3-酮井冈羟胺A C-N裂解酶及其相关酶的分离纯化和酶学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
井冈霉素A在微生物酶解的条件下,能生成井冈霉烯胺。井冈霉烯胺是一种环醇类物质,对α-糖苷酶有很强的抑制作用。以井冈霉烯胺为母体,可以合成许多降糖药,如阿卡波糖、伏格列波糖等。据报道,酶解井冈霉素A生产井冈胺的关键酶有三个:3-酮井冈羟胺A C-N裂解酶、葡萄糖3-脱氢酶和β-葡萄糖苷酶。3-酮井冈羟胺A C-N裂解酶[3-Ketovalidoxylamine A C-N lyase,EC.4.3.3.1]于1984年在菌株F.saccharophilum中首次发现,此后没有在其它菌株中发现此酶的报道。对葡萄糖3-脱氢酶[Glucoside 3-dehydrogenase、简称G3DH,EC.1.1.99.13]的研究也比较少。3-酮井冈羟胺A C-N裂解酶及其相关酶作为井冈霉素A代谢的三个关键酶,对于井冈霉烯胺的生产至关重要。研究井冈霉素A的微生物酶解生产井冈霉烯胺,能提高井冈霉素的经济效益,有助于实现生物农药向生物医药的转变。
     我们实验室从土壤中筛选到一株能在以井冈霉素A为唯一碳源的培养基上生长的菌株嗜麦芽寡养单胞菌(Stenotrophomonas maltrophilia ZJB-041)。首次通过研究S.maltrophilia静息细胞对井冈霉素A和对硝基苯-3-酮井冈霉胺的转化过程,发现其酶解途径可能为:井冈霉素A由β-糖苷酶水解脱去β-D-葡萄糖,生成井冈羟胺A,井冈羟胺A在葡萄糖3-脱氢酶和3-酮井冈羟胺A C-N裂解酶的作用下,C-N键断裂,生成井冈霉烯胺,井冈霉胺和其他环醇类化合物。
     首次用EDTA处理的S.maltrophilia细胞转化法制备了对硝基苯-3-酮井冈霉胺和对硝基苯-3-酮井冈霉烯胺,大大提高了产率,可作为C-N裂解酶的底物。确定了较佳的转化条件为:菌体用10mM的EDTA处理,pH 6.0,30℃下转化6h。在此条件下,对硝基苯-3-酮井冈霉胺的产率达到0.68。对S.maltrophilia的产酶培养条件进行了优化,最佳碳源是井冈霉素A,同时,它对产酶有一定的诱导作用。产酶培养的最佳条件为:0.5%的井冈霉素A,自然pH,装液量为100mL/500mL摇瓶,接种量10%,30℃培养36h。
     首次对S.maltrophilia中的井冈霉素A酶解的三个关键酶进行了分离纯化和酶学性质的研究。通过离子交换层析、疏水作用层析、凝胶过滤层析等蛋白质纯化技术,得到了电泳纯的3-酮井冈羟胺A C-N裂解酶、葡萄糖3-脱氢酶和β-葡萄糖苷酶。3-酮井冈羟胺A C-N裂解酶的纯化倍数为367倍,酶活回收率为16.4%,SDS-PAGE测得其分子量为31.4kDa。研究了纯化的3-酮井冈羟胺A C-N裂解酶的部分酶学特性,结果表明其最适反应pH为7.0,最适反应温度为40℃,该酶在pH 7.0-10.0比较稳定,对热敏感。EDTA等能抑制该酶的活性,而Ca~(2+)能使EDTA抑制的酶活性恢复。因此,3-酮井冈羟胺A C-N裂解酶属于钙型的金属酶。以对硝基苯-3-酮井冈霉胺为底物的酶动力学常数K_m为0.15mM。
     葡萄糖3-脱氢酶的纯化倍数为37.4倍,酶活回收率为24.7%,分子量为66kDa。研究了纯化的葡萄糖3-脱氢酶的酶学特性,结果表明其反应的最适pH为6.5,该酶对pH比较稳定,对热敏感。葡萄糖3-脱氢酶有非常广的底物作用范围。Hg_2Cl_2、CuSO_4、AgNO_3能抑制该酶的活性。以井冈羟胺A为底物的酶动力学常数K_m为20.4mM,以葡萄糖为底物的K_m为2.4mM。肽质量指纹图谱鉴定,该酶可能为一新酶。
     β-葡萄糖苷酶比活性从0.0039U/mg提高到1.04U/mg,纯化倍数达270倍,收率为6.9%,分子量为93.4kDa。在纯酶的性质研究中,β-葡萄糖苷酶的最适反应pH为6.0附近,其最适反应温度范围为40℃。β-葡萄糖苷酶对热、酸碱敏感。Cu~(2+)和Hg_2Cl_2对β-葡萄糖苷酶几乎完全抑制,Co~(2+)、Ag~+和Ni~(2+)对β-葡萄糖苷酶也有抑制作用。以pNPG为底物的酶动力学常数K_m为0.79mM。
Valienamine was obtained from microbial degradation of validamycin A. It is a cyclitol, with strong inhibitory effect onα-glucosidase. It is a very important chemical intermediate because many antihyperglycemic agents can be synthesized with valienamine as a starting material, such as acarviosin, voglibose and so on. 3-Ketovalidoxylamine A C-N lyase was first purified from E saccharophilum in 1984. Little research on glucoside 3-dehydrogenase has been done. Researchs on enzyme degradation of validamycin A to valienamine, could advance economic benefit of validamycin A, and achieve the conversion from biopesticide to biomedicine.
     Stenotrophomonas maltrophilia CCTCC M 204024 was isolated by our lab from the local soil. It can use validamycin A as sole carbon source. Elucidation of the degradation pathway of validamycins A by resting cells of S. maltrophilia revealed that validamycin A was firstly hydrolyzed to validoxylamine A byβ-glucosidase. Validoxylamine A was then degraded through 3-ketovalidoxylamine A by glucoside 3-dehydrogenase (G3DH) and 3-ketovalidoxylamine A C-N lyase to validamine, valienamine and unsaturated ketocyclitols.
     N-p-Nitrophenyl-3-ketovalidamine, used as the substrate of 3-ketovalidoxylamine A C-N lyase, was firstly prepared from N-p-nitrophenyl-validamine with free cells of S. maltrophilia. The yield and selectivity of N-p-nitrophenyl-3-ketovalidamine from cells were improved by treatment with 10 mM ethylene diamine tetraacetic acid (EDTA). The optimal pH and temperature for N-p-nitrophenyl-3-ketovalidamine formation was 6.0 and 30℃. N-p-nitrophenyl-3-keto-validamine was formatted with Y_3-KpNPV of 0.68 from the first batch. Culture conditions of enzyme formation was optimized. The optimal carbon source was 0.5% validamycin A, which had some inducement for enzyme formation. The highest three key enzyme activity was obtained in a 500-mL conical flask containing 100 mL of medium, with natural pH and 10% inoculation volume, at 30℃for 36 h.
     The three key enzymes were purified and characterized in this paper. 3-Ketovalidoxylamine A C-N lyase was purified to 367 fold with a yield of 16.4% through High S IEX, HIC, High Q IEX and gel filtration. The enzyme was estimated to be a single band with molecular weight of 31.4-kDa by SDS-PAGE. The optimal reaction pH of 3-ketovalidoxylamine A C-N lyase was 7.0, and the optimal reaction temperature was 40℃. The enzyme was stable at a pH range of 7.0-10.0 and was sensitive to heat. EDTA inhibited the activity of the enzyme. Calcium was needed for the enzyme activity of 3-ketovalidoxylamine A C-N lyase. The apparent K_m value for N-p-nitrophenyl-3-ketovalidamine was 0.15 mM. Amino acid analyses of this enzyme showed that N-terminal was closed.
     A soluble glucoside 3-dehydrogenase (G3DH) was purified to 37.4 fold with a yield of 24.7% through High Q IEX, HIC High S IEX, and was estimated by SDS-PAGE with molecular mass of 66-kDa. The optimal pH of G3DH was 6.5 in the presence of DCPIP. The enzyme was stable in the pH range of 4.4-10.6 and was sensitive to heat. G3DH exhibited extremely broad substrate specificity by converting many sugars to their corresponding 3-ketoglucosides. The apparent K_m values for validoxylamine A and D-glucose were 8.3 mM and 1.1 mM, respectively. Cu~(2+), Ag~(2+)and Hg_2Cl_2 inhibited the activity of G3DH. Amino acid analyses of this enzyme showed that N-terminal was closed. Tryptic Peptide Mapping of G3DH showed that there was no protein could match this enzyme, deduced that it was probably a new enzyme.
     A solubleβ-glucosidase was purified to 270 fold with a yield of 6.9% through High S IEX, HIC High Q IEX and gel filtration, and was estimated by SDS-PAGE with a molecular mass of 93.4-kDa. The optimal pH of β-glucosidase was about 6.0 and the optimal reaction temperature was 40℃. The enzyme was sensitive to heat. Cu~(2+)and Hg_2Cl_2 inhibitedβ-glucosidase activity completely, and Ag~(2+), Co~(2+)and Ni~(2+) inhibited it partly. The apparent K_m value for pNPG was 0.79 mM.
引文
[1] Asano N, Takeuchi M, Ninomiya K, et al. (1984) Microbial Degradation of ValidamyciNn A by Flavobacterium Saccharophilum: Enzyme Cleavage of C-N Linkinge in Validoxylamine A [J]. J Antibiot, 37 (8): 859-867.
    [2] Kameda Y, Asano N, Yoshikawa M, et al. Valienamine as an a-glucosidase inhibition [J] J. Antibiot, 1980, 33: 1575-1576.
    [3] Kameda Y, Asano N, Yoshikawa M, et al. Valiolamine, a newa-glucosidase inhibiting aminocyclitol produced by Streptomyces hygroscopicus [J]. J. Antibiot, 1984, 37: 1301-1307.
    [4] Takeuchi M, Asano N, Kameda Y, et al. Purification of 3-ketovalidoxylamine A C-N lyase from Flavobacterium saccharophilum [J]. J. Biochem, 1985, 98: 1631-1638.
    [5] Treimer J K, Zenk M H. Purification and properties of stdctosidine synthase, the key enzyme in indole alkaloid formation [J]. Eur. J. Bioche. 1979, 101: 225-233.
    [6] Kutchan T M. Strictosidine: from alkaloid to enzyme to gene [J]. Phytochemistr, 1993, 32: 493-506.
    [7] De Waal A, Meijer A H, Verpoorte R. Strictosidine synthase from Catharanthus roseus: purification and characterization of multiple forms [J]. Biochem. J, 1995, 306: 571-580.
    [8] Ruppert M, Woll J, Giritch A, et al. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system [J]. Planta, 2005, 222: 888-898.
    [9] McCoy E, Galan M C, O'Connor S E. Substrate specificity of stdctosidine synthase [J]. Bioorg. Med. Chem. Lett, 2006, 16: 2475-2478.
    [10] Ma X, Panjikar S, Koepke J, Loris E, et al. The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed β-propeller fold in plant proteins [J]. Plant Cell, 2006, 18: 907-920.
    [11] De Eknamkul W, Ounaroon A, Tanahashi T, et al. Enzymatic condensation of dopamine and secologanin by cell-free extracts ofAlangium lamarckii [J]. Phytochemistr, 1997, 45: 477-484.
    [12] Takeuchi M, Asano N, Kameda Y, et al. Chemical modification by diethylpyroearbonate of an essential histidine residues in 3-ketovalidoxylamine A C-N Lyase [J]. J. Bioche, 1986, 99 (6): 1571-1577.
    [13] Takeuchi M, Neyazaki K, Matsui K. chemical modification by 2, 4, 6-trinitrobenzenesulfonic acid (TNBS) of an essential amino group in 3-ketovalidoxylamine A C-N lyase [J]. Chem. Pharm. Bull, 1990, 38 (5): 1419-1420.
    [14] Takeuchi M, Asano N, Kameda Y, et al. Fluorometric studies on the role of calcium in substmte binding to 3-ketovalidoxylamine A C-N lyase [J]. Chem. Pharm. Bull, 1988, 36(9): 3540-3545.
    [15] Asano N, Katayama K, Takeuchi M, et al. Preparation of 3-amino-3 deoxy derivatives of trehalose and sucrose and their activities [J]. J Antibiot, 1989, 4: 585-590
    [16] Takeuchi M, Asano N, Kameda Y, et al. Physiological role of glucoside 3-dehydrogenase and cytochrome c551 in the sugar oxidizing system of Flavobacterium saccharophilum [J]. J. Biochem, 1988, 103(6): 938-943.
    [17] Hayano K, Fukui S. Purification and properties of 3-ketosucrose-forming enzyme from the cells of Agrobacterium tumefaciens [J]. J. Biol. Chem, 1967, 242: 3665-3672.
    [18] Schuerman P L, Liu J S, Mou H, et al. 3-Ketoglycoside-mediated metabolism of sucrose in E. coli as conferred by genes from Agrobacterium tumefaciens [J]. Appl Microbiol Biotechnol, 1997, 47(5): 560-565.
    [19] Wakako T, Nobuhiro O, Koji S. Fluorescent measurement of 1, 5-anhydro-D-glucitol based on a novel marine bacterial glucose dehydrogenase [J]. Enzyme Microb Technol, 1998, 22: 269-274,
    [20] Wakako T, Shuichi H, Mitsuharu T, et al. Purification of a marine bacterial glucose dehydrogenase from Cytophaga marinoflava and its application for measurement of 1, 5-anhydro-D-glucitol [J]. Appl Biochera Biotechnol, 1996, 56: 301-310.
    [21] Morrison S C, Wood D A, Wood P M. Characterization of a glucose 3-dehydrogenase from the cultivated mushroom (Agaricus bisporus) [J]. Appl Microbiol Biotechnol, 1999, 51(1): 58-64.
    [22] Takeuchi M, Ninomiya K, Kawabata K, et al. Purification and properties of glucoside 3-dehydrogenase from Flavobacterium saccharophilum [J]. J. Biochera, 1986, 100(4): 1049-1055.
    [23] Takeuchi M, Asano N, Kameda Y, et al. Purification and properties of soluble D-glucoside 3-dehydrogenase from Flavobacterium saccharophilum [J]. Agric. Biol. Chem, 1988, 52(8): 1905-1912.
    [24] Kurowski W M, Fensom, A H, Pirt S J. Factors influencing the formation and stability of D-glucoside 3-dehydrogenase activity in cultures of Agrobacterium tumefaciens [J]. J Gen Microbiol, 1975, 90 (2): 191-202.
    [25] Kojima K, Tsugawa W, Hamahuji T, et al. Effect of growth substrates on production of new soluble glucose 3-dehydrogenase in Halomonas (Deleya) sp-15 [J]. Appl Biochem Biotechnol, 1999, 77-79: 827-834.
    [26] Maeda A, Adachi S, Matsuno R. Improvement of selectivity in 3-ketocellobiose production from cellobiose by Agrobacterium tumefaciens [J]. JBiol Chera, 2001, 8 (3): 217-221.
    [27] Kojima K, Tsugawa W, Sode K. Cloning and expression of glucose 3-dehydrogenase from Halomonas sp. -15 in Escherichia coli [J]. Biochera Bioph Res Co, 2001, 282(1): 21-27.
    [28] Atsushi M, Shuji A, Ryuichi M. Chromatographic separation of 3-ketoglucose and glucose or 3-ketocelllobiose and cellobiose using a cation-exchange resin in potassium-ion form [J]. J Biol Chem, 2003, 13: 15-20.
    [29] Asano N, Katayama K, Takeuchi M, et al. Preparation of 3-amino-3 deoxy derivatives of trehalose and sucrose and their activities [J]. J Antibiot, 1989, 4: 585-590.
    [30] Sode K, Akaike E, Sugiura H, et al. Enzymatic synthesis of a novel trehalose derivative, 3, 3'-diketoneotrehalose, and its potential application as the trehalase enzyme inhibitor [J]. FEBS Letters, 2001, 489: 42-45.
    [31] Hamafuji T, Takano Y, Tsugawa W, et al. Multi-sugar analysis system using a novel glucose-3-dehydrogenase electrode [J]. Instrum Sci Technol, 2002, 30(1): 97-105.
    [32] Hamafuji T, Tsugawa W, Sode K. Clinical application of the serum 1, 5-anhydroglucitol assay method using glucose 3-dehydrogenase [J]. J Clin Lab Anal, 2002, 16(6): 299-303.
    [33] 王华夫,游小青.茶叶中β-葡萄糖苷酶活性的测定[J].中国茶叶,1996,(3):16-17.
    [34] Extoxnet extension toxicology network pesticide information profiles, http ://extoxnet.orst.edu/pips/validamy.htm.
    [35] Kempton J B, Withers S G. Mechanism of Agrobacterium beta-glucosidase: Kinetic Studies [J]. Bichemistry, 1992, 31(41): 9961-9969.
    [36] Odoux E, Chauwin A, Brillouet J M. Purification and characterization of Vanilla Bean (Vanilla planifolia Andrews) β-D-glucosidase [J]. J Agric. Food Chem, 2003, 51(10): 3168-3173.
    [37] 汪大受,张静娟,那安等.康氏木霉(Trichoderma koningii)纤维素酶系中β-葡萄糖苷酶的提纯与性质[J].生物化学与生物物理学报,1980,12(3):293-299.
    [38] 宛晓春,汤坚,霄霖.β-葡萄糖苷酶菌种选育[J].安微农业大学学报,1997,24:77-80
    [39] Paavilainen S, Hellman J, Korpela T. Purification, characterization, gene cloning, and sequencing of a new beta-glucosidase from Bacillus circulans subsp, alkalophilus [J]. Appl Environ Microbiol, 1993, 59(3): 927-932.
    [40] 王沁,赵学慧.黑曲霉β-葡萄糖苷酶的纯化与性质[J].厦门大学学报(自然科学版),1992,31(6):687-691.
    [41] Wallecha A, Mishra S. Purification and characterization of two β-glucosidases from a thermo-tolerant yeast Pichia etchellsii [J]. Biochim Biophys Acta, 2003, 1649(1): 74-84.
    [42] Dayan F E, Kuhajek J M, Canel C, et al. Podophyllum peltatum possesses a β-glucosidase with high substrate specificity for the aryltetralin lignan podophyllotoxin [J]. Biochim Biophys Acta, 2003, 1646 (1-2): 157-163.
    [43] Cameron R G, Manthey J A, Baker R A, et al. Purification and characterization of a β-glucosidase from Citrus sinensis var Valencia fruit tissue [J]. J of Agr Food Chem, 2001, 49 (9): 4457-4462.
    [44] Yang L, Ning Z S, Shi C Z, et al. Purification and characterization of an isoflavone-conjugates-hydrolyzing β-glucosidase from endophytic Bacterium [J]. J of Agr Food Chem, 2004, 52 (7): 1940-1944.
    [45] 张喆,赵红,周兴旺,等.福寿螺β-葡萄糖苷酶的分离纯化及性质的初步研究[J].厦门大学学报(自然科学版),1999,38(2):287-291.
    [46] (德) 施特尔马赫著,钱嘉渊译.酶的测定方法[M].北京:轻工业出版社,1992,169-172.
    [47] 孙迎庆,曹淑桂,韩四平.β-葡萄糖苷酶分离纯化和性质研究[J].生物学杂志,1997,14(5):12-15
    [48] Varrot A, Yip V L Y, Li Y S, et al. NAD~+ and Metal-ion Dependent Hydrolysis by Family 4 Glycosidases: Structural Insight into Specificity for Phospho-β-D-glucosides [J]. J of Mol Biol, 2005, 346(2): 423-435.
    [49] Tull D, Wither S G, Gikes N R, et al. Glumatic acid 274 is the nucleophile in the active site of a "retaining" exoglueanase from Cellulononas fimi [J]. J Biol Chem, 1991, 266 (24): 15621-15625.
    [50] Moracci M, Capalbo L, Ciaramella M, et al. Identification of two glutamic acid residues essential for catalysis in the beta-glycosidase from the thermoacidophilic archaeon Sulfolobus solfataricus [J]. Protein engineering, 1996, 9(12): 1191-1195.
    [51] Wang Q, Trimbur D, Graham R, et al. Identification of the acid/base catalyst in agrobaeterium faecalis □β-Glucosidase by kinetic analysis of mutants [J]. Biochemistry, 1995, 34(44): 14554-14562.
    [52] Voorhorst W G, Eggen R I, Luesink E J, et al. Characterization of the ce1B gene coding for beta-glucosidase from the hyperthermophilic archaeon Pyroeoecus furiosus and its expression and site-directed mutation in Escherichia coli [J]. J. Bacteriol, 1995, 177(24): 7105-7111.
    [53] Misawa N, Nakamura K. Expression of stability of a β-glucosidase gene of Ruminococcus albus in Zymomonas mobilis [J]. Agricultural and Biological Chemistry, 1989, 53(3): 723-727.
    [54] Gonzalez-Candelas L, Ramon D, Polainal J. Sequences and homology, analysis of two genes encoding β-glucosidase from Bacillus polymyxa [J]. Gene, 1990, 95: 31-38.
    [55] Grabnitz F, Seiss M, Rucknagel Karl P, et al. Structure of the beta-glucosidase gene bglA of Clostridium thermocellum. Sequence analysis reveals a superfamily of cellulases and β-glycosidases including human lactase/phlorizin hydrolase [J]. Eur J. Biochem, 1991, 200(2): 301-309.
    [56] 何向远,金城,张树政等.耐热β-糖苷酶的基因克隆、表达和耐热性研究[J].生物工程学报,2002,18(1):63-68.
    [57] Arian G, lbanez M M-L, Johan M, et al. Molecular cloning and analysis of strictosidine beta-D-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus [J]. J. Biol. Chem, 2000, 275(5): 3051-3056.
    [58] Crombie H, Chengappa S, Hellyer A. A xyloglucan oligosaccharide-active, transglyeosylating beta-D-glueosidase from the cotyledons of nasturtium (Tropaeolum majus L.) seedlings--purification, properties and characterization of a cDNA clone [J]. Plant J, 1998, 15 (1): 27-38.
    [59] Ketudat Cairns J. R, Champattanachai V, Srisomsap C, et al. Sequence and expression of Thai Rosewood beta-glucosidase/beta-fucosidase, a family 1 glycosyl hydrolase glycoprotein [J]. J Biochem, 2000, 128 (6): 999-1008.
    [60] Anders F, Lars R. Expression of a zeatin-O-glucoside-degrading β-glucosidase in Brassica napus [J]. Plant-Physiolgy (USA), 1995, 108 (4): 1369- 1377.
    [61] Xu Y H, Grabowski, G A. Translation inefficiency of human acid-glueosidase in trasdueed mammalian cells [J].. Mol Genet Metab, 1998, 64(2): 87-98.
    [62] 林延川.家鱼烂鳃病新疗法[J].内陆水产,1998,(6):26.
    [63] 毛万钧.井冈霉素防治水稻稻曲病[J].植物保护,1992,18(1):54.
    [64] 李顺德,黄业修,吴桂珍.井冈霉素防治玉米穗腐病试验研究[J].玉米科学,1997,5(4):78-80.
    [65] Isawa T, Kameda Y, Asai M. Studies on validaymcin, new antibiotics Ⅳ [J]. J. Antibiotics, 1971, 24 (2): 119-122.
    [66] Horh S, Kameda Y, Kawahara K. Studies on validamycins, new antibiotics Ⅷ. Isolation and characterization ofvalidamycins C, D, E, and F [J]. J. Antibiotics, 1972, 24: 48-53.
    [67] Kameda Y, Asano N, Yamaguchi T, et al. Validamycin G and validoxylamine G, new members of the validamycins [J]. J. Antibiotics, 1986, 39 (10): 1491-1494.
    [68] Asano N, Kameda Y, Matsui K, et al. Validamycin H, a new pseudo-tetrasaccharide antibiotic [J]. J. Antibiotics, 1990, 43 (8): 1039-1041.
    [69] 上海市农药研究所农用抗菌素组编,井冈霉素[M].上海:上海人民出版社,1977,11-19,90-131,146-149.
    [70] Asano N, Yamaguchi T, Kameda Y, et al. Effect of validamycins on glycohydrolases of rhizoctonia solani [J]. J. Antibiotics, 1987, 40 (4): 526-532.
    [71] Asano N, Takeuchi M, Kameda Y, et al. Validoxylamine A and related compounds as insecticides [J]. J. Antibiotics, 1990, 43 (6): 722-726.
    [72] Extoxnet extension toxicology network pesticide information profiles, http://extoxnet.orst.edu/pips/validamy.htm.
    [73] Janeda Y, Horri S, Yamino T. Microbial Transformation of Validamycins [J]. J. Anitibiot, 1975, 28: 298-302.
    [74] Asano N, Takeuchi M, Ninomiya K. Microbial degration of validamycin A by Flavobacterium Saccharophilum, enzymatic cheavage of C-N linkage in validoxylamine A [J]. J. Antibiotics, 1984, 37: 859-867.
    [75] Horh S, Iwasa T, Kameda Y. Studies on validamyeins, new antibiotics. Ⅴ degradation studies [J]. J. Antibiotics, 1970, 24: 423-426.
    [76] Horh S, Iwasa T, Kameda Y. Validamycins, new antibiotics. Ⅴ. degradation studies [J]. J. Antibiotics, 1971, 24 (1): 57-58.
    [77] Seiichiro O, Takao O, Yoshikazu I, et al. Synthetic studies on the validamycins. 10. Total synthesis of DL-validoxylamines A and B [J]. J Org Chem, 1984, 49(14): 2594-2599.
    [78] Jin L Q, Zheng Y G, Shen Y C. Production of trehalase inhibitor validoxylamine A using acid-catalyzed hydrolysis ofvalidamycin A [J]. Catalysis Communcations, 2004, 5: 519-525.
    [79] Zheng Y G, Jin L Q, Shen Y C. Resin-catalyzed degradation of validamycin A for producton of validoxylamine A [J]. Catalysis Communcations, 2004, 5: 519-525.
    [80] 张宪锋,郑裕国,沈寅初.微生物转化法裂解井冈霉素生产井冈霉亚基胺A [J].中国抗生素杂志,2004,29(4):206-208.
    [81] Xue Y P, Zheng Y G, Shen Y C. Preparation of the trehalase inhibitor validoxylamine A by biocatalyzed hydrolysis of validamycin A with honey-bee (Apis cerana Fabr.) β-glucosidase [J]. Appl Biochem Biotech, 2005, 127: 157-161.
    [82] Yin Y, Huang W Y, Chen D J. Preparation of validoxylamine A by Biotransformation of validamycin A using resting cells of a recombinant Escherichia coli [J]. Biotechnol Lett, 2007, inpress.
    [83] Childress C C, Sacktor B. Regulation of glycogen metabolism in insect flight muscle [J]. J. Biol Chem, 1970, 245 (11): 2927-2936.
    [84] Zachariassen K E. Physiology of cold tolerance in insects [J]. Physiol Rev, 1985, 65: 799-832.
    [85] Sacktor B S, Wormser-Shavit E. Regulation of metabolism in working muscle in vivo. I. Cones. of some glycolytic, tricarboxylic acid cycle, and amino acid intermediates in insect flight muscle during flight [J]. J. Biol Chem, 1966, 241: 634-638.
    [86] 池明姬,冯化成.海藻糖酶-杀虫剂的作用靶标[J].Word pesticides,2003,25(5):34-36.
    [87] Kono Y. Trehalase as a prospective target ofinsectide[J]. Nippon Noyaku Gakkaishi, 2002, 27 (4):369-400.
    [88] Yao X, Fugo S, Takeda S. Effect of validoxylamine A on the trehalase activity in the colletetial glands of the silkworm, Bombyx mori [J]. J. Seric. Sci. Jpn., 1991, 60: 296-301.
    [89] Takeda S, Kono Y, Kameda Y. Non-glutinous egg production by using a trehalase inhititor, Validoxylamine A, in Bombyx mori [J]. Seric. Sci. Jpn., 1990, 55: 238-241.
    [90] Takeda S, Kono Y, Kameda Y. Induction of non-diapause eggs in Bombyx mori by a trehalase inhibitor [J]. Ent. Exp. Appl., 1988, 46: 291-294.
    [91] Kono Y, Takeda S, Kameda Y. Lethal activity of a trehalase inhibitor, validoxylamine A, against Mamestra brassica and Spodoptera litura [J]. J. Pesticide Sci, 1994, 19: 39-42.
    [92] Kono Y, Takeda S, Kameda Y, et al. Lethal activity of a trehalase inhibitor, validoxylamine A, and its influence on the blood sugar level in Bombyx mori (Lepidoptera: Bombycidae) [J]. Applied Entomol Zool, 1993, 28 (3): 379-386.
    [93] Kono Y, Takahashi M, Matsushita K, et al. Inhibition of flight in Periplaneta americana (Linn.) by a trehalase inhibitor, validoxylamine A [J]. J Insect Physiol, 1994, 40(6): 455-461.
    [94] Kono Y, Takahashi M, Matsushita K, et al. Effect of a trehalase inhibitor, validoxylamine A, on the oocyte development and ootheca formation in Blattella germanica and Periplaneta fuliginosa [J]. Medical Entomology and Zoology, 1999, 50(1): 33-39.
    [95] Kono Y, Takahashi M, Mihara M, et al. Effect of a trehalase inhibitor, validoxylamine A, on oocyte development and ootheca formation in Periplaneta americana (Blattodea, Blattidae) [J]. Applied Entomol Zool, 1997, 32 (2): 293-301.
    [96] Qian X H, Liu Z, Zhong L, et al. Synthesis and quantitave structure-Activity relationships of Fluorine-Containing 4, 4Dihydroxylmethyl-2-aryliminooxazo (thiazo) lidines as trehalase inhibitors [J]. J. Agric. Food Chem. 2001, 49: 5279-5284.
    [97] Horri S, KamodaY, Fukase H. Pseudo-aminosugars, their production and use, EUR Patent 0063456al, 1982.
    [98] Toyokuni T, Ogawa S, Suami T. Synthetic studies on the validamycins: Ⅳ. Synthesis of DL-valienamine and related branched-chain unsaturated aminocyclitols [J]. Bull. Chem. Soc. Jpn, 1983, 56: 1161-1170.
    [99] Fukase H. Development of voglibose, an antidiabetic agent [J]. Yule" Gosei Kagaku Kyokaishi, 1997, 55: 920-925.
    [100] Degwert U, Hulst R V, Pape H, et al. Studies on the biosynthesis of the α-glu~osidase inhibitor acarbose: valienamine, a m-C_7N unit not derived from the shikimate pathway [J]. J Antibiotics, 987, 11(6): 855-861.
    [101] Zheng Y G, Zhang X F, Shen Y C. Microbial transformation of validamycin A to valienamine by immobilized cells [J]. Biocatal Biotransfor, 2005, 23(2): 71-77.
    [102] KmedaY, Asano N. Valiolamine, a new α-glucosidase inhibiting arninocyclitol produced by Streptomyces hygroscopicus [J]. J Antibiotics, 1984, 37(11): 1301-1307.
    [103] Chen X L, Zheng Y G, Shen Y C. A new method for production of valienamine with microbial degradation of acarbose [J]. Biotechnol Progr, 2005, 21(3): 1002-1003.
    [104] Zheng Y G, Xue Y P, Shen Y C. Production of valienamine by a newly isolated strain: Stenotrophomonas maltrophilia [J]. Enzyme Microb Tech, 2006, 39(5): 1060-1065.
    [105] Xue Y P, Zheng Y G, Chen X L, et al. Quantitative determination of valienamine and validamine by thin-layer chromatography [J]. Journal of Chromatogr Sci, 2007, 45: 1-4.
    [106] Chert X L, Zheng Y G, Shen Y C. Quantitative analysis of valienamine in the microbial degradation ofvalidamycin A after derivatization with p-nitrofluorobenzene by reversed-phase high-performance liquid chromatography [J]. J Chromatogr B. 2005, 824 (1-2): 341-347.
    [107] Takeuchi M, Kamata K. Inhibitory effect of pseudo-aminosugars on oligosaccharide glucosidases Ⅰ and Ⅱ and on lysosomalα-glucosidase from rat liver [J]. J Biochem, 1990, 108: 42-46.
    [108] Mehta G, Lakshminath S A. Norbonyl mute to aminocyclohexitols: syntheses of diverse aminocarbasugars and 'eonfused'aminocarbasugars [J]. Tetrahedron Lett, 2002, 43: 335-338.
    [109] Takeuchi M, Takai N. Inhibitory effect of validamine, valienamine and valiolamine on activities of carbohydrases in rat small intestinal brush border membranes [J]. Chem Pharm Bull, 1990, 38 (7): 1970~1972.
    [110] Zheng Y G, Shentu X P, Shen Y C. Inhibition of porcine small intestinal sucrase by Validamine [J]. Chinese J Chem Eng, 2005, 13(3): 429-432.
    [111] Zheng Y G, Shentu X P, Shen Y C. Inhibition of porcine small intestinal suerase by Valienamine [J]. J Enzym Inhib Med Ch, 2005, 20(1): 49-53.
    [112] Zhang J F, Zheng Y G, Shen Y C. Inhibitory effect of valienamine on the enzymatic activity of honeybee (Apis eerana Fabr.) alpha-glucosidase [J]. Pestic. Biochem Phys, 2007, 87(1): 73-77.
    [113] Chert X L, Zheng Y G, Shen Y C. Voglibose (Basen (R) AO- 128), one of the most important aipha-glucosidase inhibitors [J]. Biotechnol. Prog, 2005, 21: 1002-1003.
    [114] 吕春雷,叶伟东,胡三明.由Valiolamjne制备伏格列波糖.中国医药工业杂志,2005,36(9):525
    [1] 上海市农药研究所农用抗菌素组编,井冈霉素[M].上海人民出版社,1977,11-19,90-131,146-149
    [2] Wang Y S, Zheng Y G, Shen Y C. Isolation and indentification of a novel valienamine-produetion bacterium [J]. Journal of Applied Microbiology, 2007, 102: 838-844
    [3] Asano N, Takeuchi M, Ninomiya K, et al. Microbial degradation of validamyeiNn A by Flavobacterium Saccharophilum: Enzyme Cleavage of C-N Linkinge in Validoxylamine A [J]. J Antibiot, 1984, 37 (8): 859-867
    [4] Xue Y P, Zheng Y G, Chen X L et al. Quantitative determination of valienamine and validamine by thin-layer chromatography [J]. Journal of Chromatogr Sci, 2007, 45: 1-4
    [5] Takeuchi M, Asano N, Kameda Y, et al. Purification of 3-ketovalidoxylamine A C-N lyase from Flavobacterium saccharophilum [J]. J. Biochem, 1985, 98: 1631-1638.
    [1] Asano N, Takeuchi M, Ninomiya K, et al. Microbial degradation of validamycin A by Flavobacterium Saccharophilum: enzyme cleavage of C-N linkage in validoxylamine A [J]. J Antibiot, 1984, 37: 859-867.
    [2] Stoppok E, Walter J, Buchholz K. The effect ofpH and oxygen concentration on the formation of 3-ketodisaccharides by Agrobacterium tumefaciens [J]. Appl Microbiol Biotechnol, 1995, 43: 706-712.
    [3] Maeda A, Adachi S, Matsuno R. Improvement of selectivity in 3-ketoeellobiose production from cellobiose by Agrobacterium tumefaciens [J]. Biochem Eng J, 2001, 8: 217-221.
    [4] Maeda A, Kataoka H, Adachi S, Matsuno R. Transformation of cellobiose to 3-ketocellobiose by the EDTA-treated Agrobacterium tumefaciens Cells [J]. J Biosci Bioeng, 2003, 95: 608-611.
    [5] Takeuchi M, Asano N, Kameda Y, et al. Purification and properties of 3-ketovalidoxylamine A C-N lyase from Flavobacterium saccharophilum [J]. J Biochem, 1985, 98: 1631-1638.
    [6] Hayano K, Fukui S. Purification and properties of 3-ketosuerose-forming enzyme from the cells of Agrobacterium tumefaciens [J]. J Biol Chem, 1967, 242: 3655-3672.
    [7] Takeuchi M, Ninomiya K, Kawabata K, et al. Purification and properties of glucoside 3-dehydrogenase from Flavobacterium saccharophilum [J]. JBiochem, 1986, 100: 1049-1055.
    [8] Takeuchi M, Asano N, Kameda Y, et al. Purification and properties of soluble D-glucoside 3-dehydrogenase from Flavobacterium saccharophilum [J]. Agric Biol Chem, 1988, 52: 1905-1912.
    [1] Zheng Y G, Xue Y P, Shen Y C. Production of valienamine by a newly isolated strain: Stenotrophomonas maltrophilia[J]. Enzyme Microb Tech, 2006, 39(5): 1060-1065.
    [2] 王华夫,游小青.茶叶中β-葡萄糖苷酶活性的测定[J].中国茶叶,1996,(3):16-17.
    [3] Takeuchi M, Ninomiya K, Kawabata K, et al. Purification and properties of glucoside 3-dehydrogenase from Flavobacterium saccharophilum [J]. J. Biochem, 1986, 100(4): 1049-1055.
    [4] Takeuehi M, Asano N, Kameda Y, et al. Purification and properties of soluble D-glucoside 3-dehydrogenase from Flavobacterium saccharophilum [J]. Agric. Biol. Chem, 1988, 52(8): 1905-1912.
    [5] Takeuchi M, Asano N, Kameda Y, et al. Purification of 3-ketovalidoxylamine A C-N lyase from Flavobacterium saccharophilum [J]. J. Biochem, 1985, 98: 1631-1638.
    [6] Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72: 248-254.
    [7] Schuerman P L, Liu J S, Mou H, et al. 3-Ketoglyeoside-mediated metabolism of sucrose in E. coli as conferred by genes from Agrobacterium tumefaciens [J]. Appl Microbiol Biotechnol, 1997, 47(5): 560-565.
    [8] Kojima K, Tsugawa W, Hamahuji T, et al. Effect of growth substrates on production of new soluble glucose 3-dehydrogenase in Halomonas (Deleya) sp-15[J]. Appl Biochem Biotechnol, 1999, 77-79: 827-834.
    [9] Kurowski W M, Fensom, A H, Pirt S J. Factors influencing the formation and stability of D-glucoside 3-dehydrogenase activity in cultures of Agrobacterium tumefaciens [J]. J Gen Microbiol, 1975, 90 (2): 191-202.
    [1] Takeuchi M, Asano N, Kameda Y, et al. Purification of 3-ketovalidoxylamine A C-N lyase from Flavobacterium saccharophilum [J]. J. Bioehem, 1985, 98: 1631-1638.
    [2] Asano N, Takeuchi M, Ninomiya K, et al. Microbial degradation of validamycin A by Flavobacterium Saceharophilum enzyme cleavage of C-N linkinge in validoxylamine A[J]. J. Antibiot, 1984, 37(8): 859-867.
    [3] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Ahal Biochem, 1976, 72: 248-254.
    [4] 汪家政,范明.蛋白质技术手册[M].北京:化学工业出版社,1999.
    [5] Laemmli U K. Cleavage of structural proteins during the assembly of bacteriphogeT4 [J]. Nature, 1970, 227: 680-685.
    [1] Hayano K, Fukui S. Purification and properties of 3-ketosucrose-forming enzyme from the cells of Agrobacterium tumefaciens [J]. J. Biol. Chem, 1967, 242: 3665-3672.
    [2] Takeuchi M, Ninomiya K, Kawabata K, et al. Purification and properties of glucoside 3-dehydrogenase from Flavobacterium saccharophilum[J]. J. Biochem, 1986, 100(4): 1049-1055.
    [3] Takeuchi M, Asano N, Kameda Y, et al. Purification and properties of soluble D-glucoside 3-dehydrogenase from Flavobacterium saccharophilum [J]. Agric. Biol. Chem, 1988, 52(8): 1905-1912.
    [4] Naoki A, Masayoshi T, Kotaro N, et al. Microbial degradation of validamycin A by Flavobacterium Saccharophilum enzyme cleavage of C-N linkinge in validoxylamine A[J]. J. Antibiot, 1984, 37(8): 859-867.
    [5] Tsugawa W, Ogasawara N, Sode K. Fluorescent measurement of 1, 5-anhydro-D-glucitol based on a novel marine bacterial glucose dehydrogenase [J]. Enzyme Microb. Techno, 1998, 22: 269-274.
    [6] Wakako T, Shuichi H, Mitsuharu T, et al. Purification of a marine bacterial glucose dehydrogenase from Cytophaga marinoflava and its application for measurement of 1, 5-anhydro-D-glucitol [J]. Appl. Biochem. Biotechnol, 1996, 56: 301-310.
    [7] Mordson S C, Wood D A, Wood P M. Characterization of a glucose 3-dehydrogenase from the cultivated mushroom (Agaricus bisporus) [J]. Appl. Microbiol. Biotechnol, 1999, 51(1): 58-64.
    [8] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantifies of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72: 248-254.
    [9] Laemmli U K. Cleavage of structural proteins during the assembly of bacteriphogeT4 [J]. Nature, 1970, 227: 680-685.
    [10] Kojima K, Tsugawa W, Hamahuji T, et al. Effect of growth substrates on production of new soluble glucose 3-dehydrogenase in Halomonas (Deleya) sp.-15 [J]. Appl Biochem Biotechnol, 1999, 77-79: 827-834.
    [11] Mordson S C, Wood D A, Wood P M. Characterization of a glucose 3-dehydrogenase from the cultivated mushroom (Agaricus bisporus) [J]. Appl Microbiol Biotechnol, 1999, 51(1): 58-64.
    [12] Tsugawa W, Horiuchi S, Tanaka M, et al. Purification of a marine bacterial glucose dehydrogenase from Cytophaga marinoflava and its Application for measurement of 1, 5-anhydro-D-glucitol [J]. Appl Biochem Biotechnol, 1999, 56: 301-310.
    [13] Fukui S, Hayano K. Micro methods for determination of 3-ketosucrose and 3-ketoglucose [J]. Agric Biol Chem, 1969, 33: 1013-1017.
    [14] Hayano K, Fukui S. Purification and properties of 3-ketosucrose-forming enzyme from the cells of Agrobacterium tumefaciens [J]. J Biol Chem, 1967, 242: 3665-3672.
    [15] Pietsch M, Walter M, Buchholz K. Regioselective synthesis of new sucrose derivatives via 3-keto sucrose [J]. Carbohydr Res, 1994, 254: 183.
    [16] Sode K, Akaike E, Sugiura H, et al. Enzymatic synthesis of a novel trehalose derivative, 3, 3'-diketoneotrehalose, and its potential application as the trehalase enzyme inhibitor [J]. FEBS Lett, 2001, 489: 42-45.
    [17] Asano N, Takeuchi M, Ninomiya K, et al. Preparation of 3-amino-3 deoxy derivatives of trehalose and sucrose and their activities [J]. J Antibiot, 1989, 4: 585-590.
    [18] Takeuchi M, Asano N, Kameda Y, et al. Physiological role of glucoside 3-dehydrogenase and cytochrome c551 in the sugar oxidizing system of Flavobacterium saccharophilum [J]. J Biochem, 1988, 103 (6): 938-943.
    [1] 王华夫,游小青.茶叶中β-葡萄糖苷酶活性的测定[J].中国茶叶,1996,(3):16-17
    [2] Janeda Y, Horri S, Yamino T. Microbial Transformation of Validamycins [J]. J. Anitibiot, 1975, 28: 298-302
    [3] Asano N, Takeuchi M, Ninomiya K. Microbial degration of validamycin A by Flavobacterium Saccharophilum, enzymatic chcavagc of C-N linkage in validoxylaminc A [J]. J. Antibiotics, 1984, 37: 859-867
    [4] 张宪锋,郑裕国,沈寅初.微生物转化法裂解井冈霉素生产井冈霉亚基胺 A[J].中国抗生素杂志,2004,29(4):206-208
    [5] Yin Y, Huang W Y, Chen D J. Preparation of validoxylarnine A by Biotransformation of validamycin A using resting cells of a recombinant Escherichia coli [J]. Biotechnol Lett, 2007, inpress.
    [6] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72: 248-254
    [7] Laemmli U K. Cleavage of structural proteins during the assembly of bacteriphogeT4 [J]. Nature, 1970, 227: 680-685

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700