羧基烷基硫代丁二酸的合成及其缓蚀阻垢机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油田进入后期开发后,普遍采用注水采油的工艺,为减轻注采系统的腐蚀和结垢问题,一般采用加入缓蚀阻垢剂的方法。然而适合油田高温高压高矿化度等条件的缓蚀阻垢剂种类较少,并且一般都含有磷。羧基烷基硫代丁二酸是近年来为了满足环保要求而开发的一类新型助剂,其合成报道最早见于1999年法国Elf Atochem S.A.公司申请的专利,然而关于其性能尤其是缓蚀阻垢性能的研究在国内外均为少见。
     本论文主要以羧甲基硫代丁二酸和羧乙基硫代丁二酸为研究对象,通过对羧乙基硫代丁二酸合成反应体系进行热力学计算与分析得出适宜的反应温度,通过实验筛选出适宜的溶剂和催化剂,以3-巯基丙酸和马来酸合成了羧乙基硫代丁二酸,以巯基乙酸和马来酸合成了羧甲基硫代丁二酸。适宜的反应条件为:反应物配比为1:1,溶剂为水,催化剂为D301-R,在常压,100℃下进行,产物收率为84%,纯度为90%左右。试验出一种产物提纯的方法,并用1HNMR、IR、熔点测定和碱熔试验等手段对产物进行了表征。
     参照行业标准SY/T5673-93和模拟某油田水质两种方法对合成产物的阻垢性能进行了评价,并与几种常用缓蚀阻垢剂的阻垢性能进行了对比。结果表明在模拟油田水质的高温高压高矿化度条件下,100mg/L提纯羧甲基硫代丁二酸的阻垢率达90%,优于POCA、HPMA两种常用缓蚀阻垢剂和羧乙基硫代丁二酸。并考察了浓度、温度、压力和流速等条件对羧甲基硫代丁二酸在模拟某油田水质中的阻垢性能影响。通过羧甲基硫代丁二酸溶解碳酸钙的实验表明,羧甲基硫代丁二酸对钙离子具有螯合作用。对加入不同缓蚀阻垢剂制备的CaSO4垢样和CaCO3垢样进行SEM和XRD分析表明,羧甲基硫代丁二酸的阻CaSO4垢机理主要是使晶格发生畸变作用,阻CaCO3垢机理主要是螯合增溶作用。
     参照SY/T5273-2000中常压静态腐蚀速率及缓蚀率测定方法对羧甲基硫代丁二酸的缓蚀性能进行了评价,结果表明100mg/L提纯羧甲基硫代丁二酸对A3钢在模拟某油田水质中的缓蚀率为49.6%。并考察了浓度和温度对羧甲基硫代丁二酸缓蚀性能的影响。通过对A3钢在加入羧甲基硫代丁二酸前后的模拟油田水质进行极化曲线和交流阻抗测试发现,羧甲基硫代丁二酸是一种混合型缓蚀剂,缓蚀机理主要是分子中的S与Fe原子未占据的空d轨道形成配位键,并在金属界面通过界面转化或螯合等作用形成了缓蚀剂吸附膜。
After the advanced stage of development of oilfield, water injection process is commonly adopted. In order to alleviate the problem of scale and corrosion in injection-production system, adding corrosion and scale inhibitor is needed. However, appropriate corrosion and scale inhibitors are rarely used in characters of high temperature, high pressure and high salinity of injection water, and contain phosphorus generally. Caboxyalkylthiosuccinic acids are new kinds of additives developed to meet environmental protection requirements. The synthesis of caboxyalkylthiosuccinic acids were earliest reported by France Elf Atochem S. A. Company in 1999 as a patent. However, Their performances, especially about corrosion and scale inhibitors were rarely researched both at home and abroad.
     This paper mainly studied caboxymethylthiosuccinic acid and caboxyethylthiosuccinic acid. Through thermodynamic estimating synthesis of carboxyethylthiosuccinic acid, the appropriate reaction temperature was obtained. Through experiments, the appropriate solution and catalyst were obtained. Eventually, caboxymethylthiosuccinic acid was prepared by mercaptoacetic acid and maleic acid, and carboxyethylthiosuccinic acid was prepared by 3-mercaptopropionic acid and maleic acid. The optimized reaction additions were as follows. Molar ratio of reacant was 1:1, solvent is water, catalyst was resin D301-R, and the reaction was carried at atmospheric pressure and reflux temperature. The yield of product was 84%, and its purity is 90% or so. A purification method was test out, and synthesized products were characterized by 1HNMR, IR, melting point determination and alkali-melting experiment.
     Two methods were adopted to evaluate the performances of scale inhibition of synthesized products. One was according to SY/T5673-93, the other was simulating some oilfield conditions. And performances of scale inhibition of some commonly used performances of corrosion and scale inhibition inhibitors and synthesized products were compared. The results showed that under the conditions of high temperature, high pressure and high salinity simulating some oilfield conditions, the scale inhibition rate was reached 90% when using 100mg/L purified caboxymethylthiosuccinic acid, better than commonly used POCA, HPMA and caboxyethylthiosuccinic acid. The influences of concentration, temperature, pressure and flow rate on performances of caboxymethylthiosuccinic acid were investigated. The experiments of caboxymethylthiosuccinic acid dissolving CaCO3 showed caboxymethylthiosuccinic acid had chelating effect of calcium. The scale samples of CaSO4 and CaCO3, prepared by adding different corrosion and scale inhibitors, were analyzed by SEM and XRD. The mechanism of CaSO4 scale inhibition by caboxymethylthiosuccinic acid was to cause distortion of crystal lattice, and the mechanism of CaCO3 scale inhibition by caboxymethylthiosuccinic acid was to cause chelating and solubilization effect.
     According to SY/T5273-2000, the corrosion inhibition performance of Caboxymethylthiosuccinic acid to A3 steel in simulated solution was evaluated. The results showed that the corrosion inhibition rate was 49.6% when using 100mg/L purified Caboxymethylthiosuccinic acid. And the influences of concentration and temperature were investigated. Through testing polarization curves and ac impedance of A3 steel in simulated solution before and after adding caboxymethylthiosuccinic acid, it showed that caboxymethylthiosuccinic acid belonged to hybrid type corrosion inhibitor, and its mechanism was mainly the coordination bonds formed by the molecule’s S and the d orbitals of Fe, and forming absorption film on metal surface through interface transform and chelation.
引文
[1] Abdul Hameed Al-Hashem,M.Salman,and John A.Carew.Evaluation of Scale Inhibitors for Seawater Injection System in North Kuwait[J].NACE98074,1998.
    [2] Abdul Hameed Al-Hashem,M.Salman and K..Al-Muhanna.Scale Inhibitor Evaluation for an Effluent Injection System in West Kuwait[J].NACE00330,2000.
    [3] Abdul Hameed Al-Hashem and John A.Carew.Laboratory Evaluation Study of Scale Inhibitors for West Kuwait Oil Fields Injection System[J].NACE04396,2004.
    [4] Charles J.Hinrichsen.Preventing Scale Deposition In Oil Production Faclities:An Industry Review[J].NACE98061,1998
    [5] J. Carew,J. Tuck, and A. Al-hashem. Field Study of Corrosion and Scale Inhibitors in Oilfield Gathering Centers of Kuwait[J].NACE06396, 2006
    [6]黄光团,甄库,陆柱.新型咪唑啉衍生物油田注水缓蚀剂的研究[J].腐蚀与防护, 2004,25(2):50
    [7]韩大匡.深度开发高含水油田提高采收率问题的探讨[J].石油勘探与开发,1995, 22(5): 47
    [8]赵福麟.油田化学[M].山东东营:石油大学出版社,2000:286
    [9]路遥,陈立滇.油田水结垢问题[J].油田化学,1995,12(3):281~286
    [10]卡夏夫采夫.石油开采中结盐的预测及防治[M].张瑞年等译.北京:石油工业出版社,1992.
    [11]舒干,邓皓,王蓉沙.对油气田结垢的几个认识[J].石油与天然气化工,1996, 25(3):176 ~178
    [12]梁利生.刚结构表面腐蚀的危害与防护[J].山西建筑,2007,33(30):166
    [13]李静,曲桂香.热水供暖系统中氧腐蚀的原因、危害及除氧措施[J].内蒙古环境科学,2007,19(4):60
    [14]李庆,张秀菊,王国蓉.细菌和微生物腐蚀与危害[J].化学工程师,1998,65(2):38~39
    [15]郑邦乾,朱清泉.高分子阻垢剂及其阻垢机理[J].油田化学,1984,5(2):181~185
    [16] Suttor J W,Marner W J,Ritter R B.The History and Status of Research in Fouling of Heat Exchangers in Cooling Water Service[J].ChemEng,1977,55~374
    [17]姚广致,成荣钊.阻垢剂对碳酸钙垢的抑制能力[J].工业水处理,1986,6(4):36
    [18]李裕芳.阻垢剂分散剂控制沉积机理探讨[J].工业水处理,1984,4(3):6~9
    [19]汪祖模.水质稳定剂[M].上海:华东化工学院出版社,1991
    [20] Shaheen E I,Dixit N S.Scale Reduction in Saline Water Conversion [J].Desalination,1973,13:187~200
    [21] Gill J S , Anderson C D , Varsanik R G . Mechanism of scale inhibition by phosphonates[A].Proc 44th Int Water Conf [C].Pittsburgh:Pa,1983,4:26
    [22]赵志仁,雷武,夏明珠等.评定阻垢剂阻垢性能的玻璃电极法[J].南京理工大学学报:自然科学版,2001,25(4): 416~419
    [23]王永仪,费书安.蒸发浓缩法评定阻垢剂性能时浓缩终点的判断指标[J].工业水处理,1995,15(4): 25 ~27
    [24]龙荷云.循环冷却水处理[M].第3版.南京:江苏科学出版社,2001: 120 ~189.
    [25]陈胜,林钢.高炉煤气洗涤水系统结垢监测概述及CaCO3沉淀势现场应用实例[J].工业水处理,1997,17(2):36 ~37
    [26]张青,吴文辉.临界pH在阻垢剂研究中的应用[J].工业水处理,1997,17(1): 33~34
    [27]雷武,赵志仁,夏明珠等.pH位移法评定阻垢剂的阻垢性能[J].理化检验(化学分册),2002,38(3): 125~127
    [28] Drela I, Falewicz P,Kuczkowska S. Newrapid test for evaluation of scale inhibitors[J]. Wat.Res., 1998, 32(10):3 188~191
    [29]徐寿昌.工业冷却水处理技术[M].北京:化学工业出版社,1984: 22~48
    [30]吴星五,李国建,高廷耀.微电解法检测冷却水的结垢性能研究[J].中国给水排水,1999,15(10): 1~4
    [31] Neville A,Morizot A P.A combined bulk chemistry/electrochemical approach to study the precipitation,deposition and inhibition of CaCO3[J]. Chemical Engineering Science, 2000, 55(20): 4737~4743
    [32]翟祥华,葛红花,周定国等.评定阻垢剂性能的电化学方法[J].工业水处理,2004,24(6): 375~377
    [33]王风云,雷武,夏明珠.阻垢剂性能评定方法中的问题与讨论[J].工业水处理,2004,24(2): 1~4
    [34] Morizot A, Neville A, Hodgkiess T. Studies of the deposition of CaCO3 on a stainless steel surface by a novel electrochemical technique[J]. Crystal Growth,1999,198-199:738~743
    [35]程云章,翟祥华,葛红花等.阻垢剂的阻垢机理及性能评定[J].华东电力,2003,31(7): 14~18
    [36]陆柱,陈中兴,蔡兰坤等.水处理技术[M].上海:华东理工大学出版社,2000: 392~393
    [37]杨善让,徐志明,孙灵芳.换热设备污垢与对策.第2版[M].北京:科学出版社,2004: 1~5
    [38] HG/T2160—1991,冷却水动态模拟试验方法
    [39] Ownes W L.A simple device for measuring fouling in a heat exchangertube[J]. Solar Energy Engineering,1986,108(2): 135~138
    [40] Garcia C,Courbin G,Ropital F,et al.Study of the scale inhibition by HEDP in a channel flowcell using a quartz crystal microbalance[J]. Electrochimica Acta,2001,46(7): 973~985
    [41]秦晓,韩柏平.运用石英微天平评价阻垢剂性能[J].水处理技术,2005,31(5):51~54
    [42]杨庆峰,丁洁,沈自求.CaCO3阻垢剂的分形评价[J].高等化学工程学报,1999,13(3): 32~33
    [43] Tomson M B,Nancollas G H.Mineralization kinetics: A constant composition approach[J]. Science,1978,200: 1059 ~1 065
    [44]方健,李广兵,严振宇等.运用恒定组分技术评价化学阻垢剂的阻垢效果[J].工业水处理,2001,21(12): 17~20
    [45] Nancollas G H.A Controlled Composition Study of Calcium Carbonate Crystal Growth: The Influence Scale Inhibitors[J]. Corrosion,1981,37(2): 76~79
    [46] Davis R V,Carter P W.The Use of Modern Methods in the Development of Calcium Carbonate Inhibitor for Cooling Water System[A]. Mineral Scale Formation and Inhibition[M]. London: Plenum Press, 1995: 33 ~37
    [47]雷武,夏明珠,王风云.冷却水系统中阻垢剂性能的评定方法[J].化工进展,2002,21(4): 275~277
    [48]汪祖模,蔡兰坤.有机膦酸羧酸型水质稳定剂的研究[J].华东化工学院学报,1989,15(5): 605~614
    [49] Carter P W,Hillier A C,Ward M D.Nanoscale surface topography growth of molecule crystals: the role of anisotropic inter-molecule bybonding [J]. Am. Chem. Soc.,1994,116: 944 ~ 948
    [50]龙一波.缓蚀剂及其在工业上的应用[J].现代涂料与涂装, 1999(4):29~32
    [51] Growcock F B,Lopp V. R. Film Formation on Steel in Cinnamaldehyde-Inhibited Hydrochloric Acid [J]. Corrosion,1988,44(4): 248~254
    [52] Growcock F B,Frenier W W.Kinetics of Steel Corrosion in Hydrochloric Acid Inhibited with trans-Cinnamaldehyde [J]. J.Electrochem.Soc.,1988,135(4): 817~823
    [53] Frenier W W. Development and Testing of a Low Toxicity Acid Corrosion Inhibitor for Industrial Cleaning Applications [J].Materials Performance, 1997, 36(2): 63~69
    [54]刘峥.糠醛对碳钢缓蚀性能的研究[J].材料保护,2001,34(4): 8~9
    [55] El-Etre AY. Inhibition of Acid Corrosion of Aluminum Using Vanillin[J].Corrosion Science,2001,43(6): 1031~1039
    [56] Diana Darling,Ram Rakshpal.Green Chemistry Applied to Corrosion and scale Inhibitors[J]. Materials Performance,1998,37(2): 42~45
    [57] Schmitt G,Saleh A O.Evaluation of Environmentally Friendly Corrosion Inhibitors for Sour Service[J].Materials Performance,2000,39(8): 62~64
    [58]杨文治.缓蚀剂[M].北京:化学工业出版社,1989,137
    [59]杨巍.美国水处理化学品市场现状与展望[J].工业水处理,1998,18(2): 7~11
    [60] Hluchan V,Wheeler B L,Hackerman N.Amino Acids as Corrosion Inhibitors in Hydrochloric Acid Solutions[J]. Werkstoffe und Korrosion,1988,39(11): 512~517
    [61] Telegdi J,Kálmán E,Kármán F K.Corrosoion and Inhibition with Systematically Changed Structure[J].Corrosion Science,1992,33(7): 1099~1103
    [62] Kalota D J,Silverman D C.Behavior of Aspartic Acid as a Corrosion Inhibitor for Steel[J]. Corrosion, 1994,50(2): 138~145
    [63] Tang J D,Fu S L,Emmans D H. Modified Polyaspartic Acid Copolymers for Biodegrade Corrosion Inhibitors and Scale Control in Aqueous Petroleum Media[P]. USA: 6022401,1999
    [64]陆柱.绿色化学及其技术在腐蚀防护中的应用[J].腐蚀与防护,1999,20(5): 201~205
    [65] Al-Mayouf A.M. Amino Acids as Corrosion Inhibitors for Aluminium in Acid-Chloride Solutions[J]. Corrosion Prevention & Control,1996,43(3):68~74
    [66] Bilgic S,Aksüt A A.Effect of Amino Acids on Corrosion of Cobalt in H2SO4[J]. British Corrosion Journal,1993,28(1):59~62
    [67] Aksüt A A,Bilgic S.The Effect of Amiano Acids on the Corrosion of Nickel in H2SO4[J]. Corrosion Science,1992,33(3):379~387
    [68] Gamal K Gomma,Mostafa H Wahdan.Effect of Temperature on the acidic dissolution of Copper in the Presence of Amino Acids[J].Materials Chemistry and Physics,1994,39(2): 142~148
    [69] El-shafei A A,Moussa M N H,El-Far A A.[J]. Appl.Electrochem.,1997,27(9):1075
    [70] Hackerman N,Hard R. Proceedings of the 1st International Congress on Metallic Corrosion[J]. Butterworths, London,1962,166
    [71]邓滨才.缓蚀剂的作用机理及应用[J].化学工程师,1995,51(6):43~44
    [72]朱苓.缓蚀剂缓蚀作用的研究方法[J].腐蚀与防护,1999,20(7):300~302
    [73] Annua1 Book of ASTM Standards[M].Vo1ume1l.01.Water(1),ASTM,1985
    [74] Mathur P B,Vasudevan T. [J]. Corrosion,1982,38:171
    [75] Fouda A S etal.[J]. Corr.Sci.1986,26: 719~726
    [76] M. Stern,A. L. Geary. Electrochemical polarization: A theoretical analysis of the shape of polarization curves[J]. Electrochem.Soc.,1957,104(1):56~63
    [77] K. Kanno,M.Suzuki,Y. Sato.An application of coulostatic method for rapid evaluation of metal corrosion rate in solution[J]. Electrochem.Soc.,1978,125(9):1389~1393
    [78] K. Kanno,M.Suzuki,Y. Sato.Tafel slope determination of corrosion reaction by the corrosion method[J]. Corrosion science,1980,20(8):1059~1066
    [79]赵常就.恒电量测试技术在金属腐蚀测量中的应用[M].北京:国防工业出版社,1995
    [80] C. Monticelli,G. Runoro,A. Frigani etal. Evaluation of corrosion inhibitors by electrochemical noise analysis[J]. Electrochem. Soc.,1992,139(2): 706~711
    [81]木冠南.纯铝在盐酸溶液中腐蚀的研究[J].化学通报,1986,(2): 38~39
    [82] F. Mansfeld, T. Smith, E. P. Parry.Benzotriazole as corrosion inhibitor for copper[J]. Corrosion,1971,27(7): 289 ~294
    [83] N. D. Hobbins,R. F. Roberts. An ellipsometric study of thin films formed on copper by aqueous benzotriazole and benzimidazole[J]. Surf.Technology,1979,(9): 235~240
    [84]李汉.循环冷却水中聚磷酸盐缓蚀剂的缓蚀机理初步研究[J].工业水处理,1986, 6(2): 9~13
    [85] G. Lewis.Auger analysis of benzimidazole-passivated copper[J]. corrosion,1982,38(9): 119~121
    [86]李燕,陆柱.表面分析技术在钨酸盐缓蚀机理研究中的应用[J].腐蚀与防护,2000, 21(10): 447~450
    [87] C. A. Olsson,P.Agarwal,M. Frey et al.An XPS study of the adsorption of organic inhibitors on mild steel surfaces[J]. Corrosion Science,42(7): 1197~1211
    [88] F. Kadirgan,S. Suzer. Electrochemical and XPS studies of corrosion behavior of a low carbon steel in the presence of FT2000 inhibitor[J]. Journal of electron spectroscopy and related phenomena,2001,114~116,597~601
    [89] D.A.López,W. H. Schreiner,S. R. deSánchez et al. The influence of inhibitors molecular structure and steel microstructure on corrosion layers in CO2 corrosion: An XPS and SEM characterization[J]. Applied Surface Science, 2004,236: 77~97
    [90] D.P.Schweinsberg,A. Trueman,V. Otieno-Alego.An electrochemical and SERS study of H2SO4[J]. Corrosion science, 1996,38(4):587~599
    [91] V.O tieno-Alego,N. Huynh,T. Notoya. Inhibitive effect of 4-and 5-carboxybenzotriazole on copper corrosion in acidic sulphate and hydrogen sulphide solutions[J]. Corrosion science, 1999,41(4) : 685~697
    [92] M. Fleischman,G. Mengoli,M. M. Musiani et al. An electrochemical and Raman spectroscopy investigation of synergetic effects in the corrosion of copper[J]. Electrochem.Acta, 1985,30 (12): 1591~1602
    [93]余家康,曹楚南,林海潮.氯代十六烷基吡啶在铝电极上电化学和SERS研究[J].腐蚀科学与防护技术,1997,9(3): 236~239
    [94]徐群杰,陆柱.复方乌酸盐对铜缓蚀协同作用的光电化学和SERS研究[J].化学学报,2001,59(6): 950-955
    [95]查英华,田中群.用表面增强拉曼光谱研究BMAT对不锈钢的缓蚀机理[J].电化学,1995,1(2): 152~158
    [96] G.Mengoli , M. M. Musiani.Enhanced raman scatting from iron melectrodes[J]. Electrochem Acta, 1987,32(8): 1239~1245
    [97]高辉庆,贺涛.绿色缓蚀阻垢剂的研究进展[J].精细与专用化学品,2005,14(9):15
    [98]张大全.绿色化学及其技术在缓蚀剂研究开发中的应用[J].材料保护,2002,35(1):
    [99] Yves Labat , Jean-Pierre Muller.Synthesis of carboxyalkylthiosuccinic acids[P].US: 5922910,1999
    [100] Kato Kenji. Production of Carboxyalkylthiosuccinic Ahydride[P].JP: 311055,1996
    [101]刘克杰.羧乙基硫代丁二酸的合成及以其为主螯合剂的新型除垢剂的研究[D].四川大学硕士论文,2007
    [102]刘克杰,应建康,段利波.羧乙基硫代丁二酸的合成研究[J].四川化工,2006,9(1):11
    [103]周晓东,王卫,王凤英.工业缓蚀阻垢剂的应用研究进展[J].腐蚀与防护,2004,25(4): 152~156
    [104]景晓燕,易华,梁志刚.缓蚀-阻垢剂的现状与发展[J].化学工程师,2003,96(3):34~35
    [105]邢其毅,徐瑞秋,周政等.基础有机化学第二版下册[M].北京:高等教育出版社,1994: 1097
    [106]姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科学技术出版社,1985
    [107] Robert C. Weast. CRC Handbook of Chemistry Physics, 69th Ed[M]. Boca Raton 1988 ~ 1989
    [108] Constantinous L, Gani R. New Group Contribution Method for Estimating Properties of Pure Compouds[J]. IChE J, 1994, 40: 1697
    [109] Ducros M, Gruson J F, Sannier H. Estimation des Enthalpies de Vaporization des Composes Organiques Liquids[J]. Thermochim Acta, 1980,36:39
    [110] Joback K G , Reid R C. Estimation of Pure-Component Properties from Group-Contributions[J]. Chem Eng Comm, 1987,57: 233
    [111] Rozicka Jr V, Domalski E S. Estimation of the Heat Capacities of Organic Liquids as a Function of Temperature Using Group Additivity[J]. J Phys Chem Ref Data, 1993, 22:597,
    [112]赵国良,靳长德.有机物热力学数据的估算[M].北京:高等教育出版社,1983
    [113]马沛生.化工数据[M].北京:中国石化出版社,2003
    [114]王正列,周亚平.物理化学上册第四版[M].北京:高等教育出版社,2001
    [115]卢湧泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989
    [116]吴性良,朱万森,马林.分析化学原理[M].北京:化学工业出版社,2004
    [117] SY/T 5673-93,油田用防垢剂性能评价方法
    [118] GB7476-87,水质——钙的测定——EDTA滴定法
    [119] SY/T 0600-1997,油田水结垢趋势预测
    [120] SY/T 5273-2000,油田采出水用缓蚀剂性能评价方法
    [121] JB/T 7901-1999,金属材料实验室均匀腐蚀全浸试验方法
    [122]施耀曾,孙祥祯,蒋燕灏等.有机化合物光谱和化学鉴定[M].江苏:江苏科学技术出版社,1988
    [123]夏明珠,雷武,王风云.膦酰基羧酸调聚物缓蚀性能的量子化学研究[J].计算机与应用化学,2008,23(2): 209~210
    [124]杜天保,余家康,曹楚南.铁在硫酸中腐蚀电位下的EIS及添加DDA和CI的影响[J].腐蚀科学与防护技术,1995,7(4): 300
    [125]中国腐蚀与防护学会.腐蚀电化学研究方法[M].北京:化学工业出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700