BT20合金氢处理工艺及热变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对含氢BT20合金的高温热压缩行为及变形机理进行了研究。测定了渗氢时间和氢含量之间的关系,使用Gleeble-1500D热模拟试验机得到了含氢BT20合金热压缩真应力-真应变曲线,讨论了不同工艺参数不同变形条件下真应力-真应变曲线的变化规律。利用金相显微镜、透射电子显微镜(TEM)和高分辨电子显微镜(HREM)观察了压缩变形前后的微观组织,计算了不同温度下的变形激活能,讨论了热变形行为及变形机理。对真空除氢工艺进行了初步探索。
     渗氢结果表明,氢气流量为990ml/min,分压为0.1MPa,800℃下渗氢,渗氢时间和氢含量之间的关系为:CH(t)=1.2-1.2exp(-t/120),固、气界面的扩散通量为:J=3ρ[exp(-t/120)]/200。TEM观察结果表明,达到一定的氢浓度后生成氢化物,直到氢质量百分含量为0.76%室温得到的依然是面心立方的δ氢化物,氢化物特征是针状浮凸,具有惯习面和中脊。
     含氢BT20合金热压缩变形的流变应力曲线随着氢含量的增加先下移再升高。适当的氢含量可以使流变应力峰值达到最小值。应变速率会影响最低流变应力峰值对应的氢含量。
     计算得到氢含量为0.47%的BT20合金600℃/8.3×10-4s-1变形激活能为90KJ·mol-1,比原始材料600℃的变形激活能降低了50KJ·mol-1。原始材料800℃的变形激活能为390KJ·mol-1。氢含量为0.47%的BT20合金800℃/8.3×10-4s-1变形激活能为140KJ·mol-1,变形方式发生了变化。TEM和HREM观察结果表明,600℃变形出现层错和孪晶。800℃高应变速率时变形发生再结晶。
     氢含量为0.47%的BT20合金变形前后的除氢结果表明,渗氢后适当的变形速率使α相晶粒变形时,除氢获得的晶粒比较细小。
The thermo-compressive behavior and deformation mechanism of BT20 alloy with hydrogen at high temperature were studied in this paper. Relation of hydrided time and hydrogen content was mensurated. Ture stress-ture strain curve of thermo-compressive deformation of BT20 alloy with hydrogen was obstained by Gleeble-1500D and different process parameter effect on it was discussed. Metallomicroscope (MS), transmission electron microscope (TEM) and high resolution electron microscope (HREM) were used to observe microstructure before and after thermo-compressive deformation. Activation energy of deformation was calculated.Deformation behavior and mechanism was discussed by activation energy of deformation and microstructure.Dehydrided process in vacuum was investigated.
     The hydrided results show relation of hydrided time and hydrogen content meets CH(t)=1.2-1.2exp(-t/120), diffusion flux of solid and gas interface J= 3ρ[exp(-t/120)]/200 with hydrogen partial pressure 0.1MPa and hydrogen flux 990ml?min-1. TEM shows only hydrides were generated until hydrogen content up to 0.76% and hydrides have features as follows: needle convex, habit plane, median ridge, bit vector.
     Ture stress-ture strain curve of thermo-compressive deformation of BT20 alloy with hydrogen first descends and then rises integrally as hydrogen content increases and peak of flow stress occur in it. Appropriate hydrogen content can reduce peak of flow stress up to minimal value. Strain rate effect on hydrogen content corresponding to minimal value of peak of flow stress.
     Activation energy of deformation of BT20 alloy with 0.47% hydrogen content and strain rate 8.3×10-4s-1 is 90KJ·mol-1. Hydrogen reduces Activation energy of deformation in 600℃by 50 KJ·mol-1. Activation energy of deformation of BT20 alloy in 800℃is 390KJ·mol-1, Activation energy of deformation of BT20 alloy with 0.47% hydrogen content in 800℃and strain rate 8.3×10-4s-1 is 140KJ·mol-1. MS, TEM and HREM show fault ribbon and twin after deformation.recrystallization occurs in high strain rate in 800℃.
     Dehydrided result of before and after deformation of BT20 alloy with 0.47%
引文
1 莫畏, 邓国珠, 罗方承.钛冶金.冶金工业出版社.1998,6
    2 丁文汇, 王渠东, 刘满平.轻合金技术新进展. 2002,2
    3 孙东立, 韩潇, 王清, 吴涛, 李中华.氢处理对钛合金组织性能的影响及其机理.宇航工艺材料.2005,3:11~16
    4 张满, 南海, 黄东, 曹国平.钛合金铸件的热等静压和氢处理工艺研究.中国铸造装备与技术. 2002,5:13
    5 T. K. Kim, J. H. Baek, et al. Characteristics of Hydriding and Hydrogen Embrittlement of the Ti–Al–Zr Alloy. Annals of Nuclear Energy. 2002,(29) :2041~2053
    6 W. J. Evans, M. R. Bache.Hydrogen and Fatigue Behaviour in a near Alpha Titanium Alloy. Scripta Metallurgica et Materialia.1995,7(32):1019~1024
    7 阿 .阿 .依里因 , 阿 .姆 .马莫诺夫 .铸造钛合金的热氢处理 .材料工程 . 1992,(1):14~16
    8 M. A. Murzinova, M. I. Mazurski, G. A. Salishchev, D. D. Afonichev.Application of Reversible Hydrogen Alloying for Formation of Submicrocrystalline Structure in (α + β) Titanium Alloys. International Journal of Hydrogen Energy. 1997,22(2/3):201~204
    9 J. I. Qazi, O. N. Senkov, J. Rahim, F. H. (Sam) Froes. Kinetics of Martensite Decomposition in Ti-6Al-4V-xH Alloys. Materials Science and Engineering. 2003. A359:137~149
    10 H. Yoshimura, K. Kimura, M. Hayashi, et al. Ultra-Fine Equiaxed Grain Refinement and Improvement of Mechanical Properties of (α+β) Type Titanium Alloys by Hydrogenation, Hot Working, Heat Treatment. Materials Transactions, JIM. 1994,35(4):266~272
    11 H. Yoshimura, J. Nakahigashi.Ultra-Fine-Grain Refinement and Superplasticity of Titanium Alloys Obtained Through Protium Treatment. International Journal of Hydrogen Energy. 2002,27:769~774
    12 宫波, 赖祖涵, 新家光雄, 小林俊朗. 通过氢处理改善α+β型钛合金的拉伸性能. 金属学报. 1992,28(10):A431~A434
    13 M. A. Murzinova, G. A. Salishchev, D. D. Afonichev. Formation ofNanocrystalline Structure in Two-Phase Titanium Alloy by Combination of Thermohydrogen Processing with Hot Working. International Journal of Hydrogen Energy. 2002,(27):775~782
    14 丁桦, 路贵民, 张彩碚等. 氢处理对Ti3Al金属间化合物组织和性能的影响. 材料科学与工艺. 1998,6(4):55~63
    15 张勇, 张少卿, 陶春虎. 氢化 Ti-25Al-10Nb-3V-1Mo 铸态合金的热压缩行为及其显微组织的影响. 金属学报. 1996,6(1):235~240
    16 王天生, 廖波, 杨柯等.氢对亚临界固溶Ti3Al基合金时效组织的影响. 兵器材料科学与工程. 1995,18(2):58~61
    17 Y. X. Chen, X. J. Wan. The Kinetics of Hydrogen Diffusion in Ti3Al-Based Alloy. Journal of Shanghai University. 1997,1(3):249~251
    18 A. Takaski, Y. Furuya, K. Ojima, Y. Taneda. Hydrogen Solubility of Two-Phase (Ti3Al+TiAl) Titanium Aluminides. Scripta Metallurgica et Materialia. 1995,32(11):1759~1764
    19 A. Takassaki. High-Pressure Hydrogen Charging of TiAl-Based Titanium Aluminides. Scripta Materialia. 1998,38(4):687~692
    20 A. Takasaki, Y. Furuya, Y. Taneda. Hydrogen Uptake in Titanium Aluminides in High Pressure Hydrogen. Materials Science and Engineering A. 1997, 239-240:265~270
    21 林莺莺,潘洪泗,李淼泉.钛合金的氢处理技术及其对超塑性的影响.材料工程.2005,(5):60~65
    22 张勇.钛合金及Ti3Al基合金的氢处理研究[D].北京:北京航空材料研究所.1996
    23 赵树萍.钛合金及表面处理.哈尔滨:哈尔滨工业大学出版社.2003
    24 侯红亮, 李志强, 王亚军, 关桥. 钛合金热氢处理技术及其应用前景. 中国有色金属学报. 2003,13(3):533~549
    25 A. R. Troiano, The Role of Hydrogen and Other Interstitial in the Mechanical Behavior of Metals, Trans. ASM.1960:54
    26 张少卿. 氢在钛合金热加工中的作用. 材料工程. 1992, (2):24~29
    27 D. F. Teter, I. M. Robertson, H. K. Birnbaum. The Effects of Hydrogen on the Deformation and Fracture of β Titanium. Acta Mater. 2001,(49):4313~4323
    28 曹兴民, 奚正平, 赵永庆.TC21合金高温渗氢组织变化研究.热加工工艺. 2005, (1):29-31
    29 H. J. Jonas, C. M. Sellars, J. W. McG. Strength and Structure under Hot Working Conditions. International of Material Reviews.1969,14(130):1~24
    30 魏寿庸, 何瑜, 祝瀑. BT20钛合金的工艺特性及锻造与模锻工艺.钛工业进展.2000,3:11~16
    31 洪 权 , 张 振 祺 .Ti-6Al-2Zr-1Mo-1V 合 金 的 热 变 形 行 为 . 航 空 材 料 学报.2001,21(1): 9~11
    32 洪权, 张振祺, 赵永庆, 曲恒磊, 魏寿庸.Ti-6Al-2Zr-1Mo-1V合金的热压变形特性及塑性流动方程. 广东有色金属学报.2001,11(2):129~133
    33 舒滢, 曾卫东, 周军, 周义刚, 周廉. BT20合金高温变形行为的研究.材料科学与工艺.2005,13(2):66~68
    34 W. C. XU, D. B. SHAN, Y. LU, C. F. LI.Research on the Characteristics of Hot Deformation in BT20 Titanium Alloy and Its Optimum Spinning Temperature Range. J. Mater. Sci. Technol. 2005, 21(6):807~812
    35 晶体的高温塑性变形.[法]J.P.Poirier. 关德林译.大连理工出版社.1989,11
    36 曾卫东, 胡鲜红, 俞汉清.Ti-17合金高温变形机理研究.材料工程,1996 (9) :27~30.
    37 Y. LIU, T. N. BAKER. Deformation Characteristics of IMI685 Titanium Alloy under β Isothermal Forging Condition.Materials Science and Engineering, 1995, A197: 125~131.
    38 D. G. ROBERTSON, H. B. MCSHANE. Analysis of High Temperature Flow Stress of Titanium Alloys IMI550 and Ti-10V-2Fe-3Al during Isothermal Forging. Materials Science and Technology.1998, 14:339~345.
    39 C. HUANG, T. A. DEAN. Flow Behavior and Microstructure Development of Forged Ti-25Al-10Nb-3V-1Mo (super α2).Materials Science and Engineering. 1995,A191:39~47
    40 D. Eliezer, N. Eliaz, O. N. Senkov, F. H. Froes. Positive Effects of Hydrogen in Metals. Materials Science and Engineering. 2000,A280:220~224
    41 O. N. Senkov, F. H. Froes. Thermohydrogen Processing of Titanium Alloys. International Journal of Hydrogen Energy. 1999, (24):565~567
    42 D. H. Kohn, P. Ducheyne. Tensile and Fatigue Strength of Hydrogen-Treated Ti-6Al-4V Alloy. Journal of Materials Science. 1991,(26):328~334
    43 A. A. Ilyin, V. K. Nosov, M. Y. Kollerov, et al.Hydrogen Technology of Semiproducts Finished Goods Production from High Strength TitaniumAlloys.Advances in the Science and Technoloy of Titanium Alloy Processing.1997:517~523

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700