云南腾冲热海地热田特征及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云南腾冲热海地热田位于腾冲县西南约12km,其地热流体温度高,表现形式复杂丰富,具有旅游、工农业、发电、医疗等方面开发的巨大潜力。因此,热海地热田特征及成因的研究具有重要的意义。
     腾冲地区构造运动活跃、断裂构造发育、岩浆活动频繁、火成岩分布广泛、新生代火山活动、现代水热活动异常强烈,温沸泉众多。
     热海热田是腾冲地热带热显示最强烈的热田之一,地热田地热显示范围为:北起硫磺塘、南至松木箐,东起忠孝寺,西抵芭蕉园的沟谷地带,面积约1.7km2。
     热海热田内不仅有各种不同温度的热泉,而且有冒汽地面、泉华、泉胶砂砾岩,喷气孔以及岩石水热蚀变等。区内共发现热泉25个,热水化学类型以HCO3·C1—Na型和C1·HCO3—Na型(包括C1·CO3—Na)为主,其它热水化学类型有:SO4—Na型、HCO3—Na, C1—Na型、SO4·C1—Na型、HCO3—Ca型、HCO3—Ca·Na·Mg型和HCO3·SO4—Na型。热泉水温度、流量、水的化学组份比较稳定,不随季节变化。
     热田处于腾冲—陇川水热活动带中北部,热源为地壳深部的岩浆,区内南北向、东西向断裂发育,近南北向的断裂是热田构造的主体,东西向断层是热田次级断层,往往是地表热显示最强烈的地方,大量热显示均沿断层带分布,并以高温热泉为主,其交叉部位是导热、导水的良好通道,大盈江断裂和忠孝寺—大寨断裂,是主要的控热构造。
     研究区地热水的氢氧同位素组成与雨水、地表水、常温地下水非常接近说明大气降水是地热水的主要补给来源。区内地下水的δD值相对于深部热流体的δD值高21‰,推断地下热水并不仅仅是由当地的降水补给,同时由地理位置较高的山区降水补给,且补给区很可能位于北东部较远山区的高黎贡山群变质岩区。
     因南林组(N1n)砂砾岩胶结较紧密,普遍高岭土化,渗透性差,是热田的良好盖层,其断层带构成浅层热储,下部的高黎贡山变质岩和燕山晚期花岗岩经多次构造运动影响,断裂、节理、裂隙发育,为热水的运移和储存提供了空间,形成深部脉状热储和局部层状热储。
     热田深部热流体C1—Na型热水在向上运移过程中,随着02含量的增加、岩石的溶滤和浅部冷水的不断混入形成不同的水化学类型。热水中,K、Na、C1、 HCO3、As、HBO2、SiO2、矿化度、PH值等与水温关系较密切,由于浓缩作用、混合作用和其它因素的影响,一般呈正相关关系,除SiO2外,其余均为对数函数关系。热田内存在“冷”、热水混合作用,冷水混合比例为60%到70%。地热水的化学组份主要来源于岩浆分异、岩石溶滤和常温地下水的带入。
     通过对周边瑞滇热田和邦腊掌温泉水化学类型的比拟推断热海热田地区热储岩性主要为燕山期花岗岩与概念模型中得出的结论相符合。
     研究区内的地质构造、地层岩性、水文地质条件、地震和岩浆活动等直接控制着地温场的变化。区内地温异常总体趋势北东高,南西低,大地热流值极高。根据能量守恒定律与傅里叶定律建立热传导数学关系式,对热储温度、地层厚度、岩浆侵入时间进行了计算,得出了与概念模型相吻合的结论,符合研究区水文地质与地热地质条件。
     文章利用石英温标和钾镁地热温标、氢氧同位素特征、氚法测年进行计算得出浅层热储为165℃,深层热储为250℃:热水循环深度为1461m;混合后热海热田区混合热水年龄大于15年。通过对地下热水的补给和径流条件分析并结合热水的温度和氘值,将腾冲热海热田地区划分混合型和深部流体型两种运移模式。
     本文在收集整理和综合分析前人资料的基础上,系统分析了区域地质条件、地热地质背景、地热显示特征、地球物理特征以及热流体物理化学特征。在此基础上,分别从地球物理综合分析、热源、热流体来源、热储条件、热通道及盖层等方面进行了深入研究建立了热海地热田的概念模型。
     文章为了更深入的研究热海地热田的成因模式,又分别对化学场和地温场进行了研究。通过对化学场的化学类型成因、分布规律、化学组份与水温的关系、化学组份的形成、混合模型的定量分析,建立了热流体化学模型,确定了热储岩性,为地温场的模拟奠定了条件并进一步验证了概念模型的正确性。后又从地温场的背景、异常特征、地温梯度特征、大地热流特征以及地温场的影响因素着手,建立了地温场解析模型,得到了与化学模型、概念模型基本吻合的结论。本文在综合分析研究概念模型、水化学场、地温场的基础上对热储温度、热水循环深度、热流体年龄及热流体的运移模式进行了计算、分析并建立了热海热田成因模型,以集中展示地热田的特征和成因机制,为本区的地热资源开发利用提供科学依据。
The Rehai geothermal field lies about12km from the Tengchong Town, Southwestern Yunnan, China.The field is still very rich in active manifestations such as boiling spring, With tourism, agriculture and industry, power generation, medical, great potential for development.In this case,this paper focuses on the characteristics of the geothermal field and analyzing its formal modal of Rehai in Tengchong.
     In Tengchong region,,the structure movement is activity, the fault structure develops well,the magmatic activity is frequent and the igneous rock distributes extensively, the activity of cenozonic volcanoes and present-day hydrothermalactivity is intensive, the warm boiling spring is multitudinous.
     The Rehai geothermal has the heat-displaying which is one of most intense geothermal fields in Tengchong geothermal belt. The range of geothermal manifestation is:with Liuhuangtang and Songmuqing at its north and south ends respectively,with the Zhongxiao temple and Bajiao garden at its east and west ends.
     Not only there are many kinds of hot spring in the Rehai geothermal but also the steam ground, sinter, the spring rubber sandy conglomerate, fumarole as well as the hydrothermal alterations and so on.In the area it had been altogether discovered25hot springs, the hot water chemistry type by HCO3·Cl-Na and Cl·HCO3-Na (including Cl·CO3-Na) primarily, other hot water chemistry type includes:SO4-Na, HCO3-Na, Cl-Na, SO4·Cl-Na, HCO3-Ca, HCO3-Ca·Na·Mg and HCO3·SO4-Na.The hot water seepage temperature, the current capacity, the water chemistry component quite is stable, not along with seasonal variation.
     The geothermal field is in mid-north of the Tengchong-Longchuan hydrothermal activity belt, the heat source is the magma in the deep of earth's crust, in the area the fault structure develops well in NS-trending and EW-trending,and the NS-trending structure is the main, the EW-trending fault is the secondary fault, which is often the most intense heat-displaying and distributes along the fault zonewith high temperature hot springs primarily. Its overlapping spot is the heat conduction and leads the water the good channel.Daying Jiang breaks and Zhongxiao temple-Dazhai breaks is the main heat-controlling structure.
     The isotope hydrogen content of hot water extremely closes the rain water, the surface water and the normal temperature ground water.It shows that atmosphere precipitation is the hot water main source of supply. The δD value of groundwater is higher than deep hot fluid21‰. So we infer the underground hot water not merely is supplied by the local precipitation military, simultaneously by the geographical position high mountainous area precipitation military supplies, also the military supplies area very possibly is located the far mountainous area granite area.
     Because thesandy conglomerateof Nanlin formation (N1n) which is the good cap rock of geothermal field cements closely, universal kaolinization, poor permeability, its fault zone constitutes the shallow heat reservoir.The inferior metamorphic rock of Gaoligong and LATE YANSHANIAN GRANITES are deep veinlike hot-reservoir and partial layered reservoir which develop the break, the jointing and the crevasse.They have provided the space for the hot water migration and the storage.
     With the C1-Na hot water of deep hot fluid in geothermal field in the upward, it forms the different hydrochemistry type along the O2content increases, rock lixiviation and the shallow cold water mixes in unceasingly.In the hot water, K, Na, Cl, HCO3, As, HBO2, SiO2, the hardness index, the PH value and so on have close relations of the water temperature, as a result of Inspissation, mixer action and other factor influence. It is a positive correlation, besides SiO2, other for logarithmic function relations.There is mixing with cold and hot water,the proportion of cold water is60%to70%. The chemistry components of hot water come from magmatic differentiation, rock lixiviation and normal temperature ground water drag-in.
     Through the Comparison of hydrochemistry type with Ruidian and Banglazhang geothermal field we know the lithology of reservoiris is LATE YANSHANIAN GRANITES.
     In the research area The geologic structure, formation lithology, hydro geological conditions, earthquake and magmatic activity and so on charge the geothermal fieldchanges.In area north ground temperature unusual overall tendency east high, south west low, the earth thermal current value is extremely high.According to the law of conservation of energy and the Fourier's law we establish heat conduction mathematics relationship. The result of reservoir temperature, the stratum depth, the magmatic intrusion time is consistent with the conceptual modeland hydrology geology condition.
     Using the quartz temperature scale, K-Mg temperature scale,the isotope hydrogen characteristic, the tritium method,we get that the temperature of the shallow thermal reservoir is165℃and the deep thermal reservoir is250℃; The hot water depth of round is1461m; The mixed hot water age is bigger than for15years. Through analyzes the condition of the groundwater intake and runoff combined with the temperature and the deuterium value, the migration patternof Tengchong geothermal field is summarized mixed type and depth portion fluid.
     On the basis of the integration and summarization to previnus data, it was analyzed the regional geological condition,geothermy geology background, geothermy demonstration characteristic, geophysics characteristic as well as thermal fluid physical chemistry characteristic.In this foundation, this paper deep researches separately from the geophysics generalized analysis, the heat source, the hot liquid sources,the geothermal reservoir condition,, the hot channel, and aspects and so on to build conceptual model.
     This paper research the hydrogeochemistry and geothermal field in order to more powerful certificate the genetic models. The paper has studied the chemical type, the distribution law, the relationship between the chemical composition and temperature, chemical composition formation. It has been carried on the quantitative analysis to the thermal fluid mix model, established the thermal fluid chemistry model and determined the geothermal reservoir lithological character. All of these are the basic of establishing the condition for the ground temperature field and building the conceptual model. It has established the ground temperature field analytical model and has got the conclusion that the same as the hydrogrochemistry and genetic model form the geothermal field background, anomalous character,geothermal gradient characteristic, heat flow characteristic as well as ground temperature field influence factor. This paper calculated and analyzed the reservoir temperature, the thermal groundwater, the thermal fluid age,the thermal fluid migration model and established the genetic model in the foundation of the conceptual model, the hydrochemistry field, the ground temperature field.All of these provide scientific proof for the exploration and usage of the geothermal resources in the area.
引文
[1]方宝明.山东省地热资源综合信息远景预测:[博士学位论文].吉林:吉林大学,2006
    [2]屈丽丽,云南省安宁温泉镇地热田模型研究,昆明理工大学硕士学位论文,2011.5
    [3]佟伟,章铭陶.腾冲地热.北京.科学出版社,1989
    [4]廖志杰,赵平等.滇藏地热带-地热资源和典型地热系统.北京:科学出版社,1999
    [5]邓紫娟.云南省腾冲热海热田水化学及同位素特征:[硕士学位论文].北京:中国地质大学,2009
    [6]上官志冠高清武赵慈平,腾冲热海地区NW向断裂活动性的地球化学证据,地震地质,2004,26(1):46-49
    [7]颜万登堡,腾冲热海温泉群化学特征与形成机理研究,地震研究,1998,21(4):388-395
    [8]符必昌,云南腾冲地热成因及水化学特征,云南工业大学学报,1998,14(3):46-50
    [9]丁建博,方丽萍.云南地热资源及开发利用.云南地质,1996,15(3):299-306
    [10]Katsuro Ogawa.Science and technology of geothermal energy development, Journal of the Society of Instrument and Control Engineers,2000, vol.39, No.1.
    [11]蔡义汉.地热直接利用[M].天津:天津大学出版社,2004
    [12]吕金波.京北地热田特征及其开发对地震地下流体动态的影响:[博士学位论文].北京:中国地震局地质研究所,2004
    [13]景成虎.邯郸东部平原地区地热地质特征及开发利用研究:[硕士学位论文].北京:中国地质大学,2007
    [14]徐寿波,彭敏华.能源技术[M].南京:江苏人民出版社,1988
    [15]朱俊生.国内外新能源和可再生能源发展现状[J].节能与环保,2001,4:33-35.
    [16]郑敏.全球地热资源分布与开发利用[J].国土资源,2007,67:56-57.
    [17]朱家玲.国内外地热资源开发利用概况[J].地热能,2003,10(6):20-28.
    [18]王贵玲,张发旺,刘志明.国内外地热能开发利用现状及前景分析[J].地球学报,2000,21(2):134-139.101
    [19]张克冰,赵素萍,薛江波.国内外地热资源开发利用的现状及发展思路[J].理论导刊,2002,8:58-60.
    [20]周念沪.地热资源开发利用务实全书[M].北京:中国地质科学出版社,2005
    [21]司士荣.国内外地热能开发利用综述.太阳能,1998,(2):7-9.
    [22]汪集旸.国内外地热资源开发利用发展趋势及我国地热可持续发展的前景·21世纪中国地热可持续发展论文集.北京:中国矿业联合会地热开发管理专业委员会编印,2000:16-26.
    [23]司士荣.国内外地热能开发利用综述[J].1998(2):6-7.
    [24]郑秀华.世界地热资源开发应用现状[J].探矿工程,2001,1:6-7.
    [25]张季生,武功建.世界直接利用地热资源的现状[J].物探与化探,2001,25(2):90-94.
    [26]李志茂,朱彤.世界地热发电现状[J].太阳能,2007,8:10-14.
    [27]李汉炎,张启.地热能利用回顾与展望.地热能,2000,3:2-11.
    [28]Huangshangyao.The Development of Geothermal Erergy in China.ESCAP.Asian Regional Symp.on Geothermal Energy.Rotorua/Auckland.N.Z.,1980,27oct.5 Nov
    [29]王维勇,黄尚瑶.地热基础理论研究[M].北京:地质出版社,1982
    [30]中国科学院地质研究所地热组.地热研究论文集.科学出版社,1978
    [31]中国地质科学院地质力学研究所.地热专辑第一辑.地质出版社,1976
    [32]中国科学地质研究所地热室编著.矿山地热概论.煤炭工业出版社,1981
    [33]李四光.地壳的概念(天文·地质·古生物).科学出版社,1972
    [34]黄尚瑶,汪集旸.地热研究现状及其发展趋势.水文地质工程地质,1979,(4)
    [35]黄尚瑶,王均,汪集旸等.中国温泉分布图及简要说明.全国地热学术讨论会论文选集.科学出版社,1979/1981
    [36]上田诚也,水谷仁.地球、岩波讲座.地球科学、岩波书店,1978
    [37]汤元浩三、濑野锦藏.温泉学.地人书店,1972
    [38]B.古登堡著(王子昌译).地球内部物理学.科学出版社,1965
    [39]Benfield,A-E., Terrestrial heat flow in Great Britain.Proc.Roy.Soc.London,A,1939, 173,428-450
    [40]Bullard,E.C.,Heat flow in South Africa.Proc.Roy.Soc.A.1939,173,474-502
    [41]Fournier,R.O.Rowe,J.T.,Fstinnation of underground temperature from the Silica content of water from test springs and steam wells.Amer.Jour.of Sci.,1966,264,685-697
    [42]Goguel J.La geothermic.Doin,Paris.1975
    [43]Hochstein,M.P.,Dickinson.D.J.,Infrared remote sensing of thermal ground in the Taupo Region.N.Z.In.UN Symp.on Development and Utilization of Geothermal Resources.Pisa.Italy.1970,2.,420-423
    [44]Jessop.A.M.M.A.Hobart and J.G.Sclater.The world heat flow data collection-1975.Geothermal Service of Canada.Geothermal Series.No 5.0ttawa.Canada,1976
    [45]Kappelmeyer.O.and R.Haenel.Geothermics with Special Reference to Application.Beijing,1974
    [46]Lee.W.H.K.,On the global variation of terrestrial heat flow.Phys.Earth Planet.Interiors,1970,2,332-341
    [47]Press.F.and R Siever.The internal teat of Earth.In Faith.W.H.San Francisco,1974,515-533
    [48]John W. Lund. Geothermal energy focus. In:http://www.re-focus.net.2006
    [49]Ruggero Bertani. World geothermal power generation in the period 2001-2005.In: Geothermics.34 (2005):651-690
    [50]John W. Lund, et al., Direct application of geothermal energy:2005 Worldwide review. In: Geothermics.34 (2005):691-727
    [51]汪集旸.近年来我国地热学的研究与展望.地球物理学报,1997,第40卷增刊:249-256
    [52]WangJiyang.Historical aspects of geothermal energy in China, Proceeding of the world Geothermal Congress,1995, International Geothermal Association, Rome,1:389 - 394
    [53]邓孝,余恒昌,陈碧碗.矿山地热及热害治理.北京:煤炭工业出版社,1991,404页
    [54]汪缉安,熊亮萍,杨淑贞.地热与石油.北京:科学出版社,1985,80页
    [55]汪集旸.根据地温资料推断气候变化—当代理论地热研究的一个前沿课题.第四纪研究,1992,(1):36—39
    [56]HuangShaopeng,Pollack,H.N.,WangJiyang,Cermak,V.,Ground surface temperature histories inverted from subsurface ternperature.J.of Southeast Asian Earth Sciences,1995,12(1/2):113 -120
    [57]中国科学院地质研究所地热组.中国第一批地热流数据.地震学报,1979,(I):91-107
    [58]陈墨香.新生代沉积盆地大地热流的方法[J].地质科学,1988(2):3-6.
    [59]陈墨香,汪集旸,汪缉安等.华北断陷盆地地热场特点及其形成机制[J].地质学报.1990,(1):80-91.
    [60]刘清林,黄邦武,贾杰华,孟建生.南阳市地热资源特征及成因探讨[J].河南地质,2001,9:176-184.
    [61]邓小颖,杨国平,田秋菊,陈付申.河南省鹤壁市新区地热流体特征及成因分析[J].水文地质工程地质,2005,(2):111-114.
    [62]栾光忠,刘红军,刘冬雁等.山东半岛温泉的地热属性及其特征[J].地球学报.2002,23(1):79-84.
    [63]吕金波,车用太,王继明等.京北地区热水水文地球化学特征与地热系统的成因模式[J].地震地质,2006,28(3):419-429.
    [64]张珂,马浩明,蔡剑波.华南沿海温泉成因探讨[J].中山大学学报,2002,41(1):82-86.
    [65]徐世光,陈连竹.昆明低温地热田及其开发利用[J].水文地质工程地质.2000,27(3):22-24.
    [66]薛传东,刘星,杨浩等.昆明市地热田越流含水系统中地下热水的数值模拟[J].地球科学进展,2003,18(6):899-905.
    [67]过帼颖,殷纯嘏.腾冲HCO3-Na型热泉水的化学模型.北京大学学报(自然科学版),1990,26(6):700-709
    [68]廖志杰,沈敏子,过帼颖.云南腾冲热海热田的热储特性.地质学报,1991:73-83
    [69]白登海,廖志杰,赵国泽,王绪本.从MT探测结果推论腾冲热海热田的岩浆来源.科学通报,1994,39(4):344-347
    [70]廖志杰,尹正武,贾希义,吕维新.腾冲热海热田的概念模型.高校地质学报,1997:212-219
    [71]符必昌.腾冲地热水化学特征及腐蚀机理探讨.水文地质工程地质,1998,(3):1-8
    [72]上官志冠.腾冲热海热田热储结构与岩浆热源的温度.岩石学报,1999:83-90
    [73]上官志冠,霍卫国.腾冲热海地热区逸出H2的δD值及其成因.科学通报,2001,46(15):1316-1319
    [74]王洪生,王身龙,夏训银.GPS事后差分在云南腾冲热海热田的地表调查及应用.科技信息,2011,(5):54-56
    [75]赵慈平、冉华、陈坤华.腾冲火山区壳内岩浆囊现今温度:来自温泉逸出气体CO2、CH4间碳同位素分馏的估计.岩石学报,2011:2883-2897
    [76]云南省腾冲县热海热田地热普查报告.云南省地质矿产局第二水文地质工程地质大队,1987
    [77]廖志杰.中国的火山、温泉和地热资源[M].北京:科学普及出版社,1990
    [78]郑敏.全球地热资源分布与开发利用[J].国土资源,2007,67:56-57
    [79]姜朝松,王绍晋,周瑞琦等.腾冲火山活动构造动力学研究.地震研究,2000,23(2):180-187
    [80]阚荣举,赵晋明,阚丹.腾冲火山地热区的构造演化与火山喷发.地震地磁观测与研究,1996,17(4):28-33;
    [81]覃玉玺,潘用泛.云南省温泉区划与地震空间关系的初步探讨.地震研究,1982,5(2):199-210
    [82]刘承志.云南省温泉之分布规律及其与地质构造关系.地质评论,1966,24(3):211-221
    [83]云南省腾冲县热海热田补充勘查研究报告.云南省科学技术委员会,1995
    [84]龙金茂.腾冲地热热田的分布及形成特征.成都地质学院学报,1988:79-85
    [85]万志军,赵阳升,康建荣.高温岩体地热资源模拟与预测方法.岩石力学与工程学报,2005,24(6):945-949
    [86]Craig, H.,1961b. Isotopic variations in meteoric waters. Science,133:1702-1703.
    [87]张惠,张新基.水文地质学中的环境同位素[M].黄河水利出版社.2006,1:144-206.
    [88]中华人民共和国1:200000区域水文地质普查报告腾冲幅.中国人民解放军00939部队,1980
    [89]廖志杰.滇缅泰构造域及其特殊的新生代火山活动.北京大学学报,自然科学版,1988,24(4):494-503
    [90]徐世光,郭远生.地热学基础.北京.科学出版社,2009
    [91]石卓.内蒙古赤峰热水镇地热田资源评价:[博士学位论文].吉林:吉林大学,2010
    [92]王迪.大瑞铁路高黎贡山越岭段热水形成机理及地温场特征分析:[硕士学位论文].成都:成都理工大学,2011
    [93]徐青,李翠华,汪缉安等.云南地热资源—以腾冲地区为重点进行解剖.地质地球化学,1997,(4):77-84
    [94]汪缉安,徐青,张文仁.云南大地热流及地热地质问题[J].地震地质,1990,12(4):367-377.
    [95]周春景,吴中海.滇西大理至瑞丽铁路沿线地温场特征及其工程地质意义.地质通报,2012,31(2—-3):326-336
    [96]周真恒,向才英,赵晋明.滇西地热场特征.地震研究,1995,18(1):41-48
    [97]周真恒,向才英.云南岩石圈地温分布.地震地质,1997,19(3):227-233
    [98]郑西来,刘鸿俊.地热温标中的水一岩平衡状态研究.西安地质学院学报,1996,18(1):74—79
    [99]王道.地热异常与地震活动关系的综合分析.内陆地震,1990,4(1):3343
    [100]张保健.鲁西北地区地下热水的水文地球化学特征及形成条件研究:[博士学位论文].北京:中国地质大学,2011
    [101]陶文铨.传热学.西安.西安工业大学出版社,2006
    [102]王经.传热学与流体力学基础.上海.上海交通大学出版社,2007
    [103]许鹤华,熊亮萍,汪集旸.垂向流体运移的热效应数学模型研究.地质评论,2000,46(增刊):266-268
    [104]新建大理至瑞丽铁路高黎贡山越岭地段加深地质工作高地温研究报告.云南地质工程第二勘察院有限公司地热队,2007
    [105]云南省腾冲县瑞滇热田普查地质报告.云南地质矿产局地热地质队瑞滇热田地质普查组.1984
    [106]孙占学,李学礼,史维浚.江西中低温热水的同位素水文地球化学.华东地质学院学报,1992,15(3):243—48
    [107]朱炳球,朱立新,史长义等.地热田地球化学勘查.北京:地质出版社,1991
    [108]刘永涛.云南省龙陵县邦腊掌温泉水文地球化学与间歇喷泉研究:[硕士学位论文].北京:中国地质大学,2009
    [109]杨妍妍.广西博白温罗温泉形成演化与钙华沉积机制研究:[硕士学位论文].北京:中国地质大学,2006
    [110]林元武.红河断裂带北段温泉水循环深度与地震活动性的关系探讨.地震地质,1993,15(3):193-206
    [111]徐艳,薛荣俊.工程物探在温泉区域断层调查的效果分析[J].内蒙古石油化工.2006, (12):1-3.
    [112]吴乾蕃,祖金华,谢毅真等.云南地区地热基本特征[J].地震地质.1988,10(4):177-183.
    [113]禚传源.怒江跃进桥地区温泉成因机制分析与跃进桥温泉恢复替代方案研究:[硕士学位论文].昆明:昆明理工大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700