冶金法去除多晶硅中B杂质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机的日益严重使得人们迫切地加大对新能源的开发,太阳能作为新能源的一种,以其广泛的分布、使用安全可靠、无污染等优势,已经得到了各国的广泛重视和应用。光伏发电作为太阳能应用领域的主要技术形式,是人们研究和探索的重中之重。美日、德等发达国家先后启动了各自的光伏发展计划,我国也于2009年颁布了《关于实施金太阳示范工程的通知》,大力发展太阳能发电工程,至2011年底,装机总量从300MW增加到了3GW。
     然而用作太阳能电池最主要原料的高纯多晶硅材料却存在严重的供料不足,无法填补太阳能发电技术飞速发展带来原料需求的缺口。冶金法作为一种有效的低成本、低能耗、低污染的制备高纯多晶硅的方法,其最大的特点在于有针对性的对多晶硅中的金属杂质、磷(P)杂质和硼(B)杂质进行有效去除,最终将多晶硅纯度提升到适用于太阳电池发电要求的6N水平。
     冶金法提纯多晶硅技术发展的十几年中,许多新技术被不断提出。对于金属杂质和P杂质的去除已经取得了突破性进展,各自具备了稳定的工艺路线。而相对于这两类杂质,B杂质的去除还不尽如人意,存在较大的改进空间。对于冶金法去除多晶硅中B杂质的研究非常多,但能达到工业化生产要求的方法还很欠缺,急需寻找一种稳定可靠的去除B杂质的方法,使冶金法走上大规模生产的道路。
     本论文主要从硅及硅中B杂质的特性出发,以B杂质的氧化去除为基础,从氧化酸洗和造渣精炼两种方法出发,以热力学和反应动力学为依据,分别研究影响B杂质氧化去除的因素,其中造渣精炼部分以更加接近工业化生产的模式进行大气下造渣精炼的中试实验为主,希望为最终工艺路线的确定提供更可靠的数据,得到如下结论:
     1)在900-1200℃条件下,对粒度为17-65gm范围内的硅粉进行热氧化处理1.10h,可以有效去除多晶硅中的B杂质。温度越高,热处理时间越长,硅粉粒度越小越有利于B杂质的去除。水汽氧化条件下,粉体硅表面氧化膜生长速率快于干氧氧化。大气条件下,对硅表面进行热处理,B杂质会在Si与生成的SiO2层之问由于分凝效应而产生再分配行为,P型区内B杂质向Si02层中扩散,导致施主杂质和受主杂质浓度的接近,体现在电阻率上就会明显的增高。
     2)真空条件下,对于Na2O-CaO-SiO2系,分配系数(LB)在碱度为0.8时最低,碱度的增大或减小都会使提纯效果变好,碱度为1.21时LB值最大,为5.81;Na2O作为碱性氧化物,其加入可以增大碱度范围;硅渣比会直接影响到硅渣的分离效果和除B效率硅渣比越大分离效果越好,当硅渣比小于2时无法实现硅渣完全分离;定向凝固过程的加入不仅使硅渣得到更好的分离效果,而且同时也实现了对于金属杂质的有效去除;B杂质在最靠近硅渣界面处去除效果最好,随着与界面距离的增大,LB值逐渐降低,靠近坩埚底部最小;通过二次造渣可有效改善硅渣的分离效果,得到平滑的硅渣界面,使提纯后的硅纯度更高。
     3)大气条件下,对于CaF2-Al_2O_3-CaO-SiO_2系,光学碱度在0.597附近时除B效果最佳,去除率达到82.8%。光学碱度的增大或减小都会使除B效果降低,这是因为影响LB的因素之间由于碱度的调整而相互制约,反而不利于B杂质的去除;随着熔炼时间的增长,除B效率逐渐增加,但当熔炼时间超到60min之后,趋势变得平缓,120min时最佳除B效果达到了4.3ppmw,去除率为82.8%;B杂质的传质是整个过程的限制条件;CaF2的加入可以有效改善熔渣的粘度,但过量的CaF2反而会使除B效率降低。通过一次造渣达到太阳能级多晶硅对于B杂质含量的要求非常困难,可以采用连续二次造渣的方式来实现0.3ppmw的目标,同时一成本又不会提高很多。
With the rapid development of science and technology, energy dependence has been becoming increasingly serious ever since the Industrial Revolution. Especially in the21th century, the energy crisis and deterioration of the environment to human sounded the alarm. Searching for a new energy alternative to substitute traditional energy sources has become a common goal all over the world. Solar energy, as one of the new energies, has been given extensive national attention and application due to its wide distribution, safe use and pollution-free. As the main form of solar applications, photovoltaic is the most important object to study and explore. The United States, Japan, Germany and other developed countries initiated a PV development program in succession. China also promulgated the "Golden Sun Demonstration Project" in2009to develop solar power generation project. By the end of2011, the total installed capacity was increased from300MW to3GW.
     However, as the main raw material used for solar cells, high-purity poly-silicon is in serious shortage and can't meet the requirement of solar power generation technology with rapid development. The most important issue is to look for a new technology to fill up the gap of this raw material. As a low-cost, low energy consumption and low pollution method, metallurgy method is an effective way for high purity poly-silicon preparation. The key feature of metallurgical method is targeted for effective removal of metal, phosphorus (P) and boron (B) impurities in the polycrystalline silicon, resulting in a6N purity level required by solar power generation.
     During the development of metallurgy technology for poly-silicon purification, many new technologies are constantly raised. Both the removal of metal and P impurities have made significant breakthroughs and formed stable process routes. In contrast, the removal of B still needs to be improved. There are a lot of researches on metallurgical method to remove B impurity in the poly-silicon, but methods that can meet the requirements of industrial production are still in lack. It's urgent to find a reliable method to remove B impurity, leading the metallurgical method to a large industrial scale.
     This thesis starts from the characteristics of silicon and B impurity. Based on the removal of B by oxidation, methods of pickling oxide and slag treatment were investigated. The factors that affect B impurity removal by oxidation were studied according to thermodynamics and reaction kinetics respectively. Slag refining was conducted in atmosphere which is closer to the pattern of industrial production, in the hope of providing more reliable data for the determination of the process route. After summarization of the experimental data, conclusions were presented as follow.
     1) Under the temperature of900-1200℃, it is effective to remove B impurity from poly-silicon if the silicon powder with a particle size of17-65fim is thermal oxidation processed for1-10h. The higher is the temperature, the longer is the heat treatment time and the smaller is for the size of silicon powder, the more effective is for the B removal. Under vapor oxidizing conditions, the growth rate of oxide film on the surface of the silicon powder is faster than that of dry oxidation.Under atmospheric conditions, after heat treatment for the silicon surface, B impurity will redistributed between the Si and SiOi layer due to the segregation effect. In the P-type region, B impurity diffuses to the SiOi. leading to the close concentration of donor and acceptor impurity which is reflected in the increase of the resistivity.
     2) Under vacuum conditions for the NaiO-CaO-SiOi slag system, the lowest value of LB is with the basicity of0.8. Whether lo increase or decrease the basicity will benefit the purification effect. The LB value reaches to the highest of5.81when the basicity is1.21. As alkaline oxide, the addition of NaO can increase the range of alkalinity range; silicon to slag ratio will directly affect the separation of silicon and the slag and the B removal efficiency. The larger is the silicon to slag ratio, the better is the separation effect. The separation of silicon and slag can't be achieved when the silicon to slag ratio is less than2. The directional solidification process can not only get better separation of silicon and slag, but also can effectively remove metal impurities. B impurity closest to the interface of silicon and slag has the best removal effect. With the increasing of the distance from the interface, LB value decreased gradually and was minimized at the bottom of the crucible; the separation effect of the silicon and slag can be effectively improved through secondary slag treatment, to obtain a smooth silicon slag interlace and a higher purity of silicon.
     3) Under atmospheric conditions for CaF2-Al2O3-CaO-SiO2slag system. B removal effect is the best with the removal rate of82.8%when the optical basicity is0.597. Whether to increase or decrease the optical basicity will reduce the effect of B removal. Because the factors that affect the LB value is mutually restrained due to the adjustment of basicity which is not conductive to the removal of B; with the increasing of melting time, the B efficiency is gradually increased. But after the melting time is over60min. the trend starts lo become gentle and the best B removal effect reaches4.3ppmw with a removal rate of82.8%at120min: the mass transfer of B impurity is the limiting condition of the entire process; the CaF2addition can effectively improve the viscosity of the molten slag, while excess of CaF2will decrease the B removal efficiency. It's difficult to meet the B content requirement of solar grade poly-silicon through slag treatment for once, and it is rational to achieve the target of0.3ppmw by slag treatment for twice without improving much cost.
引文
[1]黄勇.哥本哈根气候变化大会[J].中国环境报,2009,12,1.
    [2]陈立泉.我国新能源材料的战略思考[C].2003年新材料发展趋势研讨会编,香港,2003:68.
    [3]金晶.世界及中国能源结构[J].能源研究与信息,2003,19(1):20-27.
    [4]Taylor Moore, Electricity in the Global Energy Future[J]. EPRI Journal, 1999, 24 (H) :9-17.
    [5]国家计委.中国新能源与可再生能源1999白皮书[R].1999.
    [6]王斯成.中国光伏发电的现状与展望[C].中国可再生能源发展战略国际研讨会,北京清华大学,2005:27-40.
    [7]赵媛,赵慧.我国太阳能资源及其开发利用[J].经济地理,1998,18(1):56-61.
    [8]赵玉文.我国太阳能利用技术的发展概括和趋势[J]农村电气化,2004,9:11-12.
    [9]Adolf Goetzbegre, Christopher hEbling, Unas Wernrer Sehook. Photovoltaic materials, history, status and outlook[J]. Materials Science and Engineer ing, 2003, 40:1-46.
    [10]Fukuoa. The present status and future direction of technology development for Photovoltaic power generation in Japan[J]. Photovoltaie:Research and Applications, 2005,13(6):463-470.
    [11]Photovoltaic Technology Research Advisory Counci1(PV-TRAC) of European Commision. A vision for photovoltaic technology(Z].2005:11-22.
    [12]ZhaoY. The Present status and future of Photovol taic in China[J].Solar Energy Materials & Solar Cells, 2001,67:663 671.
    [13]赵玉文,王斯成,励旭东,等.中国光伏产业发展研究报告(2004-2005)[R].2004.
    [14]Yang H, Wang H, Yu H et al. Status of Photovol taic industry in Chinal[J]. EenegyPolicy, 2003,31:703-707.
    [15]关于实施金太阳示范工程的通知(财建2009-397号)[R].太阳能,2009.
    [16]杨德仁.太阳电池材料[M].北京:化学工业出版社,2006.
    [17]赵富鑫,魏彦章.太阳电池及其应用[M].北京:国防工业出版社,1985.
    [18]安其霖.太阳电池原理与工艺[M].上海:上海科学技术出版社,1984.
    [19](日)产业技术综合研究所,太阳光发电研究中心.刘正新,沈辉译:太阳电池[M].北京:化学工业出版社,2010.
    [20]韩至成,朱兴发,刘林.太阳能级硅提纯技术与装备[M].北京:冶金工业出版社,2011.
    [21]梁骏吾.电子级多晶硅的生产工艺[J].中国工程科学,2000,2(12):34-39.
    [22]鲁瑾,李清岩.半导体硅材料产业现状及发展[J].电子信息材料,2006,(3):22-25.
    [23]Christy M W, Paul E, Ydstie B E. Size distribution model ing for flu idized bed solar Bade silicon productioii[J]. Powder Technology,2006,(163):51-58.
    [24]吕东,马文会,伍继君,等.冶金法制备太阳能级多晶硅新工艺原理及研究进展[J]材料导报,2009,3:30-34.
    [25]罗绮雯,陈红雨,唐明成.冶金法提纯太阳能级硅材料的研究进展[J].中国有色冶金,2008,1:12-16.
    [26]Peter K, Enebakk E, Friestad K et al. Investigation of multicrystalline silicon solar cells from solar grade silicon feedstock[C]. The 20th EUPVSEC, Barcelona, Spain,2005.
    [27]KhattakC.P, JoyceD. B, SchmidF. A simple process to remove boron from metallurgical grade silicon[J]. Solar Energy Materials& Solar Cells,2002,74(4):77-89.
    [28]Einhaus R, Sarti D, Hassler C, et al. Puri fication of Low Quality Silicon Feedstock. AK [C]. The 28th IEEE Photovoltaic Specialists Conference.2000,15-22.
    [29]Baba H, Hanazawa H, Yuge N. Development of NEDO Melt purification Process for Solar Grade Silicon by Pilot Plant[J].UK:Glasgow,2000:1675-1678.
    [30]史珺.CP法提纯太阳能级多晶硅工艺路线[J].新材料产业,2008,10:27-31.
    [31]徐云飞.冶金法制备太阳能级多晶硅工艺研究[D].大连:大连理工大学,2007.
    [32]梅向阳,马文会,戴永年.定向凝固技术的发展及其在制备太阳能级硅材料中的应用[J].轻金属,2008,9:64-72.
    [33]张慧星. 工业硅定向凝固提纯研究[D].大连:大连理工大学,2009.
    [34]武冠男,张军,刘林,等.太阳能级多品硅定向凝固技术的研究进展[J].铸造技术,2008,29(5):673-678.
    [35]马晓东,张剑,吴亚萍,等.超声场湿法提纯冶金级硅的研究[J].功能材料,2008,7(39):1071-1073.
    [36]YU Z L, MA W H, DAI Y N. Removal of iron and aluminum impurities from metallurgical grade-silicon with hydrometallurgical route[J]. Trans. Nonferrous Met. Soc. China,2007, 17:1030-1034.
    [37]王强,董伟,谭毅,等.电子束熔炼去除冶金级硅中磷、铝、钙的研究[J].功能材料,2010,(s1):144-147.
    [38]Wang Q, Dong W, Tan Y, et al. Impurities evaporation from metallurgical-grade silicon in electron beam melting process[J]. Rare Metals,2011,30(3):274-277.
    [39]王强.电子束冶炼提纯冶金级硅工艺研究[D].大连:大连理工大学,2010.
    [40]Dong W, Peng X, Jiang D C, et al. Calcium evaporation from metallurgical grade silicon by an electron beam melting[J]. Materials Science Forum,2011,675-677:41-44.
    [41]苏彦庆,郭景杰,刘贵伸.有色合金真空熔炼过和熔体质量控制[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [42]Kubaschewski O, Alcock C B. Materials Thermochemistry[M]. Oxford:Pergamon Pres 1979.
    [43]姜大川.电子束熔炼提纯多晶硅的研究[D].大连:大连理工大学,2012.
    [44]Kichiya S. Tomonori K, Nobuo S. Removal of boron from metallurgical-grade si l icon by applying the plasma treatment [J]. ISI.J Internal, ional,1992,32:630 634.
    [45]Alemanya C, Trassyb C, Paleyron B. Refining of metallurgical grade silocon by inductive plasma[J].Solar Energy Materials & Solar Colls,2002,72:41~48.
    [46]Takeshi Y, Kentaro A, Kazuki M. Boron removal by titanium addition in solidification refining of silicon with Si-A1 melt[J]. Metallurgical and Materials Transaction B, 2005,36B :31- 836.
    [47]Takeshi Y, Kazuki M. Removal of B from Si by solidification refining with Si Al meltsf[J] Metallurgical and Materials Transaction B, 2005, 36B:837-843.
    [48]D. De Salvador, E. Napo1itani,G. Bisognin, el al. Dissolution kinetics of Bclusters in crystalline Si[J]. Materials Science and Engineering B,2005, 124 125:32-38.
    [49]Wu Jlijun, Dai Yonnian, Ma Wenhui, et al. Progress in Purirring Metallurgical Grade Si1icon into Solar Grade Silicon by Oxidation Refining[J]. Chinese Journal Of Vacuum Scionce. And Technology, 2010, :30:43-52.
    [50]Torsion W and Klaus S. Chemical Equilibria between Silicon and Slag Melts [J]. Metallurgical and Materials Transactions 15,1994,25B:497-504.
    [51]Y.J. Kang, D. Sichen, K. Morita. ActiviLies of SiO2 in some CaO A12O3 SiO2(-10%MgO) melts with low SiO2 contents at 1,873K[J]. ISI J Int., 2007,47:805-810.
    [52]K. Morila, T. Miki. Thermodynamics of solar grade silicon refining. Inlermelalies Intermet, 2003, 11:1111 1117.
    [53]KiEhiya S, Tsuyoshi S, Kiyotaka T, et. al. Thermodynamics for Removal of Boron from Metallurgical Silicon by fLUX Treatment [J]. J. Japan lust. Metals, 1990, 54:168 172.
    [54]Wang Xinguo, Ding Weizhong, Tang Kai et al. ThermodynamiE analysis on silicon alloy oxidalion reFining process[J]. The Chinese Journal of Nonferrous Metals, 2001, 11 :503 510.
    [55]Wu J i jun, Ma Wen hui, Yang Bin, eT al. Boron removal from melallurgical grade silicon by oxidizing refinig[J]. Trans. Nonferrous Met. Soc. China, 2009, 19:463-467.
    [56]Luo Dawei. Liu Ning, lu Yiping, et al. Removal of boron from metal lurgical grade silicon by electromagnelic induction slag melting[J].Trans. Nonferrous Met. Soc. China, 2011,21:1178-1184.
    [57]唐仁正.物理冶金原理[M].北京:冶金工业出版社,1997.
    [58]田彦文,翟秀静,刘奎仁.冶金物理化学简明教程[M].北京:化学工业出版社,2007.
    [59]傅崇说.有色冶金原理[M].北京:冶金工业出版社,1993.
    [60]Kngh T. Principles of Metal Refining[M|. Oxford Science. 2002, 190-192.
    [61]魏寿昆.冶金过程热力学[M].北京:科学出版社,2010
    [62]谭毅,李国斌.一种多晶硅定向凝固设备:中国,101323972 A,2008.07.14.
    [63]全国分析检测人员能力培训委员会秘书处,中国质检出版社第五编辑室.ATC001电感耦合等离子体原子发射光谱分析技术标准汇编[M].北京:中国标准出版社,2011.
    [64]中华人民共和国质量监督检验检疫总局,中国国家标准化管理委员会.硅片电阻率测定扩展电阻测定法[M].北京:中国标准出版社,2010.
    [65]《实用工业硅技术》编写组.实用工业硅技术[M].北京:化学工业出版社,2005.
    [66]张芙玉,彭友盛,王惠民.工业硅精制试生产[J].铁合金,2001,1:22-25.
    [67]陈德胜.利用纯氧精炼工业硅的生产实践[J].铁合金,2001,5:26-27.
    [68]车云霞,申泮文.化学元素周期系[M].天津:南开大学出版社,1999.
    [69]闽端麟.硅材料科学与技术[M].浙江:浙江大学出版社,2000.
    [70]K. Nakajima, N. Usami. Crystal growth of Si for silicon eell[M]. Berlin :GER,2009.
    [71]Robert Hull. Properties of Crystal1ine Silicon[M]. USA: University of Virginia, 1999.
    [72]马荣骏.湿法冶金原理[M].北京:冶金工业出版社,2007.
    [73]李勇东.最新硅材料配方设计、生产技术、工艺流程与质量检测及标准规范实务全[M].北京:当代中国音像出版社.
    [74]厦门大学物理系半导体教研室.半导体器件工艺原理[M].1977:88-89.
    [75]孙世海.定向凝固提纯多晶硅研究[D].大连:大连理工大学,2010.
    [76]Chu T L, Chu S S. Partial purification of metallurgical silicon by acid ex traction[J]. J. Electrochem. Soc.,1983,130(2):455-461.
    [77]A.A.Istratov,T.Buonassisi,M.D.Pickett. Control of metal impurities in "dirty" multicrystalline silicon for solar cells[J]. Materials Science and Engineering B 2006, 134:282-286.
    [78]Santos I C, Goncalves A P, Santos C S, et al. Purification of metallurgical grade silicon by acid leaching[J]. Hydrometallurgy,1990,23:237-246.
    [79]姜同川.正交试验设计[M].济南:山东科学技术出版社,1985.
    [80]李仁锋,吴嘉丽,谭刚.多晶硅薄膜厚度测量技术[J].计量与测试技术,2006, 33(4):10-12.
    [81]沈世纲,黄敏,于凤树.关于热生长SiO2薄膜厚度的测量[J].物理学报,1964, 20(7):654-661.
    [82]D. R. Hamann. Diffusion of Atomic Oxygen in SiO2[J]. Physical Review letters,1998, 81:3447-3450.
    [83]S. Fukatsu, K.Itoh. Effect of Si/SiO2 Interface on Silicon and Boron Diffusion in Thermally Grown SiO2[J]. Japanese Journal of Applied Physics, 2004, 43, (11):7837-7842
    [84]B. Semmache, A. Merabet, C. Gontrand. About boron and arsenic diffusions in polycrystal1ine silicon under rapid thermal oxidation[J]. Materials Science and Engineering B,1996,38:41-45.
    [85]Richard B. Fair. Physical Models of Boron Diffusion in Ultrathin Gate 0xidcs[J]. J. Electrochem. Soc.,1997,144,(2):708-717.
    [86]刘艳娇.晶体硅电学性能评价[D].大连:大连理工大学,2010.
    [87]Shuang Shi, Wei Dong, Shihai Sun. Resistivity distribution characteristics of metallurgical silicon ingot after direel, ional solidification[J]. Material Seience Forum, 2011,675-677: 109-112.
    [88]陈玉武.快速热处理对多晶硅中杂质和缺陷行为的影响[D].河北:河北工业大学,2008.
    [89]L.A.V. Teixeira, Y. Tokuda, T. Yoko and K. Morita. Behavior and State of Boron in CaO SiO2 Slags during Refining of Solar Grade Si licon[J]. ISIJ Int.. 2009,49:777-782.
    [90]L A. V. Teixeira and K. Morita. Removal of Boron from Molten Silicon Using Ca()-Si()2 Based Slags[J]. ISIJ Int., 2009,49:783-787.
    [91]M. D. Johnston, M. Barati. Distribut ion of impurity elements in slag-silicon equi1ibria for oxidative refining of metal Iurgical si1icon for solar eell applicat ions[J]. Sol. Fnerg. Mater. Sol. Colls, 2010,94:2085-2090.
    [92) M.D. Johnston,M.Barati.EITet of slag basicity and oxygen potential on the disLribuLion of boron and phosphorus between slag and silicon[J]. J. Non. Cryst. Solids, 2011,357:970 975.
    [93]Cai Jing, Li Jintang. CHEN Wonhui. Boron removal from metallurgical silicon using CaO Si02 CaF2 slags[J]. Trans. Non ferrous Met. Soc. China,2011,21:1402-1406.
    [94]Yin Changhao, Hu Bingfeng, Huang Xinming. Boron removal from molten silicon using sodium-based slags[J]. Journal of Semiconductors,2011,32(9):092003.
    [95]Zhao Ding, Wen huiMa, Kui xianWei. Boron removal from metal lurgical grade silicon using lithium containing slag[J]. Journal of Non-Crystalline Solids,2012,358:2708-2712.
    [96]刘美.冶金法提纯多晶硅过程中氮化硅涂层的研究[D].大连理工大学,2009.
    [97]杜光庭,周卫,侯悦.氮化硅涂层坩埚:中国,CN87206316[P].1987,12,30.
    [98]R. Kvande, L. Atnberg, C.Martin. Influence of crucible and coating quality on the properties of mulicrystalline silicon for solar cells[J]. Journal of Crystal Growth. 2009,311:765-768.
    [99]Kazuki MORITA, Takeshi YOSIIIKAWA. Thermodynamic evaluation of new metallurgical refining processes for SOG silicon production[J].Trans.Nonferrous Met. Soc. China 2011,21:685-690.
    [100]A. Semih SUNKAR, Kazuki MORITA. Thermodynamie Properties of the MgO-BO1.5.CaO BOL SiO2 B01.5 MgO B01.5 SiO2 and CaO B01.5 SiO2 Slag Systems at 1873K[J]. ISIJ Internalional,2009,49,11:1649-1655.
    [101]T. Weiss, K. Sehwerdtfeger. Chemical Equilibria between Silicon and Slag Melfs[J]. Metal1. Mat. Trans. B,1994,25:497-504.
    [102]K. Suzuki, T. Sugiyama, K. Takano and N. Sano. Thermodynamies for Removal of Boron from Metallurgical Si1icon by Flux Treatment[J]. J.Japan Inst. Metals,1990,54:168-172.
    [103]R. Noguchi, K. Suzuki, F. Tsukihashi, N. Sano. Thermodynamics of boron in a silicon melt[J]. Metall. Mat. Trans. B,1994,25:903 907.
    [104]于仁波,张祖贤,毛裕文CaF2 CaO MgO Al2O2 SiO2五元电渣渣系粘度的研究[J].钢铁研究学报,1989,1(2):9-15.
    [105]Wang Hongming, Li Guirong, Li Bo. Effcct of B2O3 on Melting tempcra uirc of CaCb Based Ladle Refining Slag[J]. Journal of Iron and Steel Research International,2010, 17(10):18-22.
    [106]华一新.冶金过程动力学[M].北京:冶金工业出版社,2004.
    [107]谢传锋.动力学[M].北京:高等教育出版社,2004.
    [108]Yu Zhanliang, Xie Keqiang, Ma Wenhui. Kinetics of iron removal from metallurgical grade silicon with pressure leaching[J]. Rare Metals,2011,30(6):688-694.
    [109]孙建华.动力学教程[M].西安:西北工业大学出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700