置氢Ti6Al4V粉末磁脉冲压实—烧结体组织结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及其合金具有优异的力学性能、耐热及耐腐蚀性能好、密度低、良好的生物相容性等综合性能,被广泛应用于航空、化工、生物工程等领域。粉末冶金是制备高性能、低成本钛合金的理想工艺。将钛合金的粉末成形和热氢处理技术相结合,可以降低钛合金粉末成形时的固结温度、缩短成形时间、降低制件的孔隙率、相应地提高制件的力学性能。Ti6Al4V是典型的α+β型的钛合金,具有良好的综合力学性能,是研究和应用最广泛的钛合金。磁脉冲压实使粉末在冲击磁场力作用下高速成形。此方法可以使粉末在加热、真空或保护气氛条件下成形。它能得到完全致密的粉末压坯,广泛应用于黑色金属、有色金属、金属间化合物、陶瓷、复合材料等粉末的压制。
     本文采用理论分析、数值模拟、工艺试验及微观分析相结合的方法对Ti6Al4V粉末磁脉冲压实的变形行为和机理进行了系统研究。采用工艺试验及微观分析相结合的方法对粉末烧结体的组织结构和性能进行了研究。为了改善其耐磨性,对粉末烧结体进行了热氧化和氧化+氧扩散两种表面处理,并对处理后的试样进行了滑动摩擦试验。
     利用压电力传感器测量磁脉冲压力,并建立了其与压坯密度的关系通式。研究了磁脉冲压实能量密度与压坯孔隙率的关系。采用松散耦合法对磁脉冲压实过程进行分析。在ANSYS中,将放电回路简化为一个RLC电路。把模拟得到的电流作为边界条件,利用ANSYS/Multiphysics模块建立电流激励的电磁场模型。以电磁场模拟结果为边界条件,在MSC.MARC中,利用powder模块和Shima屈服准则建立粉末压实模型。把模拟得到的速度作为边界条件,在MSC.MARC中,利用Johnson-Cook本构关系建立粉末微观变形模型。模拟结果表明,驱动片主要受轴向磁场力作用,并且其沿驱动片径向分布不均匀,沿驱动片厚度方向呈梯度分布。放电电压、压实温度、摩擦系数对压坯平均相对密度和相对密度的均匀性有明显的影响。放电电压对压实速度有比较大的影响。粉末颗粒的变形和温升主要集中于表面层,并且随放电电压和压实速度的升高而增加。
     随着磁脉冲压实温度的升高,置氢Ti6Al4V粉末压坯相对密度和硬度不断增加。相同压力下,磁脉冲压实的粉末压坯相对密度比传统静态压实的高12个百分点左右。烧结体真空退火后的相对密度、硬度和抗压强度基本上都是在200℃的压实温度下达到最大值。随着氢含量的增加,烧结体真空退火后的抗压强度先升高后降低。随着放电电压的增加,烧结体真空退火后的相对密度、硬度和抗压强度都不断的升高。烧结体真空退火后显微组织为典型的α+β组织。随着氢含量的增加,等轴的颗粒组织不断增加。
     试样经热氧化处理后在表面形成一层致密的不导电涂层,且随氧化时间和氧化温度的增加,氧化层逐渐增厚,但氧化层过厚会出现脱落现象。热氧化的产物主要是TiO_2和Al_2O_3,氧化层最外层为一薄层Al_2O_3,次外层为TiO_2。氧化层以内存在厚度为140μm左右的硬化层。试样经氧化+氧扩散处理后氧化层的TiO_2分解,形成低价态的氧化物TiO。硬化层的厚度可以达到210μm左右。经两种表面处理工艺处理后的试样磨损率都比未处理的试样低2个数量级。氧化+氧扩散处理后试样的硬化效果和耐磨性都比热氧化的试样好。
Titanium and titanium alloys have been widely used in aviation, biomedical and chemical industries due to their outstanding properties, such as good comprehensive mechanical properties, low specific weight, high specific strength, high temperature strength, excellent anti-corrosion performance and high biocompatibility. Powder metallurgy (PM) is an ideal approach for fabrication of high–performance and low–cost titanium alloys. The combination of PM and thermohydrogen processing (THP) can reduce the temperature, time of consolidation and the porosity of sintered body during the sintering process, as well as improving its mechanical properties. Ti6Al4V, a typicalα+βtitanium alloy, is most widely used and investigated because of its excellent comprehensive mechanical properties. Magnetic pulse compaction (MPC) allows the powder compaction to carry out successfully under conditions of heating, vacuum or protective atmosphere. This method can achieve the automated mass production and fully dense (or near fully dense) powder compact by using high strength impact loading, which has been widely investigated in the compaction of ferrous metals, nonferrous metals, intermetallic compounds, ceramic and composite materials.
     In this dissertation, the deformation behavior and mechanism of MPC of Ti6Al4V alloy powder are systematically investigated by theoretical analysis, numerical simulation, experiments and microanalysis. The microstructure and properties of sintered bodies are investigated by the combination of experiments and microanalysis. Thermal oxidation (TO) process and TO + oxygen diffusion (OD) process have been investigated to improve the wear-resistance of sintered samples. Then the sliding frictional properties of the treated samples are investigated.
     The compaction pressure of MPC is measured by an electric pressure sensor, and the general formula of it and the density of compact is established. The correlation of compaction energy density and the porosity of compact are studied. The MPC process is analysed by a loose coupling numerical scheme. The discharge circuit is simplified as a RLC circuit in ANSYS. As the boundary condition of simulated current, the electromagnetic field model of current incentive is established by ANSYS/Multiphysics module. As the boundary condition of electromagnetic field simulation result, the powder compaction analysis model is established by Shima yield criteria and the powder module in MSC.MARC. As the boundary condition of simulated compaction velocity, the micro deformation model of powder is constructed based on the Johnson-Cook relation by using MSC.MARC. The simulation results show that the driver plate is mainly subjected to the axial magnetic force and its distribution is uneven along with the radial direction of the drive plate. The magnetic force along with the driver plate thickness is a gradient distribution. The average relative density of compact and the distribution of relative density are apparently affected by discharge voltage, compaction temperature and friction coefficient. The discharge voltage has a large effect on the compaction velocity. The deformation and temperature rise of powder particles manily occur in the surface layer, and they enhance with increasing discharge voltage and compaction velocity.
     The relative density and hardness of green body of hydrogenated Ti6Al4V powder compacted by MPC increase as compaction temperature rises. The relative density of compact pressed by MPC is about 12 percent higher than that prepared by static compaction under the same compaction pressure. The relative density, hardness and compressive strength of vacuum annealed samples can be increased by increasing discharge voltage, and they basically reach their maximum values at 200℃. As hydrogen content rises, the compressive strength of vacuum annealed samples first increases and then decreases. The microstructure of vacuum annealed samples consists of primaryαphase andβphase. The number of equiaxed grains increases with the augment of hydrogen content.
     The coating of samples processed by TO is dense and insulated, and its thickness increases as the temperature and time increase, but the coating may break off when it is too thick. The primary substance of the coating is Al_2O_3 which is on the surface of the coating and TiO_2 inside. On the inner side of the coating, there is a hardened layer with thickness of about 140μm. The TiO_2 of coating of samples treated by TO + OD decomposes to TiO. The thickness of hardened layer reaches approximately 210μm. The wear rate of samples treated by the two methods is about two orders of magnitude lower than that of untreated sample. The TO + OD treatment appears to be more efficient in surface hardening and wear resistance than the TO process.
引文
[1] Guden M, Celik E, Akar E, et al. Compression Testing of a Sintered Ti6Al4V Powder Compact for Biomedical Applications[J]. Materials Characterization, 2005, 54(4-5): 399-408.
    [2] Guo S B, Qu X H, Xiang J H, et al. Effect of Annealing Processing on Microstructure and Properties of Ti-6A1-4V Alloy by Powder Injection Molding[J]. Transactions of Nonferrous Metals Society of China, 2006, 16: s701-s704.
    [3] Guo Q M, Hou H L, Ren X P. Hydrogen Absorption Kinetics of Porous Ti6Al4V Alloys[J]. Journal of Alloys and Compounds, 2009, 486(1-2): 754-758.
    [4] Moxson V S, Froes F H. Fabricating Sports Equipment Components via Powder Metallurgy[J]. JOM, 2001, 53(4): 39-41.
    [5] Froes F H. Pre-alloyed Titanium Powder Metallurgy-barriers to Use[J]. The International Journal of Powder Metallurgy. 1987, 23(4): 267-269.
    [6] Froes F H, Mashl S J, Moxson V S, et al. The Technologies of Titanium Powder Metallurgy[J]. JOM, 2004, 56(11): 46-48.
    [7] Yu H P, Li C F. Dynamic Compaction of Pure Copper Powder Using Pulsed Magnetic Force[J]. Acta Metallurgic Sinica (English Letters), 2007, 20(4): 277-283.
    [8] Khrustov V R, Ivanov V V, Kotov Y A, et al. Nanostructured Composite Ceramic Materials in the ZrO2-Al2O3 System[J]. Glass Physics and Chemistry, 2007, 33(4): 379-386.
    [9] Hong S J, Lee G H, Rhee C K, et al. Magnetic Pulsed Compaction of Ferromagnetic Nano-powders for Soft-magnetic Core[J]. Materials Science and Engineering A, 2007, 449-451: 401-406.
    [10] Meng Z H, Huang S Y, Yang M. Effects of Processing Parameters on Density and Electric Properties of Electric Ceramic Compacted by Low-voltage Electromagnetic Compaction[J]. Journal of Materials Processing Technology, 2009, 209(2): 672-678.
    [11] Ivanov V V, Ivanov S N, Kaigorodov A S, et al. Transparent Y2O3: Nd3+ Ceramics Produced from Nanopowders by Magnetic Pulse Compaction and Sintering[J]. Inorganic Materials, 2007, 43(12): 1365-1370.
    [12] Khrustov V R, Ivanov V V, Kotov Y A, et al. Nanostructured Composite Ceramic Materials in the ZrO2-Al2O3 System[J]. Glass Physics and Chemistry, 2007, 33(4): 379-386.
    [13] Ivanov V V, Kaigorodov A S, Khrustov V R. Properties of the TranslucentCeramics Nd: Y2O3 Prepared by Pulsed Compaction and Sintering of Weakly Aggregated Nanopowders[J]. Glass Physics and Chemistry, 2007, 33(4): 387-393.
    [14] Lee G H, Rheea C K, Lee M K, et al. Nanostructures and Mechanical Properties of Copper Compacts Prepared by Magnetic Pulsed Compaction Method[J]. Materials Science and Engineering A, 2004, 375-377: 604-608.
    [15] Hong S J, Lee G H, Rhee C K, et al. Magnetic Pulsed Compaction of Ferromagnetic Nano-powders for Soft-magnetic Core[J]. Materials Science and Engineering A, 2007, 449-451: 401-406.
    [16] Nakahigashi J, Yoshimura H. Ultra-fine Grain Refinement and Tensile Properties of Titanium Alloys Obtained through Protium Treatment[J]. Journal of Alloys and Compounds, 2002, 330-332: 384-388.
    [17] Eliezer D, Eliaz N, Senkov O N, et al. Positive Effects of Hydrogen in Metals[J]. Materials Science and Engineering A, 2000, 280(1): 220-224.
    [18]侯红亮,李志强,王亚军.钛合金热氢处理技术及其应用前景[J].中国有色金属学报, 2003, 13(3): 533-549.
    [19] Azevedo C R F, Rodrigues D, Beneduce N F. Ti-Al-V Powder Metallurgy (PM) via Hydrogenation-dehydrogenation (HDH) process[J]. Journal of Alloys and Compounds, 2003, 353(1-2): 217-227.
    [20] Arrazola P J, Garay A, Iriarte L M, et al. Machinability of Titanium Alloys (Ti6Al4V and Ti555.3)[J]. Journal of Materials Processing Technology, 2009, 209(5): 2223-2230.
    [21] Pillar R M. Porous-surfaced Metallic Implants for Orthopaedic Applications[J]. Journal of Biomedical Materials Research, 1987, 21(A1 Suppl): 1-33.
    [22] Long M, Back H J. Titanium Alloys in Total Joint Replacement—a Materials Science Perspective[J]. Biomaterials, 1998, 19(18): 1621-1639.
    [23]王亚明,蒋百灵,雷廷权,等. Ti6Al4V合金表面耐磨涂层的研究进展[J].材料工程, 2003, (3): 38-43.
    [24]刘勇,叶铸玉,杨德庄,等. TC4合金在真空低温下的摩擦磨损行为[J].哈尔滨工业大学学报, 2006, 38: 335-339.
    [25]尹振兴,罗兵辉.提高Ti-6Al-4V耐磨性的热氧化研究[J].中南大学学报, 2004, 35(2): 186-190.
    [26] Dong H, Li X Y. Oxygen Boost Diffusion for the Deep-case Hardening of Titanium Alloys[J]. Materials Science and Engineering A, 2000, 280(2): 303-310.
    [27]喻岚,李益民,邓忠勇,等.粉末冶金钛合金的制备[J].轻金属, 2003, (9): 43-47.
    [28] Froes F H. Pre-alloyed Titanium Powder Metallurgy-barriers to Use[J]. TheInternational Journal of Powder Metallurgy, 1987, 23(4): 267-269.
    [29]赵瑶,贺跃辉,江垚.粉末冶金Ti6Al4V合金的研制进展[J].粉末冶金材料科学与工程, 2008, 13(2): 70-78.
    [30] Chelluri B, Knoth E, Bauer D, et al. Magnetic Compaction Process nears Market[J]. Metal Powder Report, 2000, 55(2): 22-55.
    [31]孙伟,黄尚宇.电磁成形技术在粉末成形中的应用[J].电加工与模具, 2005, (5): 62-65.
    [32] David W. $ 8.5 Million Project to Explore Potential of Magnetic Compaction Process[J]. Metal Powder Report, 1996, 51(1): 5-7.
    [33] Murakoshi Y, Takahashi M, Hanada K, et al. Dynamic Powder Compaction Method by Electromagnetic Force[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2001, 48(6): 565-570.
    [34]薛强.粉末磁脉冲致密工艺试验研究[D].哈尔滨:哈尔滨工业大学学位论文, 2005: 21-49.
    [35]于海平,李春峰,邓将华. Cu粉末电磁脉冲压实试验研究[J].材料科学与工艺, 2006, 14(6): 588-591.
    [36]薛强,于海平,李春峰.铜粉螺线管线圈磁脉冲致密试验研究[J].锻压技术, 2006, (1): 76-79.
    [37]邱大胜.电磁成形粉末压实实验研究[D].哈尔滨:哈尔滨工业大学学位论文, 2003: 38-51.
    [38]于海平,李春峰,丁朋辉.热复合磁脉冲粉末压坯致密度的试验研究[J].材料科学与工艺, 2008, 16(2): 153-157.
    [39]丁朋辉.热复合磁脉冲粉末致密试验研究[D].哈尔滨:哈尔滨工业大学学位论文, 2007: 20-46.
    [40]于海平,丁朋辉,李春峰.钛合金粉末热复合磁脉冲压制试验研究[J].粉末冶金技术, 2008, 26(3): 173-177.
    [41] Wu Y C, Huang S Y, Chang Z H, et al. The Low-Voltage Electromagnetic Compaction of Powder Materials[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2002, 17(4): 39-43.
    [42]黄尚宇,常志华,田贞武,等.粉末低电压电磁压制实验研究[J].塑性工程学报, 2001, 8(3): 10-13.
    [43]张棋飞.粉末低电压电磁压制致密机制及制品力学性能研究[D].武汉:武汉理工大学学位论文, 2003: 35-49.
    [44] Ivanov V V, Kotov Y A, Samatov O H, et al. Synthesis and Dynamic Compaction of Ceramic Nano Powders by Techniques based on Electric Pulsed Power[J]. Nano Structured Materials, 1995, 6(1-4): 287-290.
    [45] Ivanov V V, Zajats S V, Medvedev A I, et al. Formation of Metal Matrix Composite by Magnetic Pulsed Compaction of Partially Oxidized Al Nanopowder[J]. Journal of Materials Science, 2004, 39(16-17): 5231-5234.
    [46] Ivanov V V, Khrustov V R, Paranin S N. Stabilized Zirconia Nanoceramics Prepared by Magnetic Pulsed Compaction of Nanosized Powders[J]. Glass Physics and Chemistry, 2005, 31(4): 465-470.
    [47] Abramovich A A, Karban O V, Ivanov V V, et al. Influence of the Structure on the Thermal Conductivity of the Al2O3+Fe Nanocomposite1[J]. Glass Physics and Chemistry, 2005, 31(5): 709-711.
    [48] Elsukov E P, Konygin G N, Ivanov V V, et al. Iron–Cementite Nanocomposites Obtained by Mechanical Alloying and Subsequent Magnetic Pulsed Pressing[J]. The Physics of Metals and Metallography, 2006, 101(5): 491-497.
    [49] Ivanov V V, Lipilin A S, Kotov Y A, et al. Formation of a Thin-layer Electrolyte for SOFC by Magnetic Pulse Compaction of Tapes Cast of Nanopowders[J]. Journal of Power Sources, 2006, 159(1): 605-612.
    [50] Hana Y S, Seonga B S, Lee C H, et al. SANS Study of Microstructural inhomogeneities on Al Nano-powder Compacts[J]. Physica B: Condensed Matter, 2004, 350(1-3): e1015-e1018.
    [51] Mamalis A G.. Manufacturing of Bulk High-Tc Superconductors[J]. International Journal of Inorganic Materials, 2000, 2(6): 623-633.
    [52] Mamalis A G. Near Net-Shape Manufacturing of Bulk Ceramic High-Tc Superconductors for Application in Electricity and Transportation[J]. Journal of Materials Processing Technology, 2001, 108(2): 126-140.
    [53] Mamalis A G, Szalay A, G?BL N, et al. Near Net-Shape Manufacturing of Metal Sheathed Superconductors by High Energy Rate Forming Techniques[J]. Materials Science and Engineering B, 1998, 53(1-2): 119-124.
    [54]孟正华,黄尚宇,常宏,等.线圈及集磁器结构对陶瓷粉末电磁压制的影响[J].锻压技术, 2006, 31(4): 138-144.
    [55]周静,赵然,黄尚宇,等.粉末电磁压制法制备xPMS-(1-x)PZN陶瓷[J].硅酸盐通报, 2006, 25(6): 176-178.
    [56]孟正华.功能陶瓷低电压电磁压制实验研究[D].武汉:武汉理工大学学位论文, 2004: 31-46.
    [57]孟正华,黄尚宇.压制方式对锆钛酸铅压电陶瓷密度及性能影响的研究[J].粉末冶金技术, 2008, 26(1): 49-56.
    [58]欧阳伟.功能陶瓷低电压电磁压制及制品性能的实验研究[D].武汉:武汉理工大学学位论文, 2005: 20-42.
    [59]吴彦春.电磁压制设备研制及其在功能陶瓷制备中的应用研究[D].武汉:武汉理工大学学位论文, 2007: 85-107.
    [60]黄尚宇,施健,孟正华,等. PZT陶瓷粉末低电压电磁压制实验研究[J].塑性工程学报, 2007, 14(1): 42-47.
    [61]孙伟,黄尚宇,孟正华,等.低电压电磁压制PZT粉末致密度的试验研究[J].中国机械工程, 2006, 17(19): 2063-2066.
    [62] Meng Z H, Huang S Y, Sun W. Low-voltage Electromagnetic Compaction of Metal and Ceramic Powders[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2007, 22(4): 714-717.
    [63] Huang H, Kelder E M, Jak M J G., et al. Influences of Dynamic Compaction on Lithium Intercalation into Graphite Anode[J]. Solid State Ionics, 2001, 139(1-2): 67-74.
    [64] Schoonman J. Nanoionics[J]. Solid State Ionics, 2003, 157(1-4): 319-326.
    [65]舒行军,尹海星,黄尚宇,等.人工神经网络在粉末低电压电磁压制中的应用[J].武汉理工大学学报·信息与管理工程版, 2002, 24(2): 16-18.
    [66]施健.功能陶瓷低电压电磁压制的成形机制及模拟研究[D].武汉:武汉理工大学学位论文, 2006: 16-67.
    [67] Dobrov S V, Ivanov V V. Simulation of Pulsed Magnetic Molding of Long Powdered Products[J]. Technical Physics, 2004, 49(4): 413-419.
    [68] Boltachev G S, Volkov N B, Ivanov V V, et al. Dynamic Compaction Model for a Granular Medium[J]. Journal of Applied Mechanics and Technical Physics, 2008, 49(2): 336-339.
    [69] Boltachev G S, Volkov N B, Dobrov S V, et al. Simulation of Radial Pulsed Magnetic Compaction of a Granulated Medium in a Quasi-Static Approximation[J]. Technical Physics, 2007, 52(10): 1306-1315.
    [70]王宏宇,陈康敏,许晓静,等.钛合金Ti-6Al-4V的磨损失效及其表面耐磨处理技术[J].轻金属, 2005, (5): 54-58.
    [71]徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社, 1999: 41-51.
    [72]孙荣禄,郭立新,董尚利,等.钛及钛合金表面耐磨热处理[J].宇航材料工艺, 1999, (5): 15-19.
    [73]刘凤岭,李金桂,冯自修.钛合金表面技术的进展[J].腐蚀与防护, 2001, 22(2): 54-57.
    [74]沈桂琴,雷杰,梁佑明,等. TC4钛合金的微动磨损及防护[J].北京航空航天大学学报, 1995, 21(2): 5-9.
    [75] Waterhouse R B, Lwabuchi A. High Temperature Fretting Wear of Four Titanium Alloys[J]. Wear, 1985, 106(1-3): 303-313.
    [76] Molinari A, Straffelini G, Tesi B, et al. Dry Sliding Wear Mechanisms of the Ti6Al4V Alloy[J]. Wear, 1997, 208(1-2): 105-112.
    [77]杨建恒,张永振,邱明,等. Ti6Al4V高速干滑动摩擦磨损特性研究[J].材料工程, 2006, (z1): 35-38.
    [78]刘勇,杨德庄,何世禹,等. Ti-6Al-4V合金在真空中的干滑动磨损行为[J].金属学报, 2003, 39(7): 711-714.
    [79] Jiang X X, Li S Z, Duan C T, et al. A Study of the Corrosive Wear of Ti-6Al-4V in Acidic Medium[J]. Wear, 1989, 129(2): 293-301.
    [80]张天成,姜晓霞,李诗卓. Ti6Al4V合金氢致脆性磨损机制[J].腐蚀科学与防护技术, 1999, 11(3): 142-146.
    [81] Hager Jr C H, Sanders J H, Sharma S. Characterization of Mixed and Gross Slip Fretting Wear[J]. Wear, 2004, 257(1-2): 167-180.
    [82] Hager Jr C H, Sanders J H, Sharma S. Effect of High Temperature on the Characterization of Fretting Wear Regimes at Ti6Al4V Interfaces[J]. Wear, 2006, 260(4-5): 493-508.
    [83] Dick T, Cailletaud G. Fretting Modelling with a Crystal Plasticity Model of Ti6Al4V[J]. Computational Materials Science, 2006, 38(1): 113-125.
    [84] Dong H, Bloyce A, Morton H, et al. Surface Engineering to Improve Tribological Performance of Ti-6Al-4V[J]. Surface Engineering, 1997, 13(5): 402-406.
    [85] Dong H, Bell T. Enhanced Wear Resistance of Titanium Surfaces by A New Thermal Oxidation Treatment[J]. Wear, 2000, 238(2): 131-137.
    [86] Komotori J, Lee B J, Dong H, et al. Corrosion Response of Surface Engineered Titanium Alloys Damaged by Prior Abrasion[J]. Wear, 2001, 251(1-12): 1239-1249.
    [87] Güleryüz H, Cimeno?lu H. Effect of Thermal Oxidationon Corrosion and Corrosion-wear Behavior of a Ti-6Al-4V Alloy[J]. Biomaterials, 2004, 25(16): 325-333.
    [88]金泰来,魏建锋,顾兆林,等. TC4合金特高温下的氧化行为研究[J].钛工业进展, 2005, 22(4): 19-22.
    [89]张春艳,伍光凤,田中青. TC4合金热氧化行为的研究[J].材料热处理, 2007, 16(36): 36-38.
    [90]陈智勇,施雯,吴成鸿,等. Ti6Al4V低温氧化处理对摩擦性能的影响[J].材料保护, 2008, 41(10): 105-107.
    [91]曾招钦,施雯,徐润翔.低温氧化表面改性对Ti6Al4V合金抗磨损性能的影响[J].上海金属, 2008, 30(3): 13-16.
    [92]张春艳,李春天,张津.热氧化处理对钛合金表面耐磨性能影响的研究[J].表面技术, 2008, 37(6): 18-23.
    [93]张春艳,王振林,田中青,等. TC4钛合金热氧化层微米压痕/划痕试验研究[J].热加工工艺, 2009, 38(18): 99-103.
    [94]刘勇,杨德庄,杨世禹,等. Ti-6Al-4V合金表面的热氧化/真空扩散处理[J].中国有色金属学报, 2003, 13(1): 177-180.
    [95]尹振兴,罗兵辉.提高Ti6Al4V耐磨性的热氧化工艺[J].中南大学学报(自然科学版), 2004, 35(2): 186-190.
    [96]张云琨.氢、氮化和热氧化对钛合金性能影响的研究[D].长春:中国科学院研究生院(长春光学精密机械与物理研究所)学位论文. 2004: 68-79.
    [97]张秋平,张永寿.钛合金表面硬化处理[J].飞航导弹, 2005, (2): 50-55.
    [98]田亚强,任学平,侯红亮.置氢TC21合金粉末压制方程研究[J].塑性工程学报, 2009, 16(1): 144-148.
    [99]岳书霞.高速压制成形中金属粉末本构方程的研究[D].长沙:中南大学学位论文, 2008: 19-27.
    [100]李春峰.特种成形与连接技术[M].北京:高等教育出版社, 2005: 13-14.
    [101]果世驹,迟悦,孟飞,等.粉末冶金高速压制成形的压制方程[J].粉末冶金材料科学与工程, 2006, 11(1): 24-27.
    [102] Zhou M, Rosakis A J, Ravichandran G. Dynamically Propagating Shear Bands in Impact-loaded Prenotched Plates-I. Experimental Investigations of Temperature Signatures and Propagations Speed[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 981-1006.
    [103] Meyers M A, Park H R. Observation of an Adiabatic Shear Band in Titanium by High-voltage Transmission Electron Microscopy[J]. Acta Meterialia, 1986, 34(12): 2493-2499.
    [104]叶途明.粉末冶金材料的温压行为及其致密化机理研究[D].长沙:中南大学学位论文, 2007: 63-64.
    [105] Mamalis A G, Manolakos D E, Kladas A G, et al. Electromagnetic Forming Tools and Processing Conditions: Numerical Simulation[J]. Materials and Manufacturing Processes, 2006, 21(4): 411-423.
    [106]刘大海. 5052铝合金板材磁脉冲辅助冲压成形变形行为及机理研究[D].哈尔滨:哈尔滨工业大学学位论文, 2010: 24-48.
    [107]赵志衡.管坯电磁胀形磁场力的研究[D].哈尔滨:哈尔滨工业大学学位论文. 2001: 71-73.
    [108]陈火红,杨剑,薛小香,等.新编Marc有限元实例教程[M].北京:机械工业出版社, 2007: 1-3.
    [109] Shima S, Oyane M. Plasticity Theory for Porous Metals[J]. InternationalJournal of Mechanical Sciences, 1976, 18(6): 285-291.
    [110]周洁.粉末成形过程的计算机模拟[D].昆明:昆明理工大学学位论文, 2005: 35-37.
    [111]王德广,吴玉程,焦明华,等.压制方式对粉末冶金制品性能影响的有限元模拟[J].粉末冶金技术, 2008, 26(2): 88-93.
    [112]任学平,康永林.粉末塑性加工原理及其应用[M].北京:冶金工业出版社, 1998: 47-90.
    [113]常宏.功能陶瓷低电压电磁双向压制的成型机制及模拟研究[D].武汉:武汉理工大学学位论文, 2007: 36-54.
    [114]邓将华.电磁铆接数值模拟与实验研究[D].哈尔滨:哈尔滨工业大学学位论文, 2008: 40-41.
    [115]田亚强,陈晓辉,侯红亮,等.置氢对TC4合金粉末性能和压制性能的影响[J].北京科技大学学报, 2008, 30(8): 893-897.
    [116]李金平.机械合金化CuCr触头材料粉爆炸压实-低温烧结成形的研究[D].哈尔滨:哈尔滨工业大学学位论文, 2003: 30-48.
    [117] Leseur D R. Experimental Investigations of Material Models for Ti-6Al-4V Titanium and 2024-T3 Aluminum[R]. Washington: U.S. Department of Transportation Federal Aviation Administration, 2000: 5-12.
    [118]汪军.钛合金的蠕变行为研究[D].哈尔滨:哈尔滨工业大学学位论文, 2008: 20-22.
    [119]黄伯云,李成功,石力开,等.中国材料工程大典第4卷有色金属材料工程(上)[M].北京:化学工业出版社, 2005: 499-751.
    [120]王金相.爆炸粉末烧结的细观沉能机制研究[D].大连:大连理工大学学位论文, 2005: 18-87.
    [121]喻岚.注射成形钛合金的研究[D].长沙:中南大学学位论文, 2004: 46-49.
    [122] Budinski K G. Tribological Properties of Titanium Alloys[J]. Wear, 1991, 151(2): 203-217.
    [123]金泰来,魏建锋,顾兆林,等. TC4合金特高温下的氧化行为研究[J].钛工业进展, 2005, 22(4): 19-22.
    [124]严伟.热氧化工业纯钛表面硬化层的结构与性能[D].杭州:浙江大学学位论文, 2004: 18-19.
    [125]王亚明. Ti6Al4V合金微弧氧化涂层的形成机制与摩擦学行为[D].哈尔滨:哈尔滨工业大学学位论文, 2006: 95-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700