松辽盆地徐家围子断陷深层天然气来源与成藏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着松辽盆地深层天然气勘探步伐的加快,在徐家围子断陷深层火山岩和砾岩储层中均获得了重要突破,展现出松辽盆地天然气广阔的勘探前景。与此同时也出现了许多地质问题急需解决,本文针对徐家围子断陷深层源岩空间分布、源岩生烃潜力、天然气成因类型、混源天然气来源及天然气成藏时间等问题开展了研究工作。研究中除了采用先进的地球化学实验技术外,还针对存在问题开展了实验技术攻关,创新性地开发出了源岩吸附气制备方法、天然气微量重烃富集技术及混源天然气源岩贡献比例定量计算等新技术,其中混源天然气源岩贡献比例定量技术已获国家发明专利。采用这些新技术,并将地质与地球化学相结合,解决了实际地质问题,取得的成果和认识对下步深层天然气勘探有重要指导意义。
     对深层源岩分布和生烃潜力的研究直接关系到对该地区资源的认识和勘探决策。本次研究以实际钻井资料为基础,并结合沉积相等研究,确定了徐家围子断陷泉二段以下各地层中暗色泥岩的空间分布及煤层分布,指出沙河子组暗色泥岩厚度大,分布广,其次为火石岭组和营城组,登娄库组暗色泥岩则主要分布于徐家围子西部靠近古中央隆起带附近,厚度相对较小。在徐深1和升深2井及以东局部地区的沙河子组和火石岭组地层中还发育一定厚度的煤层。有机地球化学分析表明沙河子源岩有机质丰度高,除以III型干酪根主为外,还存在II型和I型干酪根,为好生气岩;火石岭组和营城组有机质丰度相对较高,属中—较好气源岩;登娄库组和泉头组一—二段源岩为差—中等气源岩。利用高温高压热模拟实验技术研究了沙河子组泥岩的生烃和原油的裂解成气过程,建立了适合本区的天然气甲烷碳同位素与源岩成熟度Ro关系方程,建立了源岩生烃模式和原油裂解生气模式。
     开展了深层天然气的组成、碳同位素及氢同位素地化特征研究,采用多种图版和指标对天然气成因类型进行了判别。指出徐家围子断陷深层天然气主要是以甲烷为主的干气,并存在有CO2气藏(如芳深9气藏),总体上天然气的碳同位素较重,在组分碳同位素系列上,除正系列外,还有较多的系列倒转及部分的负系列,反映出该地区天然气来源的复杂性。研究认为天然气出现倒转的原因可能是由于该地区存在多套的气源岩及源岩的成熟度较高所致。昌德地区天然气主要以煤型气为主,并可能混有无机成因气,升平-宋站地区天然气主要为煤型气,而兴城地区则主要为煤型气与油型气的混合气。采用天然气与源岩成熟关系方程、源岩吸附气与天然气甲烷碳同位素对比及混源天然气源岩贡献比例定量计算技术深入研究了徐家围子断陷天然气的来源,指出天然气主要来源于沙河子组源岩,但不同地区来源比例明显不同,天然气来源于不同源岩的贡献与源岩分布密切相关,在沙河子组源岩发育的兴城地区来自该源岩的贡献可达99%,而靠近古中央隆起带石炭—二叠系源岩发育区内则来自该套源岩的贡献较大,可达85%,同样主要来源于营城组的源岩的天然气也均分布于营城组源岩发育区内,由此推断松辽盆地深层天然气应主要以垂向运移为主,天然气藏的分布受源岩区的控制,有效气源岩的分布区也就是天然气的有利勘探区。
     利用源岩生、排烃史、天然气甲烷碳同位素分馏及储层包裹体分析技术并结合本区沉积埋藏史和热史综合研究了天然气的成藏时间。认为升平地区天然气的充注主要为一期,在泉头组沉积末期至青山口组沉积时期,时间大约在110Ma~90Ma。昌德地区天然气的充注成藏时间有两次,一次主要青山口组沉积初期到嫩江组开始沉积时期,另一次则在嫩江组沉积末期到明水组沉积时期,时间大约分别为82Ma~98Ma,75Ma~63Ma;兴城地区天然气充注成藏有两期,一期为青山口组沉积时期至姚家组沉积时期,另一期为嫩江组沉积中期至明水组沉积时期,时间大约分别为100Ma~90Ma和78Ma~68Ma。
     最后预测了徐东斜坡带及安达向斜区是天然气有利富集地区,莺山-双城断陷、古龙断陷、林甸-常家围子断陷中也具备了生成大量天然气的条件,这些地区也应是天然气下步勘探的有利地区。
The breakthrough which were occurred mainly in volcanic and conglomeratic reservoirs demonstrated the great potential for deep gas exploration in the Xujiaweizi rift depression. With the exploration speeds up, more and more geological problems should be resolved rapidly. Some of problems about the distribution of source rocks, the potential hydrocarbon generative of source rock, the genetic type of natural gases, the contribution ratio of different source rocks to mixed natural gases reservoir and Timing for gas charge in reservoirs have studied in this paper. Not only the advanced geochemical experimental techniques have been used in our studying work ,but also we developed some new techniques and methods, for example the adsorbed gas preparation technique, the enriching method of light hydrocarbon in natural gases and experimental technique of natural gas contribution ratio of four layers source rocks. The last one was awarded national invention patent. Being used the new techniques and combining geology analysis, some new conclusions will play important roles in exploration in this area.
     The spatial distribution and hydrocarbon generation potential of source rocks determine the resource potential and exploration strategy. Based on the data of drilling and deposition phase the thickness and spatial distribution of source rocks has been described. The dark mudstones and coal beds in the Shahezi Formation occur in much wider geographic area, with dark mudstones ranging in thickness from rift depression 30m to 350 m and locally up to1000 m. the dark mudstones in Huoshiling Formation distributed mainly in middle of the rift depression, and its thickness is less than Shahezi Formation. The dark mudstones in Yingchengzi and Denglouku Formation distributed locally and its thickness is much thinner than in Shahezi and Hulshiling Formation. The geochemistry analysis data (Rock-Eval, TOC and solvent extraction yields) of source rocks indicate excellent gas generative potentials in Shahezi Formation, good to excellent gas generative potentials to Huoshiling and Yingcheng Formation and poor to good gas generative potentials to Denglouku and Quantou Formation. Maceral identified and hydrogen index values of the studied rocks indicate most gas-prone type III organic matter, but the organic source input in the some potential hydrocarbon source rocks from the Shahezi Formation may initially contain some aquatic organic matter. The high temperature and high pressure simulation experiment has been used to study the process of hydrocarbon generation in source rock in Shahezi Formation and the process of gas generation by oil cracking. Both the models of hydrocarbon generation of source rock and oil and the equation about relationship between methane carbon isotope and source rock maturity (Ro) have established.
     The characteristic of composition and carbon isotope and hydrogen isotope of natural gases in Xujiaweizi rift depression have been studied. Also the genetic type of natural gases in this area has been classified. The gases are generally dry (i.e. with little C2+ hydrocarbons), However, there are wells that produce CO2 rich gases (e.g. Xushen No.9 well). Theδ13C values of gases are generally heavier, and most of gases have positive or negative carbon isotope series, few of them show reversal carbon isotope series. The complication distribution of isotope series suggested that the natural gases in the reservoir may be either mixing of gases generated at different source rocks or high thermal maturity source rocks or contribution of abiogenic gases. Using the quantitative calculation technique of the contribution ratio of different source rocks to mixed gases, Calculated the contribution ratio of four layer source rocks to natural gas reservoir in Xujiaweizi rift depression. The result indicates that most of the gases in the Xujiaweizi rift depression were derived from source rocks in Shahezi Formation. But the contribution ratios of source rocks show clearly dependence on spatial distribution of different source rocks. For example, the contribution ratio of source rocks in Shahezi Formation to gas reservoir in its source rocks developing area is can be up to 99%. And in the palaeo-central uplift, which developing source rocks in C-P, the contribution ratio of C-P source rocks to gas reservoir can be up to 85%. Similarly, the same regularity is coincident to source rocks in Yingcheng Formation. So, it is can be concluded that gases in Xujaweizi rift depression should be migrate vertically to reservoirs. The distribution of gases reservoir are controlled by spatial distribution of source rock. The distribution areas of principal source rocks are also the most favorable exploration zone for deep natural gases.
     Timing for gas charge in reservoirs have been studied by three techniques, including the hydrocarbon generation and expulsion of source rocks, carbon isotope fractionation during natural gas generation from source rocks and fluid inclusions analysis. The 1-D basin modeling also be used to define the geologic age of gases charge in reservoirs. The results suggest the timing of the gas charge was around 110Ma~90Ma in Shengping area, 82Ma~98Ma and 75Ma~63Ma in Changde area, 100Ma~90Ma and 78Ma~68Ma in Xingcheng area. This is slightly latter than or at the same time as the main period of gas generation from main source rocks.
     Finally, in Xudong and Anda area there are thicker dark source rocks distributed, where are predicted to be favorable exploration zone for deep natural gases in Xujiaweizi rift depression. Yingshan-Shuangchun rift depression, Gulong rift depression and Lingdian-Changjiaweizi rift depression also have gases generation conditions, will be next favorable exploration zone in the future.
引文
[1] 朱德丰, 任延广, 杨永斌, 等. 松辽盆地北部深层天然气勘探突破方向研究[R]. 大庆:大庆油田有限责任公司勘探开发研究院, 2003. 4~16.
    [2] 高瑞祺, 蔡希源. 松辽盆地油气田形成条件与分布规律[M]. 北京: 石油工业出版社, 1997. 107~131.
    [3] 刘德来, 王永兴, 薛良清, 等. 油气圈闭勘探(译)[M]. 北京: 石油工业出版社, 2002. 201~219.
    [4] 王涛. 中国天然气地质理论基础与实践[M]. 北京: 石油工业出版社, 1997. 118~124.
    [5] 高岗, 刚文哲, 王飞宇, 等. 碳酸盐烃源岩有机质丰度下限的数学模型[J]. 江汉石油学院学报, 1997, 19(1): 29~33.
    [6] 傅家谟, 刘德汉. 碳酸盐岩有机质热演化特征及油气评价[J]. 石油学报, 1982, (1): 1~9.
    [7] 刘宝泉, 梁狄刚, 方杰. 华北地区中上元古界、下古生界碳酸盐岩有机质成熟度与找油远景[J]. 地球化学, 1985, (2): 150~162.
    [8] 郝石生. 对碳酸盐岩有机质丰度及其演化特征的讨论[J]. 石油实验地质, 1984, 6(1): 67~71.
    [9] 卢双舫, 王振平, 冯亚丽, 等. 塔里木盆地泥岩气源岩有效性判别标准[J]. 石油与天然气地质, 1999, 20(4): 299~301.
    [10] L B 马贡, W G 道. 含油气系统——从烃源岩到圈闭[M]. 北京: 石油工业出版社, 1998. 84~103.
    [11] Tissot B, Welte D H. 徐永元, 徐廉, 郝石生, 等. 石油形成与分布(译)[M]. 北京: 石油工业出版社, 1989:25~78.
    [12] 黄第藩, 李晋超, 顾信章, 等. 陆相有机质的演化和成烃机理[M]. 北京: 石油工业出版社, 1984:30~80.
    [13] 傅家谟, 刘德汉, 盛国英. 煤成烃地球化学[M]. 北京: 科学出版社, 1990:12~110.
    [14] Lewan M D. Generation of oil-like pyrolyzates from organic-rich shale[J]. Science, 1993, 203: 879~899.
    [15] 高岗. 油气生成模拟方法及其石油地质意义[J]. 天然气地球科学, 2000, 11(2): 25~29.
    [16] 王振平, 付晓泰, 卢双舫, 等. 原油裂解成气模拟实验!产物特征及其意义[J]. 天然气工业, 2001, 21(3): 12~14.
    [17] 卢双舫,申家年,孙永红. 松辽盆地齐家-古龙凹陷凝析油形成条件及资源潜力研究(内部报告)[R].大庆: 大庆油田有限责任公司勘探开发研究院, 2003. 101~110.
    [18] 田春志, 卢双舫, 李启明, 等. 塔里木盆地原油高压条件下裂解成气的化学动力学模型及其意义[J]. 沉积学报, 2002, 20(3): 487~492.
    [19] 傅家谟, 秦匡宗. 干酪根地球化学[M]. 广州: 广东科技出版社, 1995. 253~256.
    [20] 戴金星 , 裴锡古 , 戚厚发 . 中国天然气地质学 [M]. 北京 : 石油工业出版社 ,1992:17~20.
    [21] 戴金星, 钟宁宁, 刘德汉, 等. 中国煤成大中型气田地质基础和主控因素[M]. 北京: 石油工业出版社, 2000:1~5.
    [22] 陈沁, 雷绪梅, 张远成. 有机质加压慢速程序升温条件下的生气模拟实验[J]. 江汉石油学院学报, 1997, 19(4): 27~32.
    [23] 张子枢. 我国氦资源及其开发与保护[J]. 资源开发与市场, 1987, 3(4): 28~31.
    [24] 徐永昌, 沈平, 李玉成. 中国最古老的气藏——四川威远震旦纪气藏[J]. 沉积学报, 1989, 7(4): 3~14.
    [25] Stahl W J. Compositional changes and 13C/12C fractionations during the degradation of hydrocarbons by bacteria[J]. Geochimica et Cosmochimica Acta,44(3):1903~1907.
    [26] 戴金星, 戚厚发, 王少昌, 等. 我国煤系的气油地球化学特征、煤成气藏形成条件及资源评价[M]. 北京: 石油工业出版社, 2001:25~29.
    [27] 王涛. 中国天然气地质理论基础也实践[M]. 北京: 石油工业出版社, 1997:26~78.
    [28] 石昕, 孙冬敏, 秦胜飞, 等. 煤成大、中型气田天然气的碳同位素特征[J]. 石油实验地质, 2000, 22(1): 16~21.
    [29] Fuex A N. The use of stable carbon isotope in hydrocarbon exploration[J]. Joural of geochemiscal Exploration, 1977, 15(2): 155~188.
    [30] Stahl W J, Carey B D. Source-rock identification by isotope analyses of natural gases from fielde in the Verde and Gclaware, Wext Texas[J]. Chemical Geology, 1975, 16(4): 257~267.
    [31] 戴金星, 夏新宇, 秦胜飞, 等. 中国有机烷烃气碳同位素系列倒转的成因[J]. 石油与天然气地质, 2003, 24(1): 1~6.
    [32] 秦胜飞. 塔里木盆地库车坳陷异常天然气的成因[J]. 勘探家, 1999, 4(3): 21~23.
    [33] Christopher Iaughrey, Fred Balda Baldassare. Geochemistry and Origin of Some Natural Gases in the Plateau Province, Central Appalachian Basin, Pennsylvania and Onio[J]. AAPG Bulletin, 1998, 182(2): 317~335.
    [34] 冯子辉, 李松花, 赵秦岭, 等. 松辽盆地天然气碳同位素与油气生成运移定量研究(内部报告)[R]. 大庆: 大庆油田有限责任公司勘探开发研究院, 1991.
    [35] 李剑. 中国重点含气盆地气源特征与资源丰度[M]. 北京: 中国矿业大学出版社, 2000:10~11.
    [36] HIL KERTAW,DOUTHITT C B. Isotope ratio monitoring gas chromatography/mass spectrometry of D/H by high temperature conversion isotope ratio mass spectrometry[J]. Rapid Communication in Mass Spectrometry, 1999, 13: 1226~1230.
    [37] X IE S, Nott C J, A vsejs L A. Palaeoclimate records in compound-specific and values of a lipid biomarker in ombrotrophic peat[J]. Organic Geochemistry, 2000, 31: 1053~1057.
    [38] MAO WEN LI, YONGSONG HUANG, MARK OBERMAJER, et al. Hydrogen isotopic compositions of individual alanes as a new approach to petroleum correlation: case studies from the W estern Canada Sedimentary Basin[J]. Organic Geochemistry, 2002, 32: 1387~1399.
    [39] WANG YI, HUANG YONGSONG. Hydrogen isotope fractionation of low molecular weight n-alkanes during progressive vaporization[J]. Organic Geochemistry, 2001, 32: 991~998.
    [40] YANG HONG, HUANG YONGSONG. Preservation of lipid hydrogen isotope ratios in Miocene lacustrine sediments and plant fossils at Clarkia, northern Idaho, USA[J]. Organic Geochemistry, 2003, 34: 413~423.
    [41] SCHOELLM. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J]. Geochim Cosmochim Acta, 1980, 44: 649~661.
    [42] 王晓锋, 刘文汇, 刘全有, 等. 有机体及其沉积演化产物的氢同位素地球化学研究进展天然气地球科学[J]. 2004, 15(3): 311~316.
    [43] 王万春. 天然气、原油、干酪根的氢同位素地球化学特征[J]. 沉积学报, 1996, 14(增刊): 131~135.
    [44] 戴金星. 天然气地质和地球化学论文集[C]. 北京: 石油工业出版社, 1998:204~213.
    [45] 刚文哲, 高岗, 郝石生. 论乙烷碳同位素在天然气成因类型研究中的应用[J]. 石油实验地质, 1997, 19(2): 164~167.
    [46] 宋岩, 戴金星, 李先奇, 等. 中国大中型气田主要地球化学和地质特征[J]. 石油学报, 1998, 19(1): 1~5.
    [47] 胡惕麟, 戈葆雄. 不同类型天然气的判别模板及其应用[A]. 钱志浩, 曹寅, 王从风, 等. 石油地质实验测试技术新进展[C]. 北京: 地质出版社, 1994:178~185.
    [48] 刘光祥, 蒋启贵, 潘文蕾, 等. 干气中浓缩轻烃分析及应用[J]. 石油实验地质, 1994, 2003, 25(增刊): 585~589.
    [49] 钱志浩, 张渠. 油气源岩中轻烃分析方法[A]. 钱志浩, 曹寅, 王从风, 等. 石油地质实验测试技术新进展[C]. 北京: 地质出版社, 1994:5~16.
    [50] 胡惕麟, 戈葆雄, 张义纲, 等. 源岩吸附烃和天然气轻烃指纹参数的开发和应用[J]. 石油实验地质, 1990, 12(4): 375~394.
    [51] 朱岳年, 吴新年. 二氧化碳地质研究[M]. 兰州: 兰州大学出版社, 1994:1~14.
    [52] 戴金星, 宋岩, 戴春森, 等. 中国东部无机成因气及其气藏形成条件[M]. 北京: 科学出版社, 1995:12~20.
    [53] 戴春森, 宋岩, 戴金星. 中国两类无机成因 CO2 组合、脱气模型及构造专属性[J]. 石油勘探与开发, 1996, 23(2): 1~4.
    [54] 陶士振, 刘德良, 杨晓勇, 等. 无机成因天然气藏形成条件分析[J]. 天然气地球科学, 2000, 11(1): 10~18.
    [55] 戴春森, 宋岩, 孙岩, 等. 中国东部二氧化碳气藏成因特点及分布规律[J]. 中国科学(B 辑), 1995, 25(7): 764~771.
    [56] 梁崇刚. 莺-琼盆地天然气聚集区带特征及寻找大中型气田的意义(内部报告), 1994:5~36.
    [57] 戴金星, 戴春森, 宋岩, 等. 中国一些地区温泉中天然气的地球化学特征及碳、氦同位素组成[J]. 中国科学(B 辑), 1994, 24(4): 426~433.
    [58] 宋岩, 戴金星. 甘孜盆地热气泉天然气特征及其成因[A]. 中国科学院兰州地质研究所研究年报(1990—1992)[C]. 兰州: 甘肃科学技术出版社, 1993. 54~63.
    [59] 戴金星, 戴春森, 宋岩, 等. 中国东部无机成因的二氧化碳气藏及其特征[J]. 中国海上油气(地质), 1994, 8(4): 215~222.
    [60] 宋岩. 松辽盆地万金塔气藏天然气成因[J]. 天然气工业, 1991, 11(1): 17~21.
    [61] 戴金星, 文亨范, 宋岩. 五大连池地幔成因的天然气[J]. 石油实验地质, 1992, 14(2): 200~203.
    [62] 上官志冠, 郑雅琴, 董继川. 长白山天池火山地热区逸出气休的物质来源[J]. 中国科学(D 辑), 1997, 27(4): 318~324.
    [63] 戴金星. 云南腾冲县硫磺塘天然气碳同位素组成特征和成因[J]. 科学通报, 1988, 33(15): 168~170.
    [64] 上官志冠, 白春华, 孙明良. 腾冲热海地区现代幔源岩浆气体释放特征[J]. 中国科学, 2000, 30(4): 407~414.
    [65] 戴金星, 曾观运, 陈学亮. 广东平远鹧鸪窿二氧化碳气苗[J]. 石油与天然气地质, 1990, 11(2): 205~208.
    [66] 王新洲, 宋一涛, 王学军. 石油成因与排油物理模拟——方法、机理及应用[M]. 北京: 石油大学出版社, 1996:136~44.
    [67] Satio,K,Classification and generation of terrestrial rare gases[A],In Alexander,E. C. Jr. and Ozima,M. ,eds. ,Terrestrial rare gases[C]. Center for Academic Publications,Japan,Tokyo. 1978.30~37.
    [68] Kaneoka I, Takaoka N. Noble gas state in the Earth’s interior-some constains on the present state[J]. Chemical Geology (Isotope Geosicknece Section), 1985, 53: 75~95.
    [69] 徐永昌, 沈平, 陶明信, 等. 中国含油气盆地天然气中氦同位素分布[J]. 科学通报, 1994, 39(16): 1505~1508.
    [70] 徐永昌, 沈平, 刘文汇, 等. 天然气中稀有气体地球化学[M]. 北京: 科学出版社, 1998. 55~58.
    [71] Stahl J, Carey Jr B. Source rock identification by isotope analyses of natural gases from fields in the Val Varde Delaware Basins,West Texas[J]. Chemical Geology, 1975, 16: 257~267.
    [72] 徐永昌. 天然气成因理论及应用[M]. 北京: 科学出版社, 1994.
    [73] 刘文汇, 张殿伟, 王晓锋, 等. 天然气气-源对比的地球化学研究[J]. 沉积学报, 2004, 22(增刊): 27~32.
    [74] 钱志浩. 热蒸展法测定轻烃[J]. 石油实验地质, 1982, 4(4): 280.
    [75] 蒋启贵, 熊良华, 唐少凡, 等. 酸解烃的 Al2O3 填充毛细柱分离分析技术[J]. 石油与天然气地质, 1996, 17(2): 167~168.
    [76] 詹智玉. C1~C9 烃类指纹分析[A]. 钱志浩, 曹寅, 王从风, 等. 石油地质实验测试技术新进展[C]. 北京: 地质出版社, 1994: 24~31.
    [77] 张居和, 付洪. 致密砂岩脱附烃气色谱分析及有关问题探讨[J]. 石油勘探与开发,1994, 21(4): 19~22.
    [78] 蒋启贵, 张志荣, 宋晓莹, 等. 轻烃指纹分析及其应用[J]. 地质科技情报, 2005, 24(1): 61~64.
    [79] Gorden J, Mae Donald. 韩跃文译, 张子枢校. 天然气的多种成因[J]. 天然气勘探与开发, 1988, (4): 1~14.
    [80] 徐永昌, 傅家谟, 郑建京. 天然气成因及大中型气田形成的地学基础[M]. 北京: 科学出版社, 2000.
    [81] 普拉索洛夫, E,M,TIO, 别斯涅特洛娃. 史斗译. 根据同位素资料识别混合型天然气[J]. 天然气地球科学, 1993, 4(6): 63~64.
    [82] 戴金星. 试论不同成因混合气藏及其控制因素[J]. 石油实验地质, 1986, 8(4): 335~343.
    [83] 金强, 程付启, 刘文汇. 混源气藏及混源比例研究[J]. 天然气工业, 2004, 24(2): 21~24.
    [84] Jenden P D,Newell K D,Kaplan I R et al. Composition and stable-isotope geochemistry of natural gases from Kanas Mid-continent,U. S. A. [J]. Chemical Geology, 1978, 71: 117~147.
    [85] 早稻田周, 重川守. 牟驱译. 日本油气田中天然气成因的地球化学研究[J]. 天然气勘探与开发, 1989, (2): 1~8.
    [86] Faber E, Stahl W. Geochemical surface exploration for hydrocarbons in the North Sea[J]. AAPG Bulletin, 1984, 68: 363~368.
    [87] Berner U, Faber E. Maturity related mixing model for methane,ethane and propane,based on carbon isotopes[J]. Advances in OrganicGeochemistry, 1988, 13: 67~72.
    [88] 高先志. 利用甲烷碳同位素研究混合气的混合体积[J]. 沉积学报, 1997, 15(2): 63~65.
    [89] 王顺玉, 戴鸿鸣, 王海清. 混源天然气定量计算方法——以川西地区白马庙气田为例[J]. 天然气地球科学, 2003, 14(5): 351~353.
    [90] 胡惕麟, 戈葆雄, 张义纲, 等. 源岩吸附烃和天然气重烃指纹参数的开发和应用[J]. 石油实验地质, 1990, 12(4): 375~394.
    [91] 钱志浩, 张渠. 油、气、源岩中轻烃分析方法[A]. 钱志浩, 曹寅, 王从风, 等. 石油地质实验测试技术新进展[C]. 北京: 地质出版社, 1994: 5~16.
    [92] 刘光祥, 蒋启贵, 潘文蕾, 等. 干气中浓缩轻分析及应用——以川东北、川东区天然气气/源对比研究为例[A]. 油气地球化学研究论文集(内部专集)[C]. 无锡: 无锡石油地质研究所, 2005.
    [93] 肖贤明, 刘祖发, 刘德汉. 应用储层流体包裹体信息研究天然气气藏的成藏时间[J]. 科学通报, 2002, 47(12): 957~960.
    [94] 窦立荣. 油气藏地质学概论[M]. 石油工业出版社, 2001.
    [95] 李荣西, 金奎励, 周雯雯, 等. 渤中坳陷油气包裹体与油气成藏[J]. 沉积学报, 2001, 19(4): 605~610.
    [96] 高先志, 陈发景. 应用流体包裹体研究油气成藏期次——以柴达木盆地南八仙油田第三系储层为例[J]. 地学前缘, 2000, 7(4): 548~554.
    [97] 刘德良, 陶士振, 张宝民. 包裹体在确定成藏年代中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 16~19.
    [98] 李贤庆, 胡国艺, 李剑, 等. 鄂尔多斯盆地中部奥陶系碳酸盐岩储层流体包裹体特征及对天然气成藏的意义[J]. 天然气地球科学, 2004, 15(2): 120~125.
    [99] 冯子辉, 任延广, 王成, 等. 松辽盆地深层火山岩储层包裹体及天然气成藏期研究[J]. 天然气地球科学, 2003, 14(6): 436~442.
    [100] Karlsen D A, Nedkvitne T, Larter S R, et al. Hydrocarbon composition of authogenic inclusions application to elucidation of petroleum reservoir filling history, Geochim Cosmochim Acta[J]. 1993, 57: 3641~3659.
    [101] Nedkvitne T, Karlsen D A, Bjorlykke K, et al. Relationship between reserveoir diagenetic evolution and petroleum emplacement in the Ula Field,Noth Sea[J]. Mar Petrol Geol, 1993, 10: 255~270.
    [102] Tissot B, Welte D H. Petroleum Formation and Occurrence (2nd)[M]. Berlin: pringer-Verlag, 1984.
    [103] 卢双舫, 付广, 王朋岩, 等. 天然气富集主控因素的定量研究[M]. 北京: 石油工业出版社, 2002.
    [104] Schoell M. Genetic characterization of natural gases[J]. AAPG Bulletin, 1983, 67(12): 2225~2238.
    [105] Clayton C. Carbon isotope fractionation during natural gas generation from kerogen[J]. Marine and Petroleum Geology, 1991, 8(2): 232~240.
    [106] Bener U, Faber E, Stahl W. Mathematical simulation of the carbon isotopic fractionation between huminitic coals and related methane[J]. Chemical Geology, 1992, 94(4): 315~319.
    [107] Bener U, Faber E, Scheeder G, et al. Primary cracking of algal and landplant kerogens: Kinetic models of isotope variations in methane, ethane and propane[J]. Chemical Geology, 1995, 126(3~4): 233~245.
    [108] Berner U, Faber E. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter,based on dry,open-system pyrolysis[J]. Org. Geochem, 1996, 24(10~11): 947~955.
    [109] Rooney M A, Claypool G E, Chung H M. Modeling thermogenic gas generaion using carbon isotope ratios of natural gas hydrocarbons[J]. Chemical Geology, 1995, 126(3~4): 219~232.
    [110] Lorant F, Prinzhofer A, Behar F, et al. Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases[J]. Chemical Geology, 1998, 147(3~4): 249~264.
    [111] Lorant F, Behar F, Vandenbroucke M. Methane generation from methylated aromatics: Kinetic study and carbon isotope modeling[J]. Energy & Fuels, 2000, 14(6): 1143~1155.
    [112] Cramer B, Krooss B M, Littke R. Modelling isotope fractionation during primary cracking of natural gas: a reaction kinetic approach[J]. Chemical Geology, 1998, 149(3~4): 235~250.
    [113] Cramer B, Faber E, Gerling P, et al. Reaction kinetics of stable carbon isotopes in naturalgas-Insights from dry, open system pyrolysis experiments[J]. Energy & Fuels, 2001, 15(3): 517~532.
    [114] Tang Y, Perry J K, Jenden P D, et al. Mathematical modeling of stable carbon isotope ratios in natural gases[J]. Geochimical et Cosmochimica, 2000, 64(15): 2673~2687.
    [115] Gaschnitz R, Krooss B M, Gerling P, et al. On-line pyrolysis-GC-IRMS: isotope fractionation of thermally generated gases from coals[J]. Fuel, 2001, 80(15): 2139~2153.
    [116] 帅燕华, 邹艳荣, 彭平安. 天然气甲烷碳同位素动力学模型与地质应用新进展[J]. 地球科学进展, 2003, 18(3): 405~411.
    [117] Middleton D, Parnell J, Carey P, et al. Reconstruction of fluid migration history Northwest Ireland using fluid inclusion studies[J]. Journal of Geochemical Exploration, 2000, 69~70: 633~677.
    [118] Kelly J, Parnell J, Chen H G. Application of fluid inclusion to studies of fractured sandstone reservoirs[J]. Journal of Geochemical Exploration, 2000, 69: 705~709.
    [119] Haszeldine R S, Samson I M, Cornfort C. Dating diagenesis in a petroleum basin, a new fluid inclusion method[J]. Nature, 1984, 307: 354~357.
    [120] Haszeldine R S, Samson I M, Cornfort C. Quartz diagenesis and convective fluid movement, Beatrice Oilfield, North Sea[J]. Clay Miner, 1984, 19: 391~402.
    [121] Horsfield B, McLimans R K. Geothermometry and geochemistry of aqueous and oil- bearing fluid inclusions from Fateh Field, Dubai[J]. Org. Geochem, 1984, 6: 733~740.
    [122] Burruss R, Cercone K R, Harris P M. Timing of hydrocarbon migration:evidenced from fluid inclusions in calcite cements, tectonics and burial history[A]. In: Schneidermann N, Harris P M, eds. Carbonate cements[C]. Tulsa:Soc Econ Paleontol Mineral, 1985, 277~289.
    [123] G-P Bai, P J Hamilton, P J Eadington et al. Fluid flow histories and diagenesis in Permo-Triassic sediments of the Sydney basin, SE Australia-isotope and fluid inclusion constraints [A]. 油气藏形成与勘探-石油大学科研成果文集[C]. 北京: 石油工业出版社, 2003: 129~146.
    [124] Wang Tieguan, Wangfeiyu, Luhong. Oil source and entrapment epoch of the Ordoviciian oil reservoir in the Kongxi burial-Hill zone, Huanghua depression, North china[A]. 油气藏形成与勘探-石油大学科研成果文集[C]. 北京: 石油工业出版社, 2003: 173~184.
    [125] Zhang Yousheng, Wang Tieguan, Wang Feiyu, et al. Oil source and entrapment epoch of the Mesozoic oil reservoir in the Kongxi burial-Hill zone of the Huanghua depression[A]. 油气藏形成与勘探-石油大学科研成果文集[C]. 北京: 石油工业出版社, 2003: 185~196.
    [126] Mclimans R. The application of fluid inclusions to migration of oil and diagenesis in petroleum reservoirs[J]. Applied Geochemistry, 1987, 2(5~6): 585~603.
    [127] Murray R C. Hydrocarbon fluid inclusion in quartz[J]. AAPG Bulletin, 1957, 41(6): 950~952.
    [128] Tilley B J, Nesbitt B E, Longstaffe F J. Thermal history of Alberta deep basin: comparative studey of fluid inclusion and vitrinite reflectance data[J]. AAPG Bulletin, 1989, 73(10): 1206~1222.
    [129] Hall D L, Zsterner S M, Bodnar R J. Freezing point depression of NaCl-KCl-H2O solutions[J]. Econ Geol, 1988, 83: 197~202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700