storage and Release. J. of Controlled Release. 2007, 118(1): 1-6
    88. S. Begu, S. Girod, D. A. Lerner, N. Jardiller, C. Tourne-Peteilh, J. M. Devoisselle. Characterization of a Phospholipid Bilayer Entrapped into Non-Porous Silica Nanospheres. J. of Materials Chemistry. 2004, 14(8): 1316~1320
    89. S. Bégu, R. Durand, D. A. Lerner, C. Charnay, C. Tourné-Péteilhab, J. M. Devoisselle. Preparation and Characterization of Siliceous Material Using Liposomes as Template. Chemical Communacation. 2003, 5: 640~641
    90. N. Dwivedi, M. A. Arunagirinathan, S. Sharma, J. Bellare. Silica-Coated Liposomes for Insulin Delivery. J. of Nanomaterials. 2010: 1~8
    91. Z. J. Wu, H. Joo, T. G. Lee, K. Lee. Controlled Release of Lidocaine Hydrochloride from the Surfactant-Doped Hybrid Xerogels. J. of Controlled Release. 2005, 104(3): 497~505
    92. S. Z. Li, Y. Ma, X. L. Yue, Z. Cao, Z. F. Dai. One-Pot Construction of Doxorubicin Conjugated Magnetic Silica Nanoparticles. New Journal of Chemistry. 2009, 33(12): 2414~2418
    93. X. L. Yang, X. Han, Y. H. Zhu. (Pah/Pss)(5) Microcapsules Templated on Silica Core: Encapsulation of Anticancer Drug Dox and Controlled Release Study. Colloids and Surfaces A-Physicochemical and Engineering Aspects. 2005, 264(1-3): 49~54
    94. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck. Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature. 1992, 359(6397): 710~712
    95. A. Corma. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews. 1997, 97(6): 2373~2419
    96. M. Vallet-Regi, A. Ramila, R. P. Del Real, J. Perez-Pariente. A New Property of MCM-41: Drug Delivery System. Chemistry of Materials. 2001, 13(2): 308~311
    97. P. Horcajada, A. Ramila, F. Gerard, M. Vallet-Regi. Influence of Superficial Organic Modification of MCM-41 Matrices on Drug Delivery Rate. Solid State Sciences. 2006, 8(10): 1243~1249
    98. B. Munoz, A. Ramila, J. Perez-Pariente, I. Diaz, M. Vallet-Regi. MCM-41 Organic Modification as Drug Delivery Rate Regulator. Chemistry of Materials. 2003, 15(2): 500~503
    99. A. Ramila, B. Munoz, J. Perez-Pariente, M. Vallet-Regi. Mesoporous MCM-41 as Drug Host System. J. of Sol-Gel Science and Technology. 2003, 26(1-3): 1199~1202
    100. 100 F. Balas, M. Manzano, P. Horcajada, M. Vallet-Regi. Confinement and Controlled Release of Bisphosphonates on Ordered Mesoporous Silica-BasedMaterials. J. of the American Chemical Society. 2006, 128(25): 8116~8117
    101. N. K. Mal, M. Fujiwara, Y. Tanaka. Photocontrolled Reversible Release of Guest Molecules from Coumarin-Modified Mesoporous Silica. Nature. 2003, 421(6921): 350~353
    102. W. R. Zhao, J. L. Gu, L. X. Zhang, H. R. Chen, J. L. Shi. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure. J. of the American Chemical Society. 2005, 127(25): 8916~8917
    103. K. Katagiri, K. Ariga, J. Kikuchi. Preparation of Organic-Inorganic Hybrid Vesicle "Cerasome" Derived from Artificial Lipid with Alkoxysilyl Head. Chemistry Letters. 1999(7): 661-662
    104. K. Katagiri. Sol-Gel Nanohybrid Materials Prepared Via Supramolecular Organization. J. of Sol-Gel Science and Technology. 2008, 46(3): 251~257
    105. M. Hashizume, S. Kawanami, S. Iwamoto, T. Isomoto, J. Kikuchi. Stable Vesicular Nanoparticle 'Cerasome' as an Organic-Inorganic Hybrid Formed with Organoalkoxysilane Lipids Having a Hydrogen-Bonding Unit. Thin Solid Films. 2003, 438: 20~26
    106. K. Katagiri, R. Hamasaki, K. Ariga, J. Kikuchi. Layered Paving of Vesicular Nanoparticles Formed with Cerasome as a Bioinspired Organic-Inorganic Hybrid. J. of the American Chemical Society. 2002, 124(27): 7892~7893
    107. K. Katagiri, R. Hamasaki, M. Hashizume, K. Ariga, J. Kikuchi. Size-Selective Organization of Silica and Silica-Like Particles on Solid Interfaces through Layer-by-Layer Assembly. J. of Sol-Gel Science and Technology. 2004, 31(1-3): 59~62
    108. M. Otsuki, Y. Sasaki, S. Iwamoto, J. I. Kikuchi. Liposomal Sorting onto Substrate through Ion Recognition by Gemini Peptide Lipids. Chemistry Letters. 2006, 35(2): 206~207
    109. K. Matsui, S. Sando, T. Sera, Y. Aoyama, Y. Sasaki, T. Komatsu, T. Terashima, J. Kikuchi. Cerasome as an Infusible, Cell-Friendly, and Serum-Compatible Transfection Agent in a Viral Size. J. of the American Chemical Society. 2006, 128(10): 3114~3115
    110. K. Matsui, Y. Sasaki, T. Komatsu, M. Mukai, J. Kikuchi, Y. Aoyama. Rnai Gene Silencing Using Cerasome as a Viral-Size Sirna-Carrier Free from Fusion and Cross-Linking. Bioorganic & Medicinal Chemistry Letters. 2007, 17(14):3935~3938
    111. K. Katagiri, R. Hamasaki, K. Ariga, J.-I. Kikuchi. Preparation and Surface Modification of Novel Vesicular Nano-Particle―Cerasome‖with Liposomal Bilayer and Silicate Surface. J. of Sol-Gel Science and Technology. 2003, 26: 393~396
    112. M. Hashizume, S. Kawanami, S. Iwamoto, T. Isomoto, J. Kikuchi. Stable Vesicular Nanoparticle 'Cerasome' as an Organic-Inorganic Hybrid Formed with Organoalkoxysilane Lipids Having a Hydrogen-Bonding Unit. Thin Solid Films. 2003, 438: 20~26
    113. Y. Sasaki, K. Matsui, Y. Aoyama, J. Kikuchi. Cerasome as an Infusible and Cell-Friendly Gene Carrier: Synthesis of Cerasome-Forming Lipids and Transfection Using Cerasome. Nature protocol 2006, 1(3): 1227~1234
    114. K. Katagiri, M. Hashizume, K. Ariga, T. Terashima, J. Kikuchi. Preparation and Characterization of a Novel Organic-Inorganic Nanohybrid "Cerasome" Formed with a Liposomal Membrane and Silicate Surface. Chemistry-A European Journal. 2007, 13(18): 5272~5281
    115. K. Katagiri, K. Ariga, J. Kikuchi. Preparation of Organic-Inorganic Hybrid Vesicle "Cerasome" Derived from Artificial Lipid with Alkoxysilyl Head. Chemistry Letters. 1999(7): 661~662
    116. D. Farrell, Y. Cheng, R. W. Mccallum, M. Sachan, S. A. Majetich. Magnetic Interactions of Iron Nanoparticles in Arrays and Dilute Dispersions. J. of Physical Chemistry B. 2005, 109(28): 13409~13419
    117. W. P. Mcguire, E. K. Rowinsky, N. B. Rosenshein, F. C. Grumbine, D. S. Ettinger, D. K. Armstrong, R. C. Donehower. Taxol - a Unique Antineoplastic Agent with Significant Activity in Advanced Ovarian Epithelial Neoplasms. Annals of Internal Medicine. 1989, 111(4): 273~279
    118. M. Suffness. Taxol-from Discovery to Therapeutic Use. Annual Reports in Medicinal Chemistry.1993, 28: 305~314
    119. A. Sharma, E. Mayhew, R. M. Straubinger. Antitumor Effect of Taxol-Containing Liposomes in a Taxol-Resistant Murine Tumor-Model. Cancer Research. 1993, 53(24): 5877~5881
    120. M. Sovago, G. W. H. Wurpel, M. Smits, M. Muller, M. Bonn. Calcium-Induced Phospholipid Ordering Depends on Surface Pressure. J. of the American Chemical Society. 2007, 129(36): 11079~11084
    121. G. Ma, H. C. Allen. Condensing Effect of Palmitic Acid on DPPC in Mixed Langmuir Monolayers. Langmuir. 2007, 23(2): 589~597
    122. J. A. Castillo, A. Pinazo, J. Carilla, M. R. Infante, M. A. Alsina, I. Haro, P. Clapes. Interaction of Antimicrobial Axginine-Based Cationic Surfactants with Liposomes and Lipid Monolayers. Langmuir. 2004, 20(8): 3379~3387
    123. B. Heurtault, P. Saulnier, B. Pech, J. E. Proust, J. P. Benoit. Physico-Chemical Stability of Colloidal Lipid Particles. Biomaterials. 2003, 24(23): 4283~4300
    124. A. E. Berkowitz, R. H. Kodama, S. A. Makhlouf, F. T. Parker, F. E. Spada, E. J. Mcniff, S. Foner. Anomalous Properties of Magnetic Nanoparticles. J. of Magnetism and Magnetic Materials. 1999, 197: 591~594
    125. N. Dwivedi, M. A. Arunagirinathan, S. Sharma, J. Bellare. Nanoferrite Embedded Magnetocochleate Microstructures to Encapsulate Insulin Macromolecules. J. of Physical Chemistry B. 2009, 113(42): 13782~13787
    126. Y. Namiki, T. Namiki, H. Yoshida, Y. Ishii, A. Tsubota, S. Koido, K. Nariai, M. Mitsunaga, S. Yanagisawa, H. Kashiwagi, Y. Mabashi, Y. Yumoto, S. Hoshina, K. Fujise, N. Tada. A Novel Magnetic Crystal-Lipid Nanostructure for Magnetically Guided in Vivo Gene Delivery. Nature Nanotechnology. 2009, 4(9): 598~606
    127. A. A. Kuznetsov, V. I. Filippov, R. N. Alyautdin, N. L. Torshina, O. A. Kuznetsov. Application of Magnetic Liposomes for Magnetically Guided Transport of Muscle Relaxants and Anti-Cancer Photodynamic Drugs. J. of Magnetism and Magnetic Materials. 2001, 225(1-2): 95~100
    128. H. G. Cha, C. W. Kim, S. W. Kang, B. K. Kim, Y. S. Kang. Preparation and Characterization of the Magnetic Fluid of Trimethoxyhexadecylsilane-Coated Fe_3O_4 Nanoparticles. J. of Physical Chemistry C. 2010, 114(21): 9802~9807

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700